Improving Camera Pose Estimation via Temporal EWA Surfel Splatting
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N Consecutive RGB-D Frames

Figure 1: A temporal window RGB-D model is presented in the fri/teddy sequence from the TUM dataset. A number of N consecutive
frames (f — N,...,t— 1) are temporally accumulated and aggregated to the most recent one (# — 1) via Elliptical Weighted Average (EWA)
splatting using their estimated relative poses. The resultant higher quality color and depth splatted frame (right) is then used for estimating
the pose of the next incoming frame (r), improving the accuracy of the estimation. Depth fusion and de-noising is highlighted in the green
box, while preservation of color details in the red box. RGB-D frames are visualized through a mixed depth and color representation from
left to right with a blue-green-red color scale for depth (best viewed in color).

ABSTRACT

Camera pose estimation is a fundamental problem of Augmented
Reality and 3D reconstruction systems. Recently, despite the new
better performing direct methods being developed, state-of-the-art
methods are still estimating erroneous poses due to sensor noise,
environmental conditions and challenging trajectories. Adding a
back-end mapping process, SLAM systems achieve better perfor-
mance and are more robust, but require higher computational re-
sources, limiting their applicability. Therefore, lighter solutions
to improve the accuracy of pose estimates are required. In this
work we demonstrate the effectiveness of lighter data structures,
namely surface elements, and exploit the temporality of sensor data
streams to accumulate moving camera frames and improve track-
ing. This representation allows us to ”splat” a photometric and geo-
metric model simultaneously and use it to improve the performance
of dense RGB-D camera pose estimation methods. Exploiting El-
liptical Weighted Average splatting to produce high quality photo-
metric results also allows us to detect erroneous poses through a
novel visual quality analysis process. We show evidence of the
EWA temporal model’s effectiveness in publicly available datasets
and argue that point-based representations are a good candidate for
building lighter systems that should be further explored.
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1 INTRODUCTION

Virtual- and Augmented- Reality (VR & AR) technologies have re-
cently started gaining momentum with forecasts continuously sup-
porting their rise, further fueled by the developments in hardware
(headsets, sensors, mobile). These new immersive and interactive
experiences enabled by VR/AR are expected to open up new op-
portunities for various industries like education/training, entertain-
ment, advertising/marketing, product design and gaming. Conse-
quently, the development and refinement of solutions for visual nav-
igation and mapping, as well as 3D capturing of real world scenes
and objects, is required.

Camera pose estimation is fundamental computer vision prob-
lem that is directly related to AR applications [25] in order to map
and track a visual sensor within the environment, and also highly
relevant for the provisioning of realistic assets, be it either objects
or real world scenes, for VR and/or AR use, through their 3D recon-
struction. The associated challenges are varying illumination, the
need to support unconstrained camera motion, the high amount - or
even severe lack - of complexity within real world scenes and the
online operation requirement, limiting the very important accuracy
of camera pose estimation. The taxonomy of camera localization
solutions includes sparse, hybrid and dense methods, with the for-
mer ones utilizing extracted features to establish correspondences,
the latter ones leveraging the complete image information assum-
ing pixel wise correspondences, and the hybrid methods lying in
the middle, combining elements from both other ones.

While sparse methods were developed mainly for monocular
cameras, the increased availability of consumer grade RGB-D sen-
sors ( Microsoft Kinect, Asus Xtion and Intel RealSense series),
even available on mobile devices (Google Tango, Occipital Struc-
ture Sensor) [31, 1], has spurred new higher performing dense
methods, mainly utilizing the depth information to produce better
pose estimates, pioneered by KinectFusion [27]. Further work fo-
cused on additionally using the color information acquired by RGB-
D sensors to increase the accuracy of the pose estimates by adding



a photo-consistency assumption and directly minimizing both ge-
ometric and photometric errors [13, 43, 18, 17], allowing camera
localization to be more robust with respect to each data type’s lim-
itations (planar regions with low geometric features or texture-less
regions). Many extensions and improvements have been proposed
[2, 11, 32, 16], increasing the pose estimation accuracy. However,
the aforementioned challenges make it difficult to eliminate erro-
neous estimates and make camera pose estimation suffer from drift
due to error accumulation, therefore necessitating the use of cor-
rective techniques, typically by building a pose- graph or chain and
optimizing it upon detecting local or global loop closures. Graph
optimization methods have evolved and improved in tandem with
the higher accuracy camera localization estimates produced by the
evolution of dense methods [7].

Simultaneous Localization and Mapping (SLAM) research fo-
cuses on fusing the localized depth information into 3D models of
the environment while also optimizing it in-the-loop, with recent
research making the online reconstruction of challenging scenes in
high quality possible [20, 5, 39, 44, 9]. A key element of these ap-
proaches, first introduced by [27], is estimating the camera’s pose
with respect to the incrementally reconstructed model of the cap-
tured scene instead of the error-prone and drift suffering frame-to-
frame registration. The most common model representation is the
Truncated Signed Distance Function (TSDF) [4]. Still, this implicit
surface representation has high memory consumption and, while it
can also be used to accumulate color information [13, 23] - at the
expense of more memory - the quality degrades due to the coarse
resolution of the voxel grid, and the blurring induced by the running
average weighting scheme customarily used to update the TSDF. As
a result, the enhanced camera pose estimation methods for RGB-D
sensors need to operate on a frame-to-frame [14], frame-to-multi-
frame [5] or frame-to-keyframe [17, 2] basis, or otherwise ignore
the color information [20, 39, 43, 32, 15].

With recent research [44, 32, 35, 15] turning to point-based rep-
resentations to avoid the intermediate implicit surface representa-
tion and achieve lighter memory consumption, it was also shown
that surface elements (surfels) [30] can also better model photo-
consistency in finer resolution and allow for full utilization of both
color and depth information [44, 35]. Inspired by [44], where sur-
fels were used to jointly render a dense geometric and photometric
representation of the observed scene, this work aims to expand and
enhance this point-based representation in order to improve RGB-D
camera pose estimation and decouple it from the mapping process
to enhance its usability. In summary, the main contributions are:

e The introduction of a temporal surfel model, leveraging on
the accurate blending offered by surfel splatting and Elliptical
Weighted Average (EWA) Filtering, that is also seamlessly
integrated into typical camera pose estimation frameworks.

e A novel visual quality analysis technique aimed at detect-
ing erroneous pose estimates and increasing the robustness of
the proposed model by preventing their accumulation into the
temporal model.

e Comprehensive evaluation of the proposed approach using
public datasets, proving its effectiveness in various scenes and
different sensors, using state-of-the-art dense RGB-D camera
pose estimation methods.

The remainder of this document is organized as follows: Previ-
ous related works regarding camera pose estimation, SLAM sys-
tems and point-based rendering are presented and discussed in Sec-
tion 2. In Section 3, preliminaries regarding the state-of-the-art for
RGB-D camera pose estimation methods exploiting the entirety of
RGB-D sensor data are presented. Then, Section 4 addresses the
proposed temporal surfel model building, its implementation and

use within a typical RGB-D camera pose estimation framework.
Evidence for the effectiveness of the proposed surfel model after
evaluating it on various publicly available datasets are presented in
detail in Section 5, and finally, in Section 6 we conclude by outlin-
ing the results, benefits, limitations and potential future work.

2 RELATED WORK

Camera pose estimation and the reduction of drift have been active
research topics that are relevant for both AR and online 3D recon-
struction of real-life scenes and objects. Typical approaches include
feature tracking and matching (sparse), the use of prior knowl-
edge (model or marker based), direct image alignment (dense)
or various combinations of these techniques (hybrid). Till the
advent of commodity RGB-D sensors, most approaches focused
on monocular color cameras where, excluding those using prior
knowledge, utilized frame-to-(key)frame based camera localization
[24, 21, 26, 37, 19] and generated the environment’s map either
through bundle adjustment [24, 26, 37, 19] or graph optimization
[21, 34, 8]. However, sparse features provide inadequate infor-
mation about the 3D environment, and thus, direct alignment ap-
proaches like MonoSLAM [6], DTAM [28] and LSD-SLAM [10]
appeared and, in conjunction with incremental model building and
frame-to-model pose estimates, offered a promising alternative that
allows for higher quality scene reconstruction, interactions and ren-
dering. As this work focuses on RGB-D camera localization, the
reader is referred to an extended survey [25] offering more details
about monocular methods.

2.1 Dense RGB-D Camera Pose Estimation

One of the first methods to use dense depth information for cam-
era pose estimation was KinectFusion [27], where depth frames are
registered using ICP with projective data association to an incre-
mentally fused volumetric representation (TSDF). After each pose
estimate, the current frame was integrated into the volume, further
refining and expanding it. This allowed for more accurate tracking
as each new pose was estimated against a continuously de-noised
model instead of the sensor’s noisy output. Another approach is
to minimize the photometric error between consecutive RGB-D
frames and was shown to have better performance in typical hand-
held camera tracking with small displacements [33]. Naturally, the
combination of simultaneous photometric and geometric error min-
imization provides a more robust and accurate method as the dis-
advantages and limitations of each error formulation are comple-
mented by the other term. Color based estimation is sensitive to
lighting variations, non diffuse surfaces and minimal texture, while
relying on depth only is prone to errors when dealing with planar
regions and is also an inherently noisier representation. The color
[33] and depth [27] terms’ influence on the minimized function are
either weighted heuristically [38] or empirically [44, 43, 13].

A probabilistic formulation of camera pose estimation minimiz-
ing a color consistency term was contributed by [18] which allowed
for the incorporation of a sensor noise model, and was later ex-
tended in DVO-SLAM [17] to also include geometric consistency
in the form of a point-to-point error term, contrary to KinectFu-
sion’s point-to-plane error. However, by modeling the outliers with
a t-distribution the more prone to noise point-to-point error was
shown to be alleviated. In addition, the effect of the color and
depth terms was automatically weighted and adapted based on the t-
distribution model. Further extensions accommodated rolling shut-
ter cameras [16] and the addition of depth sensor specific noise
models for either infrared pattern projection (Kinect 1, Intel Re-
alSense) [2] or ToF (Kinect 2) [41] sensors. In [11], it was also ex-
tended to an inverse depth formulation, also shown to better model
the non-linear error distribution of the depth term.

As demonstrated by KinectFusion, camera pose estimation ac-
curacy greatly increases when estimating the sensor’s pose with



respect to a fused model instead of the previous frame, typically
implicitly represented by a Truncated Signed Distance Function
(TSDF) [4]. While TSDF models are limited in the space they can
cover, volumetric hashing [29] and shifting [43] approaches have
extended their effective spatial resolution. Despite their advantages
(incremental data integration, implicit de-noising through a running
average scheme, surface extraction), they still occupy large amounts
of memory and cannot sufficiently model color in high quality as
color-per-voxel representations result in blurry renders with little
details. Therefore, state-of-the-art SLAM systems resort either to
frame-to-keyframe tracking [17], or frame-to-multiframe tracking
[5] to exploit the advantages of complete RGB-D tracking, or oth-
erwise omit color information during pose error minimization [39].

2.2 Point-based rendering

Compared to volumetric representations, point-based methods of-
fer the advantage of a unified representation for both rendering and
modeling that comes with a lower memory footprint, removing the
extra burder of transitioning between volumetric fields and triangu-
lated meshes. Surface elements (surfels) were first introduced in
[30] as an alternative geometric type for computer graphics that re-
quires no explicit connectivity and can model continuous and piece-
wise smooth surfaces. In the context of RGB-D pose estimation,
surfels were initially utilized in MRS-SLAM [35] where a space
partitioning data structure was used to facilitate the data associa-
tions between surfels for pose estimation, and in [15] where the
position of each surfel contributed to pose estimation by rasterising
hole-free depth maps through the use of a higher resolution index
map. Similarly, the SLAM system of [32] utilizes surfels for pla-
nar data association but still uses only the depth information during
pose tracking by minimizing a point-to-plane error metric. Unlike,
previous approaches, ElasticFusion [44] was the first SLAM system
to incorporate surfel color into its map model and render temporally
proximate surfels in order to use the resultant model color pre-
diction for complete RGB-D frame-to-model pose estimation us-
ing both photometric and geometric errors. The surface rendering
method used though did not perform high quality surfel blending,
but only rasterised elliptical splats to produce a continuous surface,
by also exploiting its underlying mapping backend to refine the sur-
fel set. Moreover, highly performing SLAM systems [44, 5] re-
quire big amounts of processing power as their accurate tracking
is tightly coupled to the map building process. While information
can be streamed to powerful workstations, it is not always feasible
or within the envisaged scope of an application (e.g. mobile AR).
Inspired by ElasticFusion, in this work the surfel based model regis-
tration is extended with temporal high quality blending to improve
camera pose estimation using a lower amount of extra resources.

3 RGB-D CAMERA POSE ESTIMATION

RGB-D cameras produce a stream of color C and depth D data in
the image domain Q:

F,=(C/(p) €R?,Dy(p) €R)

where p = (x,y)T € Q € N? and ¢ being the discrete time point
that each frame was generated. Camera pose estimation for a mov-
ing camera seeks to find the relative pose T € SE3; between two
temporally neighboring frames F; and F;_|, transforming F;_; to
F;, in a direct manner by assuming small camera motion and us-
ing projective data association for pixels p between consecutive
frames. A pinhole camera projection model is used for both color
and depth cameras with 7 denoting the projection function of a
vertex v € R3, p = n(v), and 7! the inverse projection function
v(p) = #~'(p,D(p)), producing the vertex map in the image do-
main Q from depth map D.

3.1 lterative Closest Point

One approach to solve this problem is the iterative closest point
algorithm (ICP) used to minimize a geometric point-to-plane error
metric:

Egeom(T) = ZQ [(T"ve(p) = v () m (B)|3, (D)
PEs

where n(p) € R3 is a map of normal vectors associated with each
pixel p in the image domain Q. The lifting of v to a homoge-
neous vector € R* to enable transformation by pose 7!, is im-
plicitly assumed. After extracting the scalar valued intensity image
I(p,C) € R, a photometric error can also be defined:

Epholo(T) = Z (It(p)_Itfl(wi(T717p)))2> (2)
peQI

with w™(T~!,p) = n(T~'v,(p)) being a warping function from I,
to I;_;. By combining both error metrics in a weighted manner,
the robustness of pose estimation can be increased, with the final
minimized energy being:

Eicp = Ephoto + /lgeomEgeom . 3)

During solving, a minimal twist £ € se3 representation of pose
T-! = exp(&) is applied. While the energy of equation 3 is non-
linear, the small motion assumption allows for solving with accept-
able accuracy using Gauss-Newton iterations i of linear approxima-
tions &;, combined to form the final pose estimate £. To increase
leniency to larger motions, a coarse-to-fine pyramidal scheme in
the image domain Q is also utilized, as the linear approximation
assumption can only hold for small twists &; near the identity.

3.2 Probabilistic Formulation

A probabilistic formulation of the above problem can also be de-
rived where the color e, and depth ey, error metrics:

ephoto(T) = I,(W+(T.,p)) — 1 (p) P E Qs 4

egeom(T) =Dy(w(T.p)) — [ TVi-1(P) ). PEQ-1 ()

with w*(T,p) being a warping function from F,_; to F; and
|-|; extracting the z coordinate of a given point. Again, us-
ing a minimal twist & parameterisation (with T = exp(&) in this
case), these are combined into a bi-variate random variable r(&) =
(€phoro (&), egeom(«’;))T instead of linearly like in (3). This joint
modeling lifts the underlying error independence assumption and
the extra linear weight Age,n parameter setting. Then, the objective
is to estimate £ by maximizing the posterior probability

Smar = g ax p(&[r). (©)

Besides the advantage of joint modeling of the two errors, this for-
mulation also offers the potential to directly incorporate suitable
error models into the probability p(& |r) Previous work [18, 17]
showed that the error functions are better modeled by a zero mean
bi-variate t-distribution p¢(0,X, v), with v = 5 degrees of freedom
and X its covariance matrix. After defining the probability of equa-
tion 6 as a t-distribution it then becomes an iteratively re-weighted
least squares problem:

gzarggmin g wprﬂll;):flrp7 (7
| US|

with more details offered in [18, 17]. Other work has also followed
extending the formulation with a sensor specific noise model [2],
further improving the overall pose estimation performance. Simi-
lar to the ICP approach, minimizing equation (7) involves Gauss-
Newton iterations in a coarse-to-fine scheme.



4 SURFEL MoODEL CAMERA TRACKING

Surfels (surface elements) [30], a point-based representation with
no explicit connectivity information, are defined as oriented disks
that locally approximate a small neighborhood of a surface. Each
surfel’s s attributes form a tuple: s = (v, n, ¢, r), with a position
ve R3, an orientation n € R3, a color ¢ € R3 and a radius r € R.
Unordered sets of surfels constitute a lightweight, in terms of mem-
ory and data structure complexity, continuous surface representa-
tion. Such point-based representations are suitable for sampled ge-
ometry, which fits naturally with RGB-D sensors. Each color and
depth frame F; can be directly mapped to a surfel set

S:(p) = ( vi(p), m(p), C:(P), p+(v¢(P)) ), P €

with p estimating the radius r of each surfel s as a function of its
position v and the camera’s characteristics.

4.1 High Quality Surface Splatting

Screen Space

Surfel Set Local Tangent Planes

local
ﬁ rameterization

53

S

Figure 2: Each surfel s is represented by an oriented disk residing
on a plane tangent to the surface. Its reconstruction filter ¢ is locally
parameterized on this 2D tangent plane by (u,v). The projection of
this filter ¢’ is an ellipsis on screen space, which is band limited by
the low-pass filter A.

Surfels can represent and reconstruct continuous surfaces
through splatting [45], a computer graphics point-based rendering
technique that renders high quality surfaces from unconnected sam-
pled geometry. Previous approaches using surfel splatting for cam-
era pose estimation [44, 32, 15] only used a single pass approach
that is prone to z-fighting and does not accurately blend the con-
tributions of neighboring surfels, resulting in loss of detail, lower
quality color output and susceptibility to noise.

Elliptical Weighted Average (EWA) [46, 47] splatting offers
higher quality results by minimizing aliasing and blurring. EWA is
based on the concept of Gaussian resampling filters that are formed
by the combination of a Gaussian reconstruction filter and a screen
space low-pass filter. EWA offers high quality renders due to its
anti-aliasing ability, as a result of the band-limiting screen space
filter (Figure 2). Each surfel partakes in surface reconstruction
through its local tangent plane, defined by vectors (u,v) perpendic-
ular to the surfel’s normal, forming a local coordinate system. A 2D
Gaussian reconstruction filter ¢ (u,v), defined on the tangent plane
and centered on the surfel’s position v, reconstructs the surface in
screen space in a radius r area by projecting ¢; to the rendered
image domain, yielding the screen space warped filter ¢/ (u,v), typ-
ically called a “’splat”. Each tangent plane point’s (u,v) influence
is weighted by its distance from the surfel position. The accumu-
lation of all reconstruction filters in screen space renders the final
continuous surface’s attributes a:

vy, rendering the surface’s depth image
g(x)= Z ¢(x)ay, for ai < ny,rendering the surface’s normals
k ¢, rendering the surface’s color image

where x are screen space coordinates. To reduce aliasing each el-
lipse (the projection of a disk) is band-limited by convolving with a
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Figure 3: EWA temporal model pipeline: Each new frame ¢ is
aligned with the rendered frame consisting of N consequent frames
splatted to frame 7 — 1 via their relative poses 7;" el forming a pose-
chain to the most recent frame 7 — 1. Before estimating the camera’s
pose T, the splatted frame’s visual quality score against the previ-
ous color frame ¢ — 1 is calculated, and used to assess the accuracy
of the latest pose estimate Tt’fl2 If considered erroneous the tem-
poral model is reset, keeping only the previous frame ¢ — 1 into the
sliding window. After alignment with the splatted frame, new frame
t gets inserted into the sliding window along with the relative pose
estimate Tr’_el] =T, pushing the oldest frame out.

2D screen space Gaussian h resulting in the final resampling filter
g (x) = g(x) ® h(x), with the overall effect resembling anisotropic
filtering, and being able to produce high quality output even at ex-
treme perspectives.

High quality splatting is implemented on modern GPUs with a
multi pass rendering algorithm [3]. Initially, a visibility pass sets
up a z-buffer that will be used for depth testing to determine the
visible surfels. To allow for splat blending, the original depth val-
ues are offset by a small amount € along the viewing rays which
determines the maximum allowed depth distances of overlapping
surfels. Then, in the atfribute pass, the weighted contributions of
each splatted surfel are additively blended for all attributes a. Fi-
nally, since the weighted contributions of all splats are irregular and
require normalizing, a normalization pass divides the accumulated
weighted contributions by the weight sum to produce the final ren-
dered attribute output.

4.2 Temporal Surfel Model

Given a stream of RGB-D frames we can estimate the pose of each
new frame F; with a splatted frame instead of the previous one,
by exploiting the stream’s temporality and accumulating a window
of N previous frames into a higher quality one (Figure 1). The
challenge lies in the uncertainty involved with noisy sensor mea-
surements and imperfect pose estimates. While implicit represen-
tations like TSDFs can deal with these issues, surfels are the more
appropriate explicit geometry representation and lightweight data
structure to increase robustness to uncertainty, mainly due to their
simplicity, the removal of topology bookkeeping and their better
accommodation of noisy and duplicate measurements through the
high quality blending and robust averaging of EWA splatting.

A temporal surfel model is defined within a window of N neigh-
boring frames:

E—Na E—(N—]% 714‘[71

and N — 1 relative poses between consecutive frames:
rel rel rel
Tt—Nv 7“[7(1\771)7 e 42

with T el F F;1 € SE;3 transforming frame i to i+ 1 (Figure 3).



Each frame F; within this temporal window can be aligned with
the most recent frame 7 — 1, through the accumulated pose-chain:

=2
Tiaccum — H Tirel. (8)
i

Therefore, the N frames of the temporal window form a set of sur-
fels on the same coordinate system:

S .= {SAth(p% ,gt,l(p)}7 S‘i(p) = S(F;, Teecwmy,

where operator S creates a surfel set from a RGB-D frame and
transforms its elements’ positions and normals with pose 7",
Estimation of the normals from the associated depth map is done
through the cross product of central differences.

High quality GPU accelerated EWA splatting of § produces the
temporally accumulated rendered model of frame r — 1. Our im-
plementation is based on [3] which uses an approximation of the
complete EWA splatting algorithm [47] to speed up rendering time
and increase throughput. After experimenting with [47] we found
no discernible quality loss and that the advantages of perspective
accurate splatting at grazing and extreme angles are almost non ex-
istent when rendering from the sensor’s fixed perspective and using
a small finite window size that limits the extend of its motion. Thus,
the quicker approximation was preferred that enforces a minimum
screen space size for each surfel to ensure anti-aliasing. Further,
each surfel’s radius is computed as p (v(p)) = v/2| v(p) |./f, with f
being the sensor’s focal length, inline with previous work [32, 44].

The outcomes are images D", C", N" aligned with the previously
streamed frame 7 — 1, resulting from the splatting of the position v,
color ¢ and normal n attributes respectively. Therefore, each new
frame’s pose is estimated against the temporal model’s splatted out-
come F* = (C",D") instead of the previous frame, improving the
estimation and then sliding the window to include the new frame
along with its more accurately estimated pose. Essentially, D
replaces D;_y and I;_; is extracted from C" instead of C;_; in
equations (1), (2), (4), (5). This sliding process allows us to ex-
ploit temporal coherence to reduce the rendering processing time
by modifying the visibility pass. Instead of splatting all surfels,
we can transform the previously splatted depth image with the new
pose estimate and re-splat it again, to render the z-buffer that is
used to discard occluded surfels during the blending pass, which in
turn will produce the new splatted model images that the incoming
frame will be registered to.

The depth D" and normal N” images are hole free and de-noised,
while the color image C” does not suffer from color bleeding, ex-
cessive blurriness or loss of detail plaguing other representations
like colored TSDFs (Figure 4). In addition, we observe crisp image
edges and textures that can better guide the minimization process.
It should be noted that the color image could be neglected and only
the de-noised depth and normal images be used for pose estimation,
still offering a lighter alternative to a complete TSDF model fusion
and tracking.

4.3 Erroneous Pose Estimate Detection

Despite the progress being made with dense camera pose estima-
tion and the evidently higher accuracy results, in practice they are
not always of sufficient accuracy. Be it either because of fast camera
motion violating the linearization assumption as described in Sec-
tion 3, large rotations that prevent solving from converging or due
to external reasons like varying frame rates, automatic exposure,
featureless regions and problematic materials (specular, reflective,
absorbing), erroneous pose estimates are an issue that needs to be
circumvented. SLAM systems address this by identifying loop clo-
sures and refining the pose- graph or chain using bundle adjustment
or graph error propagation techniques. Recent work has also har-
nessed the power of latest generation GPUs to globally optimize
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Figure 4: Visual comparison of the EWA temporal model (middle
column) splatted color (top) and depth (bottom) against the raw
input (left column) and the result of the surfel model of [44] (right
column). Best viewed in color.

keyframes as they are being inserted to the map [5]. These tech-
niques exploit the back-end mapping process running in parallel
with camera tracking. At the same time, purely from a camera
pose estimation perspective and de-coupled from the mapping pro-
cess, estimates are judged and accepted based on re-projection error
thresholds [5], total residual cost, percentage of valid correspon-
dences or the solved system’s covariance [44, 27].

In our temporal model building approach, highly erroneous pose
estimates will accumulate and corrupt the model as their influence
will not be limited to a single time point, but instead be mixed into
all subsequent frames within the window. While there is a certain
amount of tolerance, as a result of blending multiple contributions,
in practice it was observed that the aforementioned checks could not
sufficiently reject erroneous estimates. However, one advantage of
the proposed temporal splatting scheme, is that unlike approaches
using only the previous frame’s color information C,_ along with a
TSDF representation for geometry, we can assess the quality of the
pose estimate directly through visual quality analysis. Given that
EWA splatting produces a high quality - within the limits of sensor
noise - photometric model when receiving accurate poses, errors in
poses would manifest as structural distortions in the rendered color
image. Therefore, by analyzing the visual quality of the splatted
color image C” against the color of the previous frame C;_; the
detection of errors in pose estimation is possible.

We use the established Structural Similarity Index Metric
(SSIM) [40] for visual quality analysis. The SSIM for two im-
age patches x and y of size M x M involves the joint comparison
of 3 terms, the luminance I(x,y), contrast ¢(x,y) and structural
s(x,y) scores, weighted by a, 3,7 > 0 respectively, and defined as:

SSIM(x,y) = 1(x,y)%c(x,y)P s(x,y)?, with

2ux iy +Cy 20,0, +C
I(XJ):#N(XQ’):#7
He+uy +C o;+0;+C
Oyy +C
s(ry) = 2o tE
0,0y +C3

where [y, 1ty and Oy, 0, are the mean and standard deviations of
patches x and y, and oy, their cross-covariance. The similarity be-
tween two images X and Y is the mean SSIM score over all their
corresponding image patches.

Consequently, we can determine the accuracy of the latest pose
estimate through the similarity ssim, = SSIM(C",C,—1). One ap-
proach would be to ascertain a threshold for the SSIM but af-
ter examining multiple RGB-D sequences from various datasets
and extracting their similarity score time series, no optimal pa-
rameter could be determined that would detect errors accurately.
Thus, a sliding window statistics approach was opted for. We



search for erroneous estimates within the similarity measure-
ment time series ssim; by utilizing the median absolute devi-
ation (MAD) [22] which for a time series A(r) is defined as
MAD(A) = median(|A — median(A)|). Using the median is a more
robust variability measure than the mean and standard deviation,
which is largely influenced by outliers [22]. We can approximate
the standard deviation for a normal distribution as 1.4826 x MAD
and therefore consider a measurement ¢ as an outlier when its ab-
solute deviation from the median exceeds 3 or 4 times the MAD.
Instead of using the complete stream we resort to performing this
check within a window W of the latest similarity measurements.
We also tried the PSNR metric, but did not find it to perform ad-
equately as the resultant time series was very unstable and noisy.
Upon identifying an outlier, we can prevent its accumulation into
the temporal model by reseting it, i.e. emptying the window and
starting to sliding it again from the current time point, effectively
reducing its detrimental effect to the following frames’ estimates.

5 RESULTS

We evaluate the temporal surfel model using two state-of-the-art
RGB-D camera pose estimation methods, representative of the cur-
rently two most established approaches. The DVO probabilistic
method of [17] and the linearly weighted method of [44] are used,
with the first one using a pure depth error for the geometric term
and the second one a point-to-plane error metric (the splatted nor-
mal map is also utilized in this case), and both using the same pho-
toconsistency term. They will be referred to as DVO and ICP re-
spectively for the remainder of this section. The parameters of each
method are fixed across all experiments with DVO implemented ef-
ficiently on the CPU taking advantage of SIMD instructions and
ICP implemented on the GPU using CUDA. DVO is calculated us-
ing a 4-level pyramid and a precision threshold of 5¢~7 and ICP
using a 3-level pyramid with a maximum of 4,5 and 10 iterations
per level in a coarse-to-fine order. The linear weight between the
geometric and photometric terms is set to Ageon, = 10. While resid-
uals are modeled with a t-distribution in DVO, the ICP method dis-
cards outliers based on thresholds £; = 10 cm for the depth distance
and &, = 20° for the normal angle between correspondences. In ad-
dition, a color only rotation estimation step is applied to the ICP
method for a maximum of 10 iterations, used to bootstrap the ini-
tial pose estimate’s rotation component. This step minimizes:

Eo(@)= Y (1)~ I-1(wso; (@.)))”, @ €503 (9)
pEQ,

with wy, (0,p) = m(exp(w)m~'(p)). Finally, each incoming
frame’s depth image is bilaterally filtered to reduce noise and pro-
duce higher quality normals.

We use the RMSE of the translational component of the relative
pose error (RPE) metric, as defined in [36], measuring the drift of
the estimated trajectory over a fixed interval, set to one second in
line with previous works. In the following subsections we present
results on three publicly available datasets, consisting of synthetic
and realistic data using various sensors, and focusing on handheld
trajectories in area exploring or complete object coverage scenarios,
as is usually the case for AR and 3D reconstruction applications.

5.1 ICL-NUIM

The ICL-NUIM dataset [12] comprises synthetic ray-traced se-
quences of virtual indoor environments with both noise-free and
noisy offered, with the noisy ones containing artificial noise. We
only used the noiseless ones to assess performance gains when us-
ing high quality RGB-D input data. Table 2 presents the results for
four ICL-NUIM sequences for both ICP and DVO tracking, com-
paring the performance of frame-to-frame (F2F) tracking and with
the use of our temporal surfel model (EWA) without the reset func-
tionality (Section 4.3), using a window size of N = 7 frames. Due

to the high quality of the synthetic data, which are not plagued by
missing and noisy depth measurements, even the frame-to-frame
tracking is very robust with the overall errors lying in the millimeter
range. We observe that in noise-free data the temporal surfel model,
does not improve the performance of camera pose estimation, and
even slightly deteriorates the results, although the differences usu-
ally lie in the sub-millimeter range and can thus can be considered
as negligible. Of course, real world depth data are of worse qual-
ity, and as we will show in the next subsections, the EWA temporal
surfel model generally improves camera pose estimates.

ICL-NUIM ICP (cm/s) DVO (cm/s)
Sequence  pr)r | EWA | F2F | EWA |
living room 1 | 0.189 | 0.207 | 0.172 | 0.204
living room 2 | 0.466 | 0.465 | 0.452 | 0.467
office room 1 | 0.444 | 0.450 | 0.447 | 0.464
office oom 2 | 0.503 | 0.499 | 0.506 | 0.500

Table 2: The RMSE of the RPE metric (cm / s) of frame-to-frame
and frame-to-temporal-model tracking on the synthetic ICL-NUIM
sequences for both ICP and DVO methods.

52 TUM

The TUM RGB-D dataset [36] contains a variety of hand-held tra-
jectories fitting both AR scenarios (desk and room navigations) or
3D reconstruction (object navigations). Two types of sensors are
used, the Microsoft Kinect 1.0 and the Asus Xtion with both sens-
ing depth through a projected infrared pattern. Again we present
results for both ICP and DVO methods, comparing the frame-to-
frame performance with the EWA surfel temporal model, with the
reset functionality disabled, using the same window size of N = 7.
Furthermore, we also compare our EWA approach to a simpler
splatting approach [44, 15, 32] , where each surfel is rendered as
a splat, with no explicit blending, aimed mainly at hole filling and
accumulating temporal information into the rendered images, after
also de-coupling it from the mapping process.

TUM DVO (cm/s) | % | ICP(cm/s) | %
Sequence  pwa EWA4R | | EWA  EWA4R |
fri/desk 4735  2.820 | +40% | 2.897  2.851 | +2%

fri/desk2 4830 4747 | +2% | 4599 4599 | £0%
frifroom 6270 6194 | +1% | 5518 5533 | £0%
frifeddy 6671 6758 | -1% | 5009  4.804 | +4%
fr2/desk 1612 1556 | +3% | 1295 1277 | +1%
fr3foffice 2067 1884 | +9% | 1379 1313 | +5%
frifplant 5425 5029 | +1% | 2.647 2554 | +4%
fr3/cabiner  4.016 ~ 4.091 | 2% | 2914 2851 | +2%
total | +7% | total | +2%

Table 3: Reseting the model upon identifying erroneous pose esti-
mates improves the accuracy of both methods. A comparison be-
tween the temporal surfel model with and without reseting capabil-
ities is shown for both DVO and ICP methods. The RMSE of the
RPE metric (cm / s) is used.

As presented in Table 1, we observe an overall reduction of
drift when using temporal EWA splatting (12% for DVO, 28% for
ICP ). However, in the case of DVO for sequences frl/desk and
fri/plant we find that frame-to-frame pose estimation produces less
drift. These, along with frr1/desk2 and fr1/room where smaller gains
are observed, are challenging sequences with large motion (either
translational or rotational) that introduce erroneous pose estimates.



TUM DVO (cm /) DVO EWA % ICP (cm /') ICP EWA %

Sequence  “pop T Gimple  EWA | vsF2F  vsSimple | F2F  Simple EWA | vs F2F  vs Simple
frl/desk 4381 5051 4735 | -8% +6% | 3.948 2874 2897 | +27% 1%
fri/desk2  5.698  5.029 4.830 | +15% +4% | 6385 4948 4599 | +28% +7%
frifroom 6738 6874 6270 | +7% +9% | 5838 5468 5518 | +5% 1%
frifteddy 7226 6444 6671 | +8% -4% 4902 6406 5009 | 2% +22%
fr2/desk 2511 1760  1.612 | +36% +8% | 2134 9533 1295 | +39%  +86%
fr3foffice 3776 4590  2.067 | +45%  +55% | 3.058 1.686 1379 | +55% = +18%
frifplant  3.611 4903 5425 | -50% 1% | 3303 3.025 2.647 | +20%  +12%
fr3/cabinet 7004 5666 4016 | +43%  +29% | 6.555 3747 2914 | +56%  +22%
total +12%  +12% total +28%  +21%

Table 1: The RMSE of the RPE metric (cm / s) on the TUM sequences using the DVO and ICP methods. A comparison of frame-to-frame
and frame-to-temporal-model tracking is presented, showcasing the gains when using the EWA temporal model. In addition, results against
a simple splatting model are also presented along with the gains of the EWA temporal splatting against the simpler splatting scheme.
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Figure 5: The erroneous pose detection results are presented. The top plot shows the RPE metric for each frame of the fr//desk sequence. On
the left is the initial splatted frame at time point # — 1. The blue arrow sequence (and RPE plot) shows the stream advancing without the reset
capability toggled, while the orange arrow shows the same stream sequence with the reset capability turned on. At time point ¢, denoted by
the larger acqua box, the orange sequence detects an erroneous estimate due to an outlier in the visual quality time series and resets. At time
points z+ 1 and 7+ 2 it is evident that the erroneous estimate is distorting the results, as pinpointed and illustrated in zoom in the green and
red boxes. Meanwhile, the orange sequence shows crisper results and allows for more accurate subsequent registrations. The RPE plot on top
shows the resulting drift with the erroneous pose accumulating into the model (blue series), and the reduction when it is reset (orange series).
It should be noted that due to how the RPE is calculated, the error is peaking at an earlier time point than the erroneous pose estimate.

The sliding window approach will inherently accumulate these er-
rors into subsequent frames, corrupting the EWA splatting model.
Comparing with the simple splatting approach, we observe an over-
all drift reduction of 12% and 21%, for DVO and ICP respectively.
Additionally, we observe that in some of the challenging sequences,
like fr1/desk, fri/teddy and fri/room, the simple splatting approach
performs slightly better. By omitting the visibility pass, the final
rendering results of simple splatting only allow for a single contri-
bution per fragment, as dictated by the depth testing process. As
a result, in the case of erroneous poses the outcome greatly de-
pends on how the last frame will be posed and, depending on the
type of motion involved, might occlude or get occluded by previ-
ous frames. While the mapping process can greatly alleviate such

issues as demonstrated by [44], when the temporal simple splatting
is de-coupled from it, we find that EWA splatting performs better.

Consequently, we evaluate our approach with the reset mecha-
nism outlined in Section 4.3, referred to as EWA+R, in the same
sequences for both RGB-D camera pose estimation methods. We
consider as visual quality outliers, those measurements exceeding
4 standard deviations as defined by the MAD within a temporal
window of 21 frames, which was empirically selected after test-
ing several indicative window sizes. The results are illustrated in
Table 3, with the overall percentage gains in drift reduction also
presented. As it can be seen, for the frl/desk sequence, where the
frame-to-frame tracking produced better results than the temporal
EWA splatting due to erroneous pose accumulation and corruption



of the aggregated splats, the error is greatly reduced after identi-
fying those erroneous poses. Figure 5 showcases one such outlier
detection and its detrimental effects on the temporal model. At the
same time, the gains after resetting the temporal window are clearly
visible. It is also apparent from the RPE plot that an erroneous pose
estimate greatly influenced the sequence’s drift and that its effects
were reduced after the erroneous pose identification. Overall, we
observe that in most sequences the visual quality analysis outlier
detection improves the temporal model’s performance or at least
keeps it at the same levels. More similar examples can be found
on the supplementary video, as well as visual comparison between
the tracking of complete sequences with frame-to-frame, frame-to-
temporal-model and frame-to-simple-splatting.

Finally, in Table 4 we compare our results against previous
SLAM systems, utilizing a mapping and optimization back-end on
a common intersection of sequences. The first is RGB-D SLAM
[9], whose trajectories are publicly available, and the second is a re-
cent work focusing on improving the estimation accuracy of DVO
by better modeling depth errors [2], using the results reported in
their work. The third is ElasticFusion [44] where we used the au-
thor’s publicly available implementation. While already offering
better drift reduction, our proposed model can also benefit from
sensor noise modeling approaches like in [2]. It should be noted
though that we do not perform pose-chain optimization of any kind,
and therefore complete SLAM systems offer a better performance
with respect to the global trajectory as measured by the absolute
trajectory error (ATE) [36].

TUM DVO  RGBD .o ICP  Elastic
Sequence EWA+R SLAM ©~ EWA+R  Fusion

fri/desk 2820 3325 3900 | 2.851  2.844
fri/desk2 4747 5441 6500 | 4599  4.636
fri/room  6.194 9536 6300 | 5533  5.846
fr2/desk 1556  1.670  1.600 | 1277  1.464
fr3fofice  1.884 - 1400 | 1313 1323

Table 4: Comparison with other SLAM systems using the RMSE
of the RPE (cm / s). For RGB-D SLAM the publicly available
trajectories are used, for sigma-DVO we use the numbers reported
in their published work, while for ElasticFusion [44] we used the
author’s implementation.

5.3 CoRBS

In order to demonstrate sensor invariance, our approach is also eval-
uated with the CoRBS dataset [42], captured by a Microsoft Kinect
2.0, a time-of-flight depth sensing device. Since the Kinect 2.0
offers a higher resolution color image, we downsampled it to the
depth image’s resolution. Table 5 shows similar gains to those pre-
sented in Section 5.2 using the ICP method. In general, the EWA
temporal model offers a reduction in pose estimation drift, while
the erroneous pose detection makes it a bit more robust.

5.4 Performance

The experiments were run on a system with an Intel i7-4790K @
4GHz CPU with 16GB of memory and a NVIDIA GTX 960 GPU
with 2GB of memory. In Table 6 an analysis regarding performance
gains versus resources used is presented. Increasing the window
size reduces drift, but at the cost of memory. However, consider-
ing a standard resolution of 640 x 480 for both color and depth and
a window of size N = 7 plus the overhead of the allocated frame-
buffers needed for splatting, the amount of extra memory required
(around 22 MB) is 17% of a TSDF voxel grid of resolution 256°
(around 128 MB for the distance and weight values).

CoRBS ICP (cm /s) | EWA  EWA4R
Sequence "R EWA  EWA4R | vsF2F%  vs EWA %
DI 3.553 2153 2034 | +39% +6%
D2 3203 2004 1960 | +37% +2%
D3 10437 5997 5718 | +43% +5%
D4 4382 2563 2444 | +42% +5%
D5 4392 2988  3.033 +32% 2%
El 3818 3452 3484 | +10% -1%
E2 3332 2398 2311 +28% +4%
E4 2730 2453 2.445 +10% +0%
ES 2454 1820 1780 | +26% +2%
HI 2192 1650 1645 | +25% +0%
H2 2426 1304 1269 | +46% +3%
H3 3252 2733 2674 | +16% +2%

total | +29% +2%

Table 5: The RMSE of the RPE metric (cm / s) for the CoRBS
dataset sequences. Results are shown for both the ICP method
for the frame-to-frame tracking and the frame-to-temporal-model
tracking with and without the reseting capability.

However, while increasing the model’s sliding window size of-
fers performance gains, it also adds more surfels to the model, and
therefore, more fragments during rasterization, decreasing the com-
putational performance. Table 7 presents the time required for each
different pass of the EWA splatting algorithm without reset enabled
for a window of size N = 7. Surfel slatting rendering techniques
are bottlenecked by the huge amount of fragments produced dur-
ing rendering. The temporal visibility check described in Section
4.2 decreases the computational load, however increasing the num-
ber of frames, increases the processing time of the blending pass.
Most mobile solutions resort to using half the resolution of the input
frames [14], with its processing time also reported.

TUM Window Size N
Sequence N=3 N=5 N=7 N=9 N=11

fri/desk2 5467 4991 4599 4358 4.215
fr2/desk 1478 1299 1295 1321 1.335
fr3/cabinet 4222 3.183 2914 2440 2.171
fr3/office  2.006 1.528 1379 1.190 1.125

Table 6: The RMSE of the RPE metric (cm / s) is shown for the
ICP method using different window sizes. Bigger window sizes
typically perform better than smaller ones. The EWA method with-
out resetting is used.

Resolution
Shader ‘ Half (ms) | Full (ms)
P Temporal
Visibility Pass Visibility Pass 5.36 ‘ 1.47 | 11.88 ‘ 1.47
Blending Pass 6.77 16.07
Normalization Pass 0.04 0.04

Table 7: The processing time (in milliseconds) for each shading
pass is reported. We obtain higher performance by utilizing the
temporal visibility pass. The timings for using half of the original
resolution are also reported.



TUM DVO (cm /s) DVO EWA+R % ICP (cm /s) ICP EWA+R %

Sequence F2F  EWA EWA+R | vsF2F vsEWA | F2F  EWA EWA+R | vsF2F  vs EWA
fri/sitting_halfsphere 3767 7430  6.694 | -78%  +10% | 4981 5030 5029 | -1%  +0%
fr3/sitting_static 1330 1124 L1041 | +22%  +7% | 1.874 1436 1332 | +29%  +7%
fr3/walking_halfsphere 39391 32530 31769 | +19%  +2% | 36376 30906 30256 | +17%  +2%
fr3fwalkingstatic 29562 26.630 25866 | +13%  +3% | 24.892 34.022 29872 | -20%  +12%
fr3/walking xyz 46548  50.040  48.527 | 4%  +3% | 47.842 43.627 42472 | +11%  +3%
total -6 % +5% total +7% +5%

Table 8: The RMSE of the RPE metric (cm/ s) on the TUM sequences containing moving objects using DVO and ICP methods. A comparison
of frame-to-frame and frame-to-temporal-model (with and without reseting) tracking is presented, also presenting the gains of each method.

6 CONCLUSION

We have presented a temporal surfel EWA splatting model to im-
prove the accuracy of camera pose estimation methods. Compared
to the simple splatting scheme used by previous works, we have
demonstrated the efficacy of complete EWA splatting with high
quality blending in various datasets. It was shown that although
gains cannot be discerned for high quality synthetic data, in realis-
tic conditions we observe a reduction of drift in the range of around
25%. The advantage of lightweight point-based representations
also lies in their simplicity, alleviating the burden of transitioning
between different representations and being mindful of their con-
sistency. Unlike implicit representations like TSDFs, exploiting the
RGB-D stream’s temporality offers a low memory alternative for
achieving registration with a de-noised and accumulated represen-
tation and is also de-coupled from the mapping process. Nonethe-
less, this scheme can be potentially combined with existing SLAM
systems, as aggregated frame splatting can be utilized to produce
de-noised keyframes. Further, a novel visual quality erroneous pose
estimate detection technique was presented to complement the pro-
posed temporal model, showcasing an interesting potential and sup-
porting the temporal EWA model to prevent it from getting corrupt
by bad poses estimates.

While the parameters used within this work were experimentally
judged as better performing, there were sequences that produced
better trajectories through different parameterizations, be it either
the window size or the outlier detection parameters. At the same
time, certain visible color degradations were not identified by the
MAD outlier detector. Finally, realistic AR scenarios involve more
challenging scenarios with the most problematic for temporal ag-
gregation methods being those where the scene loses its rigidity.
To that end, we also offer results in dynamic scenes from the TUM
dataset that include moving objects in Table 8, with some sequences
suffering from very high drifts, which constitutes a tracking failure.
In these situations, while the temporal aggregation can overally in-
crease the tracking performance and reduce drift in those segments
where the scene is rigid, it will deteriorate the pose estimation re-
sults when scene objects start to move as they will be blended mul-
tiple times in the splatted images. At the same time, the rendered
color image’s similarity timeseries will be very unstable and fail
to reset the window sufficiently to improve the performance as re-
quired. Concluding, being able to accurately detect bad pose esti-
mates is still an open research task that still needs to be addressed
and also dealing with dynamic scenes is the next natural step to-
wards increasing AR’s applicability.
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