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ABSTRACT
In this work, the structure of the moving skeleton, which is a time
varying graph, along with the temporal dependencies of human ac-
tion were leveraged in the scope of skeleton action recognition. The
optimisation of the proposed model shares similarities with the op-
timisation problem of Slow Feature Analysis (SFA) enabling a well
defined solution. Moreover, due to the incorporated skeleton struc-
ture, the learned slow functions enclose information regarding the
geometry of the skeleton movement which is very useful in the ac-
tion recognition problem. Two skeleton action datasets were used
to evaluate our method, the MSR Action 3D and a dataset whose
actions were inspired by psychological studies. Both datasets were
captured by depth cameras. The proposed method yielded promising
results when evaluated on the aforementioned datasets.

Index Terms— Skeleton Tracking, Action Recognition, Slow
Feature Analysis, Human Activity.

1. INTRODUCTION

During the last decade, Human Activity Recognition became a very
active field in computer vision including applications for motion
analysis in sports, robotics, health-care, etc. The first action recog-
nition methods were based on the information of RGB video frames.
Even though this approach has attracted a lot of attention, recog-
nition results were not satisfactory due to the irrelevant and noisy
background, and the lack of three dimensional information which is
useful for the distinction of the same actions performed from differ-
ent view points.

In order to overcome the difficulties that arise from the noisy
background, local descriptors were proposed. Laptev et al. [1] pro-
posed Histogram of Gradients (HoG) and Histogram of optic Flows
(HoF) in order to obtain a more robust description of the captured
action in 2D domain, i.e., per single video frame. Klaser et al. [2]
extended 2D HoG [1] features to 3D domain, i.e., taking into consid-
eration multiple video frames. A drawback in [2] was the sparseness
of interest points which may lead to information loss. Thus, Dollar et
al. [3] proposed a method where a rich corpus of interest points was
computed by applying a series of spatiotemporal filters. Laptev &
Lindeberd [4] also proposed spatiotemporal interest points for action
representation that demonstrate rotational and translational invari-
ance. Oikonomopoulos et al. [5] proposed spatiotemporal features
by computing the variations between neighborhood regions extend-
ing the salient point detector in [6]. Schuldt et al. [7] introduced
space-time video representations and integrated them with an Sup-
port Vector Machine (SVM) for action recognition.

With the advent of depth sensors and the almost real time pose
estimation techniques [8], human skeleton action datasets with three

dimensional information became publicly available making skeleton
action recognition a new trend. However, problems like wrongly es-
timated postures due to noisy depth maps and different executions of
same actions are still open problems. Gowayyed et. al. [9] proposed
a novel 2D trajectory descriptor combined with temporal pyramids
and classified the input sequences by applying SVMs. Vemulapalli
et. al. [10] proposed a skeleton representation that lies into a Lie
group which is a curved manifold. Similarly to [9], they applied
Fourier temporal pyramids and SVMs to classify the given action.
Du et. al. [11] based on a hierarchical decomposition of the human
body parts, proposed an application of hierarchical Recurrent Neu-
ral Networks (RNNs) in the scope of action recognition. Yanhu et.
al. [12] applied SFA [13] to extract skeleton feature representations.
Similarly to [9, 10] the applied Temporal Pyramids and SVMs for
action recognition.

In our approach, we leverage the information of the human
skeleton node speed along with the skeleton structure in order to
introduce a graph embedded subspace learning feature extraction.
The extracted features are inspired by the Principle of Slowness [13]
similarly to [12], but also combine information from the geometry
of the moving skeleton over time.

The remainder of this paper is organized as follows. The Sec-
tion 2 introduces some basic definitions. In addition, in subsec-
tion 2.1, a description of standard SFA is presented because of the
similar optimization procedure followed by our method. The details
of the proposed framework are discussed in subsection 2.2. Parame-
ter selection and experimental results are given in Section 3. Finally,
conclusions are drawn in Section 4.

2. PROPOSED METHOD

When working with skeleton data, each action is a sequence of mov-
ing skeleton frames. Each skeleton frame consists of a number of N
joints-nodes connected with edges. Based on this point of view, we
provide the following definitions.
Basic definitions on spatial domain: We define a skeleton action
as a time varying graph, G(t) = (V (t), E), t ∈ [0, T ], where V (t)

represents the skeleton nodes at a specific time point t and E the
corresponding skeleton edges. Moreover, a skeleton frame is de-
fined by a matrix Φ(t) =

[
φ

(t)
1 , . . . ,φ

(t)
N

]
∈ RI×N where each

column φ
(t)
n ∈ V (t) represents a skeleton node. More specifi-

cally, each skeleton node is described by φ
(t)
n ≡ φ(x

(t)
n ) where

x
(t)
n = [x

(t)
n , y

(t)
n , z

(t)
n ]T is a three dimensional vector (I = 3) that

represents the node position in three dimensional space and φ(·)
a vector valued function that maps the node representation into a
higher dimensional feature space. When φ(·) is the identity func-



tion, it is φ(t)
n = φ(x

(t)
n ) = x

(t)
n .

Given the definition of the time varying graph G(t) in a specific
time point t, we also define the corresponding time varying degree,
weight and Laplacian matrices as D(t), Γ(t) and L(t) = D(t)−Γ(t),
respectively, with D(t)

ii =
∑

j Γ
(t)
ij . Since the skeleton nodes in a

specific time point t are denoted by {φ(t)
n }Nn=1, the elements Γ

(t)
ij

of the weight matrix Γ(t) are given by Radial Basis Function (RBF)
Γ
(t)
ij = exp(||φ(t)

i − φ
(t)
j ||

2/2σ
(t)
i σ

(t)
j ). This means that the final

weight matrix contains spatial information about the human skele-
ton structure. Moreover, all skeleton action frames and the corre-
sponding Laplacian matrices are grouped into the extra bold matrices
ΦΦΦ =

[
Φ(1), . . . ,Φ(T )

]
∈ RI×NT , and LLL =

[
L(1), . . . ,L(T )

]
∈

RN×NT , respectively. Finally, the block diagonal matrix whose
block elements are the Laplacian matrices L(t) in different time
points t is defined by:

diag(LLL) =

L(1)

. . .
L(T )

 ∈ RNT×NT (1)

Basic definitions on speed domain: For a skeleton node φ
(t)
n in

spatial domain, the speed of this node in speed domain is defined by
φ̇

(t)
n = φ

(t+1)
n −φ

(t)
n . Similar to the spacial domain, we also define

the matrices ˙Φ(t), L̇(t), Γ̇(t), Ḋ(t), Φ̇ΦΦ and L̇LL in speed domain by
using φ̇

(t)
n instead of φ(t)

n . Main idea: Given a set of skeleton nodes,
our goal is to find a mapping such that the new node representations
will preserve their speed relation which is described by the graph
Ġ(t) = (V̇ (t), E). In other words, if two nodes are “close” in speed
in the input space, they should also be “close” in the new feature-
space.

2.1. Slow Feature Analysis (SFA)

Given an I dimensional input signal φ(t) = [φ
(t)
1 , φ

(t)
2 , . . . , φ

(t)
I ]T ∈

RI , with t ∈ [0, T ], SFA computes a vector-valued function
g(φ(t)) = [g1(φ(t)), g2(φ(t)), . . . , gJ(φ(t))]T in order to ob-
tain the final output signal y(t) = [y

(t)
1 , y

(t)
2 , . . . , y

(t)
J ]T ∈ RJ with

y
(t)
j = gj(x

(t)). In the linear case, the function gj function is de-
fined by gj(φ(t)) = wT

j φ
(t). Therefore, for all gj components, we

obtain y(t) = g(φ(t)) = WTx(t) where W = [w1,w2, . . . ,wJ ]
and W ∈ RI×J [13]. Given the aforementioned definitions and
the optimization problem described below, SFA aims to compute
the transformation matrix W that achieves the following map
φ(t) W−→ y(t). The SFA optimization problem is given by:

minimize
gj ,∀j

Et[ġ
2
j (φ(t))] (2)

subject to Et[gj(φ
(t))] = 0, Et[g

2
j (φ(t))] = 1 (3)

Et[gj(φ
(t))gi(φ

(t))] = 0 (4)
∀j 6= i, i = 1, . . . , J (5)

where ġj and Et[·] denote the first order time derivative of the output
function gj and the time averaging, respectively. It can be proved
that the above optimization problem is equivalent to:

minimize
WI×J (R)

trace(WTCΦ̇W) (6)

subject to WTCΦW = I (7)

The solution of the aforementioned optimization problem leads to a
generalized eigenvalue problem [14]:

CΦ̇W = CΦWD (8)

where CΦ̇ and CΦ are the covariance matrices of the time differen-
tiated and the original input signal φ(t), respectively, with dimension
I × I .

2.2. Speed Relation Preserving Slow Feature Analysis (srpSFA)

Similar to standard SFA, our goal is to obtain the transformation
matrix W ∈ RI×J in order to acquire the new skeleton node repre-
sentations y

(t)
n = WTφφφ

(t)
n . In this section, we will define the loss

function of our approach and the imposed constraints that align our
method with standard SFA optimisation approach. Loss function:
In order to fulfill the preservation of speed between skeleton nodes
in the new feature space, as described in Section 2, the objective
function: ∑

ij

Et

[
(ẏ

(t)
i − ẏ

(t)
j )2Γ̇

(t)
ij

]
(9)

needs to be minimized. Similar to standard SFA constraints, the ex-
tracted features of the new mapped skeleton nodes must be uncorre-
lated and have zero mean and unit variance. The weight factor Γ̇

(t)
ij

in (9) penalises the distance between the new skeleton node repre-
sentations ẏ

(t)
i and ẏ

(t)
j . By definition, a high value of Γ̇

(t)
ij describes

a close speed relation between φ̇
(t)
i and φ̇

(t)
j which is retained be-

tween ẏ
(t)
i and ẏ

(t)
j through the loss function (9). Provided the new

skeleton node representation of the n-th node y
(t)
n = WTφφφ

(t)
n , the

matrix notation of the loss function in (9) is given by:

tr
(
WTΦ̇ΦΦdiag(L̇LL)Φ̇ΦΦ

T
W
)

(10)

Zero mean features: Given that the input data have zero mean,
i.e., E

[
φ

(t)
i

]
= 0, the zero mean constraint is also automatically

fulfilled in the new feature space:

Et

[
y
(t)
i

]
= Et

[
WTφ

(t)
i

]
= WTEt

[
φ

(t)
i

]
= 0I (11)

where 0I is a column vector of zeros in RI .

Unit variance and uncorrelated features: Given the mapped
representation y

(t)
n of the n-th skeleton node φ

(t)
n , the unit vari-

ance constraint is imposed by:

Et

[
y
(t)
i,ny

(t)
j,n

]
=Et

[
wT

i φ
(t)
n

(
φ(t)

n

)T
wj

]
(12)

=wT
i Et

[
φ(t)

n

(
φ(t)

n

)T ]
wj (13)

=

{
1, for i = j

0, for i 6= j
(14)

The matrix notation of the aforementioned constraints imposed
for all N skeleton nodes is given by:

Et

[ N∑
n=1

y(t)
n

(
y(t)
n

)T ]
= IJ×J ⇐⇒ (15)

WTEt

[
Φ(t)

(
Φ(t)

)T ]
W = IJ×J ⇐⇒ (16)

WTΦΦΦΦΦΦTW = IJ×J (17)



Finally, provided the matrix notation of the loss function in (10) and
the constraints in (11) and (17), we have the following optimisation
problem:

minimize
W

tr
(
WTΦ̇ΦΦdiag(L̇LL)Φ̇ΦΦ

T
W
)

subject to WTΦΦΦΦΦΦTW = I
(18)

3. EXPERIMENTS

3.1. Evaluation protocol

Data mapping: Given an input skeleton action sequence V ∈
RI×N×T , and the learned mapping matrix W ∈ RI×J provided
by the optimisation problem 18, the new skeleton action repre-
sentation is Ṽ = V ×1 WT ∈ RJ×N×T by applying n-mode
multiplication [15]. Each mapped frontal slice Ṽk [15] represents
the new mapped posture representation which will be used later in
key-posture dictionary learning.
Data preprocessing: The input skeleton nodes x

(t)
n were trans-

formed into the polynomial feature space by applying the poly-
nomial feature expansion function φ(x

(t)
n ) = [x21, x1x2, x1x3,

x22, x2x3, x
2
3, x1, x2, x3]. Next, in order to eliminate the effects

of different camera setups in the accuracy of the model, the new
skeleton representations were transformed into a unified coordinate
system [11]. Moreover, in order to eliminate the intra-class vari-
ance imposed by the same action execution from different actors,
each video was separately normalised to have zero mean and unit
standard deviation [12].
Parameter selection: The feature extraction process demands the
specification of three parameters, namely, the structure of skeleton
graphG(t)(·), the choice of the scale parameters σ(t)

i and σ(t)
j of the

weight computation Γ
(t)
ij and the output dimension J of the mapped

data. The skeleton graphG(t)(·) is defined according to human body
skeleton structure, but also additional edge connections where added
between peripheral skeleton nodes and a node close to the centre of
the skeleton. These additional edges were added in order to capture
the relation of the body limbs with the centre of the body and are
presented with red colour in the pictorial representation of Figure 2.

Similar to [16], the scale values where defined by σi =

d2(φ
(t)
i ,φ

(t)
K ) where φ

(t)
K is the K-th neighbour skeleton node

of the i-th node φ
(t)
i , with K = 3. The neighbor is defined by

traversing the skeleton edges depicted in Figure 2. Finally, the pa-
rameter J was optimised according to the accuracy results and was
set to J = 8.
Video representation and classification: Given the mapped pos-
tures Ṽk, a dictionary of key-postures was constructed by applying
k-means clustering algorithm. The optimal number of key-postures
(number of clusters) C was chosen after evaluation. These key-
postures were used to extract a histogram representation of a given
video. In order to capture the time dependency during the given ac-
tion, a temporal pyramid of histograms was applied [12]. A similar
approach was followed in [10]. The obtained 7C dimensional skele-
ton action feature vectors were fed to an SVM. The optimal SVM
parameters were chosen through a grid-search procedure, using X 2-
kernel.

3.2. Datasets

MSR-Action3D database [17]: A kinect-like depth sensor was used
to obtain the recorded skeletons. It consists of 20 different recorded

actions performed by 10 different subjects/actors. In addition, each
recorded action was repeated two or three times by each subject. For
each skeleton, the 3D joint locations through time were provided.
Also, the connections of the nodes that define the recorded skeleton
were given. Each recording was captured in 15fps. Noisy videos
were removed using the list given by Wang et. al. [18].
Emotional Context Dataset [19]: In this dataset, five different emo-
tional actions were included, namely anger, happiness, fear, sad-
ness and surprise. The categorisation of these emotional actions was
based on social psychology research [20]. For each emotional ac-
tion, two different action patterns were collected, each having a du-
ration of 4 seconds. A number of 14 subjects (5 women and 9 men)
participated in the recording session.

3.3. Experimental results

For MSR Action 3D Dataset, the experimental setup discussed
in [17] was followed. More specifically, the dataset was split into
three subsets, namely AS1, AS2 and AS3. Figure 1 contains the
confusion matrix of each subset along with the names of the in-
cluded actions. Finally, the action samples with odd index were
used for training, while those with even index were used for test-
ing. In Table 1, the proposed method was compared to other action
recognition methods which use either hand-crafted [21, 9, 12, 10]
or automatically learned features, i.e, based on deep learning [11].
From the results presented in Table 1, it is noteworthy that the pro-
posed method demonstrated competitive performance even when
compared to robust deep learning based algorithms [11]. The pro-
posed method was also compared to another SFA based action
recognition algorithm [12] and yielded better results both in each
subset separately and in average. Interestingly, the proposed method
also outperformed all hand crafted action recognition algorithms in
Table 1.

In order to examine whether the proposed method can group
different actions describing the same emotion, the following exper-
iment has been conducted. In [19] a series of features were applied
that were capable to capture the context of a specific sentiment and
group the action patterns that belong to the same emotion. We have
conducted experiments to evaluate our method in the same scope
following a leave-one-subject-out experimental setup. The intuition
behind this is that the slow functions are capable to capture the con-
tent of two different actions that refer to the same emotion. The last
row of Table 2 contains the comparative results between the pro-
posed method and the method presented in [19]. We may observe
that our method yields better results proving that the learned slow
functions can capture the context of a sentiment that is performed by
different action patterns. Moreover, separate experiments on the two
action patterns were conducted. For Action Pattern 1, we have reach
accuracy results of 93.68% while for Action Pattern 2 the accuracy
results are 84.54%.

Table 1: Experimental results in percentage scale on the MSR Ac-
tion3D Dataset

Method AS1 AS2 AS3 Ave.

Li et. al. 2010 [17] 72.9 71.9 79.2 74.7
Chen et. al. 2013 [21] 96.2 83.2 92.0 90.47
Gowayyed et. al. 2013 [9] 92.39 90.18 91.43 91.26
Yanhu et. al. 2014 [12] 92.47 82.14 97.17 90.59
Vemulapalli et. al. 2014 [10] 95.29 83.87 98.2 92.46
Du et. al. 2015 [11] 93.33 94.64 95.50 94.49

srpSFA 97.83 92.86 99.05 96.58
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(c) AS3

Fig. 1: Confusion matrices for each action subset in MSR Action3D. Each confusion matrix is labeled with the action categories included in
each action subset AS1, AS2 and AS3 along with the accuracy results.

Fig. 2: Anthropocentric structure of the temporal graph G(t)(·).
These edges define which edge connections to take into account
when computing the weight graph Γ(t)

.

Table 2: Experimental results in percentage scale on the Emotional
context dataset Action3D Dataset

Our method Method in [19]
Action Patterns Acc Action Patterns Acc
Action Pattern 1 93.68 Action Pattern 1 -
Action Pattern 2 84.54 Action Pattern 2 -

Both action patterns 86.42 Both action patterns 84.78

4. CONCLUSIONS

A method for skeleton action recognition was introduced. According
to this approach, concepts like subspace learning with graph struc-
tures and SFA were combined. Experiments were conducted to eval-
uate the proposed method both in the scope of distinct action pattern
recognition, but also in a more conceptual way where the context of
the emotions that are represented by different action patterns needs
to be recognised.

In future work, our efforts will focus on increasing the per-
formance of the algorithm and applying experiments on additional
datasets. More specifically, an extension of the unsupervised feature
extraction into a supervised one in order to obtain more discriminant
features based on the class information will be investigated.
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