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ABSTRACT
In this paper we present our work on improving the efficiency of
adversarial training for unsupervised video summarization. Our
starting point is the SUM-GAN model, which creates a representa-
tive summary based on the intuition that such a summary should
make it possible to reconstruct a video that is indistinguishable
from the original one. We build on a publicly available implementa-
tion of a variation of this model, that includes a linear compression
layer to reduce the number of learned parameters and applies an
incremental approach for training the different components of the
architecture. After assessing the impact of these changes to the
model’s performance, we propose a stepwise, label-based learning
process to improve the training efficiency of the adversarial part
of the model. Before evaluating our model’s efficiency, we perform
a thorough study with respect to the used evaluation protocols
and we examine the possible performance on two benchmarking
datasets, namely SumMe and TVSum. Experimental evaluations
and comparisons with the state of the art highlight the competi-
tiveness of the proposed method. An ablation study indicates the
benefit of each applied change on the model’s performance, and
points out the advantageous role of the introduced stepwise, label-
based training strategy on the learning efficiency of the adversarial
part of the architecture.

CCS CONCEPTS
• Information systems → Summarization; Multimedia con-
tent creation; Retrieval models and ranking; • Computing
methodologies→ Machine learning.
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1 INTRODUCTION
Recent advances in video capturing and storage technology and the
widespread use of social networks (e.g. Facebook, Twitter), video
sharing platforms (e.g. YouTube) and online video archives, facili-
tate the recording and sharing of huge volumes of video content.
Thousands of hours of video are uploaded every single day on the
Web, aiming to attract the viewers’ attention. Nevertheless, in sev-
eral cases, browsing through long videos to find the content that
a viewer prefers is a highly time-consuming and tedious process.
Hence, the provision of a concise summary that adequately con-
veys the main concept of the video, enables the viewer to quickly
grasp an idea without having to watch the entire content. Given the
plethora of videos on theWeb and the limited time spent by viewers
on deciding whether to watch or skip a video, an effective video
summary allows time-efficient browsing of large video collections
and increases the potential of a video to be consumed.

Video summarization aims to provide a short visual summary
that encapsulates the flow of the story and the essential parts of the
full-length video. The application domain is widely extended and
includes the use of such technologies by video sharing platforms
that aim to higher viewer engagement and content consumption,
and the content management systems of media organizations to
allow effective indexing, browsing and retrieval of video content.
Moreover, video summarization that takes into account the diversity
of the current content distribution environment, enables effective
sharing of video content across different channels (e.g. 3G/4G/5G
WANs, local LANs, etc.) and presentation devices (e.g. desktops,
laptops, tablets, smart-phones), in forms (storyboards, skims, ex-
cerpts) that are tailored to the needs of each viewer, thus facilitating
content presentation and consumption.

Several methods aimed to tackle the task of video summarization,
and deep learning approaches were the main focus of researchers
over the last years. In this direction, a number of datasets were
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built to facilitate training and evaluation of video summarization
algorithms. However, driven by the fact that video summarization is
a highly-subjective task, we argue that supervised learning, which
relies on the use of a single ground-truth summary, cannot fully
explore the potential of deep learning architectures. The latter,
in combination with the limited amount of available annotated
data for training a video summarization algorithm in a supervised
manner, directed our focus on improving the performance of an
unsupervised method. Starting from the work of [16] and building
on a PyTorch implementation of a variation of this model [3], we
perform a thorough study with respect to parts and procedures
that could be further fine-tuned for improving the models’ per-
formance. In particular, after evaluating the implemented modi-
fications, namely the addition of a linear compression layer that
reduces the number of trainable parameters and the application of
an incremental training method for the model’s components, we
propose a stepwise, label-based learning approach for the adversar-
ial part of the architecture. Experiments on the SumMe and TVSum
benchmarking datasets showed that the proposed method, called
“SUM-GAN-sl” in the remainder of the paper, exhibits significantly
improved performance compared to the original one, and is highly
competitive against other state-of-the-art methods. In a nutshell,
our contributions include:

• the evaluation of how the variations introduced by the devel-
oper of [3], i.e. the addition of the linear compression layer
and the applied incremental process for training the archi-
tecture, influence the performance of the original model;
• the proposal of a stepwise, label-based approach for training
the adversarial module of the network in a more fine-grained
manner, and the assessment of the advantage this update
brought on the algorithm’s efficiency;
• a thorough study of the relevant literature that allowed to
gather information about the utilized evaluation protocols
and spot the differences in the assessment of state-of-the-art
summarization algorithms;
• experiments on the SumMe and TVSumbenchmarking datasets,
that resulted in estimates regarding the lower and higher
bounds of summarization performance and the suitability of
the used evaluation metrics.

2 RELATEDWORK
Several approaches were proposed over the last couple of decades
for addressing the task of video summarization, with the majority of
them being trained supervisingly using ground-truth data. For the
sake of brevity, here we report only on machine learning methods
that exploit the learning efficiency of neural networks. A group
of supervised algorithms were based on the use of Convolutional
Neural Networks (CNN). For example, in [19] video summarization
is addressed as aweakly-supervised learning problem and solved via
a deep 3D convolutional neural network architecture that learns the
notion of importance using only video-level annotation. [23] tackles
video summarization as a sequence labeling problem and performs
key-frame-based video summarization using fully convolutional
sequence models. [6] combines a soft, self-attention network with
a 2-layer fully connected network to process the CNN features of
the video frames and compute frame-level importance scores that

are used for key-fragment selection. [18] uses deep video features
for encoding various levels of content semantics and a deep neural
network that maps videos and their descriptions to a common
semantic space. The latter is jointly trained with associated pairs
of videos and descriptions and a summary is created by clustering
the deep features extracted from the video segments.

The effectiveness of Recurrent Neural Networks (RNN) (e.g. Long
Short-Term Memory (LSTM) units [11] and Gated Recurrent Units
(GRU) [4]) to capture the temporal dependency over sequential data
led to several RNN-based supervised techniques for video summa-
rization that represent the current state-of-the-art. [29] introduces
the use of LSTMs to model temporal dependency among frames
and compute frame-level importance scores. [32] proposes a 2-layer
LSTM architecture where the first layer extracts and encodes data
about the video structure and the second layer uses this data to
define the key-fragments of the video. This work is extended in [33]
to exploit the shot-level temporal structure of the video and com-
pute shot-level confidence scores for producing a key-shot-based
summary of the video. [30] describes a Dilated Temporal Relational
(DTR) Generative Adversarial Network (GAN), where the genera-
tor contains LSTM and DTR units to exploit long-range temporal
dependencies at different temporal windows, and the discriminator
is trained via a 3-player loss to distinguish between the learned
summary and a trivial summary consisting of randomly selected
frames. Finally, a number of works focus on introducing attention
mechanisms in the network’s architecture, to identify the most
suitable parts and build the summary e.g. [7, 8, 12].

Besides the aforementioned supervised approaches, a few un-
supervised methods were proposed as well. [16] addresses video
summarization by training a deep network to minimize the distance
between videos and a distribution of their keyframe-based summa-
rizations, through a generative adversarial framework. [27] follows
a similar approach, and aims tomaximize themutual information be-
tween the summary and the video using an information-preserving
metric, a trainable couple of discriminators and a cycle-consistent
adversarial learning objective. [34] formulates video summariza-
tion as a sequential decision-making process and develops a deep
summarization network that learns to produce diverse and repre-
sentative video summaries via reinforcement learning and a novel
reward function. [31] suggests an approach that extracts key mo-
tions of appearing objects in the video, and learns to produce a
fine-grained object-level video summarization in an unsupervised
manner. The authors of [23] describe an unsupervised variation
of their model, that aims to increase the visual diversity of the
selected key-frames. Finally, [22] introduces a new formulation to
learn video summarization from unpaired data. Sports highlights,
movie trailers and other professionally-edited summary videos
available online are collected and used to guide an adversarial pro-
cess that learns a mapping function of a raw video to a human-like
summary.

3 PROPOSED APPROACH
The starting point of our work was the unsupervised method of [16].
The core idea of Mahasseni et al. was to build a keyframe selection
mechanism (to generate static video summaries) by minimizing the
distance between features extracted from the selected key-frames



Figure 1: The proposed variation of the SUM-GAN model.
The SUM-GAN architecture has been extended by a linear
compression layer that reduces the size of the feature vec-
tors. In addition, the model’s components are trained incre-
mentally; and, the GAN part of the architecture is trained in
a stepwise and label-based manner.

and the entire video. For this, a deep representation of the entire
video frame sequence is created with the help of a bi-directional
LSTM, which assigns a weight to each frame, and a variational
auto-encoder (VAE). The former is used to capture the long-term de-
pendencies over sequences of frames in both forward and backward
direction. The latter is used to reveal the underlying structure of the
frame/keyframe features (in its encoding part) and produce another
representation of the video by drawing samples from the computed
latent space (in its decoding part). The difficulty in defining a suit-
able threshold regarding the similarity between the reconstructed
and the original video, directed Mahasseni et al. to the adversarial
framework and the integration of a trainable discriminator network.
The ultimate goal of this approach was to jointly train the frame
selector and the variational auto-encoder in order to maximally con-
fuse the discriminator, i.e. decrease discriminator’s confidence in
distinguishing the original from a reconstructed video, a condition
that denotes a highly representative keyframe collection.

Building on this method, we gained deeper knowledge about the
components of the SUM-GAN model and explored the possibility
of improving its performance by fine-tuning specific parts of the
architecture and the training process. For this, we were based on
a publicly available PyTorch implementation [3], that was used
for evaluating the performance of a variation of SUM-GAN on the
summarization of 360° videos (see [15]). This variation contains
a linear compression layer right before the summarizer of the ar-
chitecture. In the updated model (see Fig. 1), given a video of M
frames and focusing on the t th frame of this video, xt represents
the CNN feature vector, x ′t denotes the compressed feature vector,
st refers to the computed importance score from the frame selector,
wt corresponds to the weighted feature vector (st ⊗ x ′t , where ⊗

denotes element-wise matrix multiplication), and x̂t relates to the
reconstructed feature vector by the variational auto-encoder.

In addition to the added linear layer, this variation follows a
3-step incremental training approach that updates specific parts of
the network in each step. In particular, differently to the immediate
update of the entire model based on the computed losses after a
single forward pass of the architecture (see Alg. 1 in [16]), the
implemented process:
• performs a 1st forward pass over the entire model, computes
the Lreconst , Lprior and Lsparsity losses, and updates the
frame selector, the encoder and the linear compression layer
(top part of Fig. 2);
• performs a 2nd forward pass of the partially updated model,
computes the Lreconst and LGAN losses, and updates the
decoder and the linear compression layer (middle part of
Fig. 2);
• performs a 3rd forward pass of the (twice) partially updated
model, computes the LGAN loss, and updates the discrimina-
tor and the linear compression layer (bottom part of Fig. 2);

The aforementioned losses are computed similarly to [16]:

Lreconst =
φ (x’) − φ (x̂)2 (1)

where φ (x’) is the output of the last hidden layer of cLSTM for
compressed feature vectors of the original video (x’ = {x ′t }Mt=1) and
φ (x̂) is the output of the last hidden layer of cLSTM for the feature
vectors of the summary-based reconstructed video (x̂ = {x̂t }Mt=1).

Lprior = DKL (q(e|x) | |p (e)) (2)

where e is the hidden (latent) representation of x, p (e) is used to
fit the values of the latent variable e to the values of a standard
Normal distribution with mean zero and variance one, x is the
observed data, q(e|x) is the probability of observing e given x, and
DKL denotes the Kullback-Leibler divergence. For efficient training
we employ the re-parameterization trick proposed in [14].

Lsparsity =


1
M

M∑
t=1

st − σ


2

(3)

whereM is the total number of video frames and σ is the regular-
ization factor, a tunable hyper-parameter of the model.

LGAN = loд(cLSTM (x’))+loд(1−cLSTM (x̂))+loд(1−cLSTM (x̂p))
(4)

where cLSTM (x’), cLSTM (x̂) and cLSTM (x̂p) are probability scores
(computed at the soft-max output of the discriminator) representing
the discriminator’s confidence when classifying the original video,
the generated summary and the uniform summary respectively.

Given the above, we examined a different training strategy for
the adversarial part of the model. The introduced learning approach
was utilized in [21] for unsupervised representation learning with
deep convolutional GANs, a method used for image generation.
Driven by the effectiveness of this approach on training a net-
work to generate realistic images from white noise, we transfer
this methodology in our context. Our aim is to a find a better equi-
librium point between the generator and the discriminator, which
means a better reconstruction of the video from the combination
of the weighted frames and the learned distribution of data by the



Figure 2: The different parts of the architecture are trained
through a 3-step, incremental procedure that updates spe-
cific components of the model in each step. Updated compo-
nents during a backward pass are indicated by solid line in
the backpropagation arrow and dark-coloured boxes.

variational auto-encoder of the architecture. So, instead of using
the LGAN loss of the original SUM-GAN model, we follow a label-
based approach, where label “1” is assigned to the original video and
label “0” to the video summary. Given these labels, we introduce
the following two losses:

LORIG = (1 − cLSTM (x’))2 and LSUM = (cLSTM (x̂))2 (5)
LORIG is used to minimize the Mean Square Error (MSE) between
the original video label and the computed probability when the dis-
criminator is fed with the original video. Similarly, the LSUM is used
to minimize the MSE between the summary label and the computed
probability when the discriminator is fed with the summary-based
reconstruction of the video. Based on these losses, the training of
the discriminator is performed in a stepwise manner, as depicted in
Fig. 3 (top part). First, we pass the compressed feature vectors of the
original video (x ′t , t ∈ [1,M]) through the discriminator (forward
pass), calculate LORIG and then calculate the gradients (backward
pass). Secondly, we pass the original video through the summa-
rizer to create the reconstructed video (x̂t , t ∈ [1,M]), forward the
latter to the discriminator, calculate LSUM and then accumulate
the gradients from both the original video and the summary-based
reconstructed one, with another backward pass. With the gradi-
ents accumulated, we call a step of the discriminator’s optimizer.
This incremental process enables a more fine-grained computa-
tion of the discriminator’s gradients (compared with the training
policy used in SUM-GAN), and helps the discriminator develop
higher discrimination efficiency, thus performing better during the
classification.

For training the generator, we introduce the following loss:

LGEN = (1 − cLSTM (x̂))2 (6)
LGEN is used to minimize the MSE between the original video
label and the computed probability when the discriminator is fed
with the summary-based reconstruction of the video. By constantly
trying to reduce the sum of Lreconst and LGEN , the generator

Figure 3: The stepwise, label-based training of the adversar-
ial component of ourmodel. The top part corresponds to the
Discriminator and the bottom part to the Generator.

aims to confuse the discriminator and make the summary-based
reconstruction of the video indistinguishable from the original one.

The reasoning behind choosing the MSE loss instead of the com-
monly used Binary Cross Entropy (BCE) loss for training the GAN
module of the architecture, resides in the fact that in vanilla GANs,
the latent vector (random noise) is sampled independently of the
training data. The original GAN has shown better performance
with the BCE Loss, since it does not force the network to learn
a non-meaningful representation between the noise vector and
a ground-truth image. Instead, it helps the generator to produce
more versatile outputs, taking into account only if the output is
classified as real or fake. In our method, differently from typical
GANs, the introduction of a variational auto-encoder alters the
above approach due to the input no longer being a random noise
latent vector, but an original video to be reconstructed and fed to
the discriminator for comparison. Therefore, we choose the MSE
as the loss function, since our method attempts to reconstruct the
input and to not generate new samples. To validate this choice we
performed a set of experiments and their findings are reported in
Section 4.

Given the above described training strategy, the randomly gener-
ated summary used in the original SUM-GAN model to regularize
learning of the discriminator is not needed any more in our varia-
tion. The authors of [16] claim that the use of the randomly gener-
ated summary enhances the discriminator’s ability to distinguish
between the original video and a summary-based reconstruction of
it. Nevertheless, through this approach the discriminator learns to
classify the random summary in the same class with the generated
summary, thus restricting the discriminator’s ability to make the
distinction between an actual video summary and a randomly gen-
erated one. Based on this reasoning, we omit the use of a random
summary for training our model.

After training, the components responsible for generating a sum-
mary for an unseen video are the linear compression layer and the
frame selector. In particular, the CNN features of the video frames
pass through the aforementioned components and an importance
score is computed for each frame. Then, having the video frag-
mented using the KTS algorithm [20] (other approaches for video
shot (e.g. [1]) or subshot (e.g. [2]) segmentation, could be used too),
fragment-level importance scores are calculated by averaging the



importance scores of each fragment’s frames. Finally, the summary
is created by selecting the fragments that maximize the total im-
portance score, provided that the summary length does not exceed
15% of the original video duration, a convention adopted by several
video summarization approaches (e.g. [12, 24, 29, 34]). This latter
step is performed by solving the following optimization problem:

max
N∑
i=1

ai · bi , s.t.
N∑
i=1

ai · li ≤ 0.15 · L, ai ∈ 0,1 (7)

where N is the number of fragments, L is the length of the original
video, 0.15 defines the upper limit for the summary duration, and
given the i − th fragment of the video, ai is a binary value that
indicates whether the fragment is selected or not,bi is the computed
fragment-level importance score, and li is the length of the fragment.
The latter is the 0/1 Knapsack problem.

4 EXPERIMENTS
4.1 Datasets
We evaluate the performance of our method on the SumMe [10]
and TVSum [24] datasets. SumMe includes 25 videos covering mul-
tiple events from both first-person and third-person view, while
the video duration ranges from 1 to 6 minutes. TVSum contains 50
videos capturing 10 categories of the TRECVid Multimedia Event
Detection dataset and the length of each video ranges from 1 to 5
minutes. In terms of ground-truth annotation, each video of SumMe
has been annotated by 15 to 18 viewers/users in the form of key-
fragments, and thus it is associated to multiple fragment-level user
summaries. Moreover, besides the aforementioned user summaries,
a single ground-truth summary in the form of frame-level impor-
tance scores (calculated as an average of the key-fragment user
summaries per frame) is also provided. In the case of TVSum, videos
have been annotated by 20 viewers/users in the form of frame-level
importance scores. Similar to SumMe, a single ground-truth sum-
mary in the form of frame-level importance scores (computed after
averaging all users’ scores) is provided for each video of the dataset.

4.2 Evaluation Approach
For fair comparison with other video summarization algorithms,
we adopt the evaluation protocol proposed in [29]. The similar-
ity between an automatically generated (A) and a ground-truth
summary (G) is computed by the F-Score (as percentage), where
(P)recision and (R)ecall measure the temporal overlap (∩) between
the summaries (| | ∗ | | denotes duration):

F = 2 × P × R

P + R
× 100, with P =

A ∩G

| |A| |
and R =

A ∩G

| |G | |
(8)

A thorough study of the relevant literature indicated that most
works evaluate the performance of video summarization based on
the key-fragment protocol introduced in [29]. As stated before, the
ground-truth annotations for the SumMe dataset are already avail-
able in the form of key-fragments, and thus can be used directly
for evaluation. Nevertheless, the annotation of the TVSum videos
is available only in the form of frame-level importance scores. To
tackle this, the frame-level ground-truth annotations of the TVSum
videos are converted to key-fragment-based summaries following

the approach presented in [24, 29]. In particular, the videos are tem-
porally segmented into non-overlapping fragments using the KTS
method [20]. Then, fragment-level importance scores are computed
by averaging the importance score of the frames of each fragment,
and the calculated scores are used for ranking the fragments. Fi-
nally, a subset of fragments is selected to form the video summary,
such that the summary duration does not exceed 15% of the video’s
length. In most cases, the latter is performed using the Knapsack
algorithm, as proposed in [24, 29].

Given the above technical background, we found out that there is
a slight but significant distinction with respect to what is eventually
used as ground-truth summary for evaluating the performance of a
video summarization algorithm. In particular, a number of works
(see Table 7) compare the generated summary for a given video
against the single ground-truth summary that is available for that
video (mainly for supervised training). Differently to this approach,
the majority of works (see Tables 4 and 5) evaluate the efficiency of
the generated summary for a given video by assessing its similarity
with all the available human-generated (a.k.a. user) summaries for
that video. Driven by the fact that video summarization is a highly
subjective task, we argue that exploiting existing knowledge from
many summaries of the same video can lead to more concrete and
reliable results. Hence, in our assessments we follow the evalua-
tion protocol that involves all human-generated summaries. More
precisely, given a video, we compare the generated summary with
the available user summaries and compute an F-Score for each pair
of generated and user summary. Then, we average the computed
F-Scores (in the case of TVSum) or keep the maximum of them (in
the case of SumMe, following the recommendation of the authors
of this dataset (see [9])) and end up with the final F-Score for this
video. The computed F-Scores for the entire set of testing samples
are finally averaged to capture the final outcome about the algo-
rithm’s performance. For fair comparison with methods that adopt
the single ground-truth summary evaluation approach, we report
our model’s performance based on this approach too.

4.3 Preliminary Study on Datasets
Aiming to get some insights about the used datasets, we examined
the following aspects:
• the efficiency of a randomly generated summary (frames’
importance scores were defined based on a uniform distribu-
tion of probabilities, and the experiment was performed 100
times);
• the human performance, i.e. how well a human annota-
tor would perform based on the preferences of the remain-
ing annotators; this is a measure regarding the compatibil-
ity/agreement between the human-defined summaries;
• an estimate about the highest performance on TVSum 1

according to the best human-generated summary (with the
highest overlap) for each video of the dataset.

For completeness, in Table 1 we report the outcomes of our
study using both criteria for calculating the video-level F-Scores,
i.e. the maximum of the computed F-Scores in the case of SumMe,
and the average of these scores in the case of TVSum. The results

1Based on the “max” criterion, the upper-bound for SumMe is 100%, i.e. the
generated summary perfectly matches a human-generated summary.



Table 1: Performance (F-Score (%)) of different types of sum-
maries and the theoretical upper-bound of the SumMe and
TVSum dataset, based on the “average” and “max” criteria.

SumMe TVSum
Average Max Average Max

Random 18.1 39.9 53.9 75.5
Human Summaries 31.3 55.1 53.8 77.5
Best Possible 44.7 100.0 64.7 100.0

- which are consistent with the findings of a recently published
study on these datasets [17] - clearly indicate that video summa-
rization is a highly subjective task, as there is no ideal summary
that exhibits significant overlap with all annotators’ preferences, in
both datasets. Moreover, the “average” metric in the case of TVSum
shows that human performance is comparable with the efficiency
of a randomly generated summary, and thus limits the available
space for improvement. In particular, the best possible summary
(i.e. a summary that matches the best human-generated summary
for each different video of the dataset) results in a score that is
approximately 10 units higher than the score of a random summary.
Given the reasonable lack of an objective summary for a video, we
argue that the “max” criterion is more suitable for assessing the
performance of video summarization approaches. In this sense, the
upper-bound with respect to video summarization efficiency will be
100% in both datasets, denoting that machine-generated summaries
are indistinguishable from human-generated ones.

4.4 Implementation Details
We downsampled all videos to 2 fps. For fair comparison with sev-
eral works (including [16]), we used the output of pool5 layer of
GoogleNet [25] trained on ImageNet, for representing the visual
content of the video frames. The linear compression layer reduces
the size of these feature vectors from 1024 to 500. Each compo-
nent of the architecture is comprised of a 2-layer LSTM, with 500
hidden units in each layer, while as in [16] the frame selector is a
bi-directional LSTM. Training is based on the Adam optimizer and
the learning rate for all components but the discriminator is 10−4;
for the latter one equals to 10−5. For evaluation, we followed the
standard 5-fold cross validation approach (i.e. 80% of videos used
for training and the rest 20% for testing) and, in the next sections,
we report the average performance over the 5 runs. Finally, we
implemented our method in PyTorch 2.

4.5 Performance Evaluation
The performance of the proposed variation of the SUM-GAN model
was initially evaluated for several values of the regularization factor
σ , ranging between 0.05 and 0.5. Experiments for greater values
were omitted as the method’s performance was reduced for the
highest tested value. The results reported in Table 2 indicate that:
i) the regularization factor clearly affects the performance (as also
reported in [16]) and thus needs fine-tuning; ii) too small and too
large values lead to reduced efficiency, and only a specific range of
values results in good performance; iii) fine-tuning of σ seems to

2Code and documentation publicly available at: https://github.com/e-apostolidis/
SUM-GAN-sl

Table 2: Performance (F-Score (%)) of the proposed model
for different values of the regularization factor. Best perfor-
mance shown in bold.

SumMe TVSum
σ = 0.05 44.7 58.2
σ = 0.1 47.3 58.0
σ = 0.15 46.6 58.6
σ = 0.3 46.4 58.8
σ = 0.5 42.7 58.6

be dataset-dependent, as the highest performance is achieved for
different values of σ in each dataset.

For fair comparison with other video summarization methods
that rely on a strictly-defined set of (hyper-)parameters, in the fol-
lowing we refer to our model with σ = 0.1, since the gain compared
to the model’s performance in SumMe for σ = 0.3 is higher than
the observed mitigation in TVSum for σ = 0.1. The training curves
of this model for 100 epochs of training on SumMe and TVSum,
are illustrated in Figs. 4 and 5 respectively. In both cases the model
starts from approx. the performance of a randomly-generated sum-
mary and develops knowledge about the task (the fluctuation in
the case of SumMe is reasonable due to the adversarial nature of
the training), which results in a noticeable improvement of its sum-
marization efficiency. The peak value was observed in epoch 93 for
SumMe and in epoch 98 for TVSum.

Before delving into more details with respect to the conducted
comparisons with the current state of the art, in Table 3 we present
our findings regarding the effect of the selected criterion for train-
ing the GAN part of the architecture, on the model’s performance.
The replacement of the MSE by the BCE loss led to a noticeable
decrease in the algorithm’s efficiency on SumMe, while maintained
its performance on TVSum. Therefore, it seems that the use of
the MSE loss can be beneficial in the case of limited training data
(for SumMe we used 20 training samples), enabling the model to
converge in a state that achieves higher performance. The results
for TVSum indicate that both criteria result to similar efficiency on

Figure 4: In blue, the average (over 5 splits) training curve
of the proposed variation on SumMe. In red, the computed
6-order polynomial that approximates the training curve.

https://github.com/e-apostolidis/SUM-GAN-sl
https://github.com/e-apostolidis/SUM-GAN-sl


Figure 5: In blue, the average (over 5 splits) training curve
of the proposed variation on TVSum. In red, the computed
6-order polynomial that approximates the training curve.

larger sets of training samples (for TVSum we used 40 training sam-
ples), that allow the GAN to be updated with similar effectiveness
over the training epochs, in both cases.

Table 3: Evaluating the impact on the model’s performance
(F-Score (%)), of each training criterion for the GAN part of
the architecture.

SumMe TVSum
MSE Loss 47.3 58.0
BCE Loss 44.6 58.0

Our model was compared against the performance of a randomly
generated summary and of other state-of-the-art unsupervised ap-
proaches on SumMe and TVSum. The original SUM-GAN method
is not listed in this table as it follows a different evaluation pro-
tocol, and the comparison with it is reported in the sequel (see
Tables 6 and 7). The reported data in Table 4 3 show that: i) the
performance of a few SoA methods is comparable (or even worse)
than that of a random summary generator; ii) the best method on
SumMe (UnpairedVSN) performs slightly better than our method,
while it is clearly less competitive on TVSum; iii) the best algorithm
on TVSum (Tessellation) achieves random-level performance on
SumMe, a fact that indicates it is a dataset-tailored technique. Con-
trary to the above, our approach performs consistently well in both
datasets, thus being the most competitive one among the compared
techniques.

Furthermore, the efficiency of our unsupervised method was
compared against the performance of supervised approaches for
video summarization (which is a comparison that is rather unfair
for the proposed unsupervised model). From the data presented in
Table 5 it is shown that: i) the two best methods in TVSum (MAVS
and Tessellationsup respectively) are highly-adapted to this dataset,
as they exhibit random-level performance on SumMe; ii) only a few
supervised methods clearly surpass the performance of a randomly-
generated summary on both datasets, with VASNet being the best

3The scores for each method are from the corresponding paper.

Table 4: Comparison (F-Score (%)) with different unsuper-
vised video summarization approaches on SumMe and TV-
Sum, taking under consideration all human-generated sum-
maries for each video. +/− indicate better/worse perfor-
mance compared to SUM-GAN-sl.

SumMe TVSum
Random 39.9 (−) 53.9 (−)
Tessellation [13] 41.4 (−) 64.1 (+)
DR-DSN [34] 41.4 (−) 57.6 (−)
Online Motion-AE [31] 37.7 (−) 51.5 (−)
UnpairedVSN [22] 47.5 (+) 55.6 (−)
SUM-GAN-sl 47.3 58.0

Table 5: Comparison (F-Score (%)) of our unsupervised
method with supervised video summarization approaches
on SumMe and TVSum, after taking under consideration all
human-generated summaries for each video. +/− indicate
better/worse performance compared to SUM-GAN-sl.

SumMe TVSum
Random 39.9 (−) 53.9 (−)
vsLSTM [29] 37.6 (−) 54.2 (−)
dppLSTM [29] 38.6 (−) 54.7 (−)
H-RNN [32] 4 41.1 (−) 57.7 (−)
Tessellationsup [13] 37.2 (−) 63.4 (+)
HSA-RNN [33] 44.1 (−) 59.8 (+)
DQSN [35] - 58.6 (+)
DSSE [28] - 57.0 (−)
MAVS [7] 40.3 (−) 66.8 (+)
SUM-FCN [23] 47.5 (+) 56.8 (−)
SUM-DeepLab [23] 48.8 (+) 58.4 (+)
DR-DSNsup [34] 42.1 (−) 58.1 (+)
ActionRanking [5] 40.1 (−) 56.3 (−)
UnpairedVSNpsup [22] 48.0 (+) 56.1 (−)
VASNet [6] 49.7 (+) 61.4 (+)
SUM-GAN-sl 47.3 58.0

among them. The performance of the latter methods ranges from
44.1 to 49.7 in SumMe, and from 56.1 to 61.4 on TVSum. Hence,
the performance of our SUM-GAN-sl model (47.3 on SumMe and
58.0 on TVSum) makes our unsupervised method comparable with
state-of-the-art supervised techniques for video summarization.

Finally, for fair comparison with works that rely their eval-
uation on the single ground-truth summaries of each video of
SumMe and TVSum (i.e. the different evaluation protocol adopted
in [8, 12, 16, 26, 27, 30]), we assessed the performance of our method
also via this approach. As a preliminary experiment, we examined
different values for the regularization factor σ , to check the con-
sistency of our findings with what has been discussed in [16]. The
reportings in Table 6 indicate that: i) the method’s performance
is affected by the value of σ in a way similar to the one reported
in [16]; ii) the effect of this hyperparameter strongly depends on the
used evaluation approach (best performance when using multiple

4Performance reported in a subsequent work of the authors (see [33]).



Table 6: Comparison (F-Score (%)) of the best performing
SUM-GAN model (based on [16]) with the proposed model
for different values of the regularization factor.

SumMe TVSum
Original SUM-GAN (σ = 0.3) 38.7 50.8
SUM-GAN-sl (σ = 0.1) 38.1 61.0
SUM-GAN-sl (σ = 0.3) 45.2 62.4
SUM-GAN-sl (σ = 0.5) 46.8 65.3

Table 7: Comparison (F-Score (%)) of video summariza-
tion approaches on SumMe and TVSum, using a single
ground-truth summary for each video. Unsupervised meth-
ods marked with asterisk. +/− indicate better/worse perfor-
mance compared to SUM-GAN-sl.

SumMe TVSum
* SUM-GAN [16] 38.7 (−) 50.8 (−)
* SUM-GANdpp [16] 39.1 (−) 51.7 (−)
SUM-GANsup [16] 41.7 (−) 56.3 (−)
SASUM [26] 45.3 (−) 58.2 (−)
DTR-GAN [30] 44.6 (−) 59.1 (−)
A-AVS [12] 43.9 (−) 59.4 (−)
M-AVS [12] 44.4 (−) 61.0 (−)
AALVS [8] 46.2 (−) 63.6 (−)
* Cycle-SUM [27] 41.9 (−) 57.6 (−)
* SUM-GAN-sl 46.8 65.3

human summaries was observed for σ = 0.1); and iii) our method
clearly outperforms the original SUM-GAN model on both datasets,
even for the same value of σ . The comparison of the best perform-
ing version of our model (for σ = 0.5) with other summarization
techniques (both supervised and unsupervised ones) that follow
this evaluation protocol, indicated the superiority of the proposed
approach in both benchmarking datasets (see Table 7 3).

4.6 Ablation Study
To see how each introduced change influences the performance
of the proposed model we conducted an ablation study. The varia-
tions taken under consideration, as well as their performance on
SumMe and TVSum, are reported in Table 8. From these values it
seems that: i) the replacement of the incremental training of the
architecture, by the sequential one described in [16] leads to a sig-
nificant performance reduction on SumMe and a slight decrement
on TVSum (see Var. 3); ii) a similar effect is observed with respect
to the linear compression layer (see Var. 2), as its removal results
in a bit lower performance (compared to Var. 3) in both datasets;
iii) the addition of the linear compression layer and the application
of the incremental training for the model’s components (see Var.
1) led to a clear performance improvement in SumMe (more than
2%) and a slight amelioration in TVSum (reaching 0.5% compared
to Var. 2); iv) the introduction of the stepwise, label-based training
strategy for the GAN module of the architecture, advanced further
the model’s performance on SumMe (by 0.8%) and maintained the
same efficiency on TVSum.

Table 8: Ablation study based on the performance (F-Score
(%)) of three variations of the proposed model, on SumMe
and TVSum.

SUM-GAN-sl Var. 1 Var. 2 Var. 3
Incremental training X X X X
Linear compression X X X X
Stepwise GAN train X X X X
Performance on
SumMe & TVSum 47.3 & 58.0 46.5 & 58.0 44.0 & 57.5 44.3 & 57.9

The above indicate that the incremental training approach is
beneficial in case of small training datasets, while its contribution
is less pronounced in case of larger datasets. Similarly, the addition
of a linear layer that significantly reduces the amount of trained
parameters advances the model’s training capacity in case of small
training sets (as for SumMe), while a lower impact is observed in
case of larger training sets (as for TVSum). A possible justification
for the above findings is that the amount of training samples in the
case of TVSum is adequate for learning a larger set of parameters
even in a 1-step training. The application of the stepwise, label-
based learning approach enables the adversarial part of the model
to converge to a better state through a more fine-grained update of
the discriminator’s gradients and the use of a more strictly defined
learning task for the generator. This strategy seems to be advanta-
geous in the case of small training sets, while it maintains the same
levels of (state-of-the-art) performance when larger groups of train-
ing samples are used. To sum up, the applied changes contributed
to significantly improve the performance of the original SUM-GAN
model, and the introduced GAN-training approach allowed the
model to reach higher levels of performance on SumMe, making it
comparable with the best-performing unsupervised method.

5 CONCLUSIONS AND NEXT STEPS
This paper reported our study for assessing and advancing the
effectiveness of an unsupervised video summarization method that
is based on adversarial learning. Focusing on the SUM-GAN model
and after assessing the efficiency of a variation of it, we suggested
a new training approach to advance the learning efficiency of the
adversarial module of the architecture. A thorough study of the
evaluation protocols and metrics, and experiments on two datasets
allowed to estimate the possible performance on these datasets
and the suitability of the used metrics. Comparative evaluations
showed that our model performs consistently well on both datasets
and is among the best unsupervised methods, while its efficiency
make it comparable with supervised algorithms too. An ablation
study proved the contribution of each applied change and the gain
offered by the proposed stepwise, label-based adversarial training
strategy. In the future we plan to put effort on further improving
our model, e.g. by exploiting the efficiency of attention networks
and the training capacity of reinforcement learning approaches,
and we will investigate approaches for video summarization that is
tailored to specific targeted audience and distribution channel.
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