
P2P Systems and Overlay
Networks

Vasilios Darlagiannis

CERTH/ITI

Seminars 2010

Overview

 Introduction - Motivation

 Design Principles

 Core P2P Operations

 Unstructured Overlays
– Gnutella

– …

 Structured Overlays
– Chord

– Omicron

– …

 Successful applications

 Discussion on usefulness of the P2P paradigm

Client/Server paradigm

 Limitations

– Scalability is hard to achieve

– Presents a single point of

failure

– Requires administration

– Unused resources at the

network edge

 P2P systems try to address

these limitations

Server

Clients

P2P: Definition

 Peer-to-Peer (P2P) is

– Any distributed network architecture

– composed of participants that make a portion of

their resources directly available to other network

participants,

– without the need for central coordination

instances.

 Peers are

– both suppliers and consumers of resources

 in contrast to the traditional client–server model where

only servers supply, and clients consume.

P2P main characteristics

 The concept P2P may refer to:

– Distributed systems and

– Communication paradigm

 Main characteristics

– Systems with loosely-coupled (no fixed relationship),

autonomous devices

– Devices have their own semi-independent agenda

 Comply to some general rules

 but local policies define their behavior

– (At least) limited coordination and cooperation needed

 Key abstraction

– Application-layer Overlay Networks

P2P Overlay Networks

TCP/IP

Network

Firewall + NAT

TCP/IP

Network

TCP/IP

Network

HTTP TCP

Peers identified by PeerID

Service A
Service B

Service C

Relay

Overlay Network

Underlay Networks

Overlay Networks

 A network

– provides services (service model)

– defines how nodes interact

– deals with addressing, routing, …

 Overlay networks

– built on top of one or more existing networks

– adds an additional layer of

 abstraction

 indirection/virtualization

TCP/IP

TCP/IP

TCP/IP

Nodes Overlay Network

Underlay Networks

Overlay Networks: Benefits

 Do not have to

– deploy new equipment

– modify existing software/protocols

 Allow for easy bootstrapping

– Make use of existing environment by adding new layer

 Not all nodes must support it

– Incrementally deployable

 E.g.,

– adding IP on top of Ethernet does not require modifying

Ethernet protocol or driver

Overlay Networks: Drawbacks

 Overhead

– Adds another layer in networking stack

– Additional packet headers, processing

 Complexity

– Layering does not eliminate complexity, it only manages it

– More layers of functionality

 more possible unintended interaction between layers

– Misleading behavior

 E.g. corruption drops on wireless links interpreted as congestion drops
by TCP

 Redundancy

– Features may be available at various layer

 May provide restricted functionality

– Some features a “lower layer” does not provide can not be added
on top

 E.g. real-time capabilities (for QoS)

Peer-to-Peer Overlay Networks

IP Network

End-devices

Sharing local

media files

Overlay Network Searching remote

media files

?
?

?

?

Internet Traffic Study 2008/2009

 P2P generates most traffic in all regions

 Same picture holds the last 9 years

 Changes expected by end of 2010

Critical Requirements for Overlays

1. Efficient

Mapping

2. Heterogeneity

5. Scalability

4. Fault-tolerance

3. Load-balance

IP Network

Overlay Network

Properties of P2P Network Graphs

 Ideal network characteristics (general)

– Small network diameter (worst-case distance)

– Small average distance / path length

– Small node degree

– High connectivity (and high fault tolerance)

– Support load balancing of traffic

– Symmetry

 Hard to obtain in reality

– Trade-offs

Trade-offs in designing Overlays

 Time – Space
– e.g. local information vs. complete replication of indices

 Security – Privacy
– e.g. fully logged operations vs. totally untraceable

 Efficiency – Completeness
– e.g. exact key-based matching vs. range queries

 Scope – Network load
– e.g. TTL based requests vs. exhaustive search

 Efficiency – Autonomy
– e.g. hierarchical vs. pure P2P overlays

 Reliability – Low maintenance overhead
– e.g. deterministic vs. probabilistic operations

 …

Design mechanisms of P2P Overlays

 Topology structure
– Loosely structured, tightly structured

 Indexing scheme
– Distributed Hash Tables (DHTs), Caches, Bloom filters

 Communication paradigms
– Flooding, random walks, DHT-directed

 Clustering
– Groups of interest, network proximity, etc.

 Rules/Policies
– Reputation-, trust-, rate-based

 Roles
– Service-, operation-based

Overlay Networks Design Approaches

Client-Server Peer-to-Peer

1. Server is the central

entity and only

provider of service

and content.

 Network

managed by the

Server

2. Server as the higher

performance

system.

3. Clients as the lower

performance system

Example: WWW

1. Resources are shared between the peers

2. Resources can be accessed directly from other peers

3. Peer is provider and requestor (Servent concept)

Unstructured P2P Structured P2P

Centralized P2P Pure P2P Hybrid P2P DHT-Based

1. All features of Peer-

to-Peer included

2. Central entity is

necessary to provide

the service

3. Central entity is

some kind of

index/group

database

Example: Napster

1. All features of Peer-

to-Peer included

2. Any terminal entity

can be removed

without loss of

functionality

3.  no central entities

Example: Gnutella 0.4,

Freenet

1. All features of Peer-

to-Peer included

2. Any terminal entity

can be removed

without loss of

functionality

3.  dynamic central

entities

Examples: Gnutella 0.6,

Fasttrack, edonkey

1. All features of Peer-

to-Peer included

2. Any terminal entity

can be removed

without loss of

functionality

3.  No central entities

4. Connections in the

overlay are “fixed”

5. Distributed indexing

(content is not

relocated)

Examples: Chord, CAN

Classification of P2P design
mechanisms

Hierarchical

Tightly structured

Loosely structured

Pure P2P

DeterministicProbabilistic

Bloom

Filters

KaZaa

Gnutella

Chord

Freenet

Napster

Operations

Topology

(Structure)

Autonomy

Random

Walk

Components of P2P Overlays

 Identification scheme

– Nodes, resources, services, clusters, etc.

 Routing tables

– Size, selection of entries, complexity

 Indexing structure

– Compressed, cached, complete, semantics

support

 Communication protocols

– Recursive, iterative

P2P Core Functionality

 Infrastructure-less connectivity

 Dynamic network management

 Sharing of services and resources

 Management of shared recourses

 Load balancing

 Finding shared services and resources

Data Management and Retrieval

Essential challenge in (most) Peer-to-Peer systems?

 Location of a data item among systems distributed
– Where shall the item be stored by the provider?

– How does a requester find the actual location of an item?

 Scalability:
– keep the complexity for communication and storage scalable

 Robustness and resilience
– in case of faults and frequent changes

D

?

Data item „D“

distributed system

7.31.10.25

peer-to-peer.info

12.5.7.31

95.7.6.10

86.8.10.18

planet -lab.orgberkeley.edu 89.11.20.15

I have item „D“.
Where to place „D“?

I want item „D“.
Where can I find „D“?

Finding Information

in

Unstructured P2P systems

Flooding Search

 Fully Decentralized Approach: Flooding Search

– No information about location of data in the intermediate

nodes

– Necessity for broad search

  Node B (requester) asks neighboring nodes for item D

 - Nodes forward request to further nodes (breadth-first

search / flooding)

  Node A (provider of item D) sends D to requesting node B

& Transmission: D  Node B

“I have D ?”

“B searches D”

Node A

Node B

“I store D”





























Gnutella: Protocol 0.4 – Characteristics

 Message broadcast for

node discovery and search requests

– flooding

 (to all connected nodes) is used to distribute information

– nodes recognize message they already have

forwarded

 by their GUID and

 do not forward them twice

 Hop limit by TTL

– originally TTL = 7

Expanding Ring

 Mechanism
– Successive floods with

increasing TTL
 Start with small TTL

 If no success increase TTL

 .. etc.

 Properties
– Improved performance

when objects follow Zipf
law popularity distribution
and located accordingly

– Message overhead is high

Random Walk

Algorithm and variations

 Forward the query to a randomly
selected neighbor

– Message overhead is reduced
significantly

– Increased latency

 Multiple random walks (k-query
messages)

– reduces latency

– generates more load

 Termination mechanism
– TTL-based

– Periodically checking requester
before next submission

Hierarchical (Super-peer) Overlays

 Utilized in Gnutella 0.6, KaZaA, eDonkey,

etc.

 Consider non-uniform distributions

 Efficient search

 Less autonomy

SP

P
SP

SP

SP

P

P

P
P

P P

P

P

P

File sharing with BitTorrent

 Cooperative File Sharing
– Counter free-riders

 Characteristics
– no virtual currency

– file is split into chunks

– tit-for-tat exchange strategy
 if give you – you give me

 attempt to reach Pareto efficiency

 no one can get faster download speeds without hurting
someone else's download speed

 nodes download rarest chunks first

 new nodes download random chunks first

BitTorrent Concepts

 Torrent:

– group of peers exchanging chunks of a file

 For each shared file

– tracker

 non-content-sharing node

 actively tracks all seeders and leeches

– seeders

 have complete copies of the desired content

– leeches

 incomplete copies of the desired content

 leeches try to download missing chunks

BitTorrent: Operation Scenario

New Leech Seed
Leech

Tracker

4 - Shake-hand4 - Shake-hand

5 - Get chunks 5 - Get chunks

6 - Provide chunks

BitTorrent: Evaluation

 Strengths
– Good bandwidth utilization

– Limit free riding – tit-for-tat

– Limit leech attack – coupling upload & download

– Preferred selection for legal content distribution

 Drawbacks
– Small files – latency, overhead

– Central tracker server needed to bootstrap swarm

 Single point of failure

 Potentially a scalability issue

– Robustness

 System progress dependent on altruistic nature of seeds (and
peers)

– Cannot totally avoid malicious attacks and leeches

Finding Information

in

Structured P2P systems

Structured Overlay Networks

 Structured (tightly structured) network topologies

– Hypercubes

– De Bruijn

– Butterflies

– Meshes,…..

– DHTs

– ….

 Topologies are also met in traditional distributed and

parallel systems

– Different requirements than P2P systems

Hypercube Topology

 n-dimensional binary hypercube

– (or n-cube)

– 2n vertices labeled by n-bit binary

strings

– Edges joining two vertices whenever

their labels differ in a single bit

 Characteristics

– Vertex degree grows logarithmically

with the number of vertices

– Logarithmic grow of the diameter

– Vertex- and edge-symmetric

100

000 001

010

011

101

110 111

8 1

2

0

11

3 0

4 5

7

0

11

6 0

2 2

22

De Bruijn graphs

 Lexicographic graphs
– Adjacency is based on left shift by 1 position

– E.g. node 001 points to nodes 01x (010, 011)

 Characteristics
– Average distance is very close to the diameter

– Constant vertex degree

– Logarithmic diameter

000

001

010

011

100

101

110

111

0(
00

)1

0(01)1

0(11)1

1(10)0

1(1
1)0

0(10)1

1(01)0

1(00)0

1
(0

0
)1

0
(1

1
)0

1(
01

)1

0(
10

)0

0(01)0

1(10)1

Distributed Indexing

C
o

m
m

u
n

ic
a

ti
o

n

O
v
e

rh
e

a
d

Node State

Flooding

Central

Server

O(N)

O(N)O(1)

O(1)

O(log N)

O(log N)

Bottleneck:

•Communication

Overhead

•False negatives

Bottlenecks:

•Memory, CPU, Network

•AvailabilityDistributed

Hash Table

 Scalability: O(log N)

No false negatives

Resistant against changes

– Failures, Attacks

DHT: Addressing Space

Mapping of content/nodes into linear space

 Usually: 0, …, 2m-1 >> number of objects to be
stored

 Mapping of data and nodes into an address space
(with hash function)

– E.g., Hash(String) mod 2m: H(„my data“) -> 2313

 Association of parts of address space to DHT nodes

H(Node Y)=3485

3485 -

610

1622 -

2010

611 -

709

2011 -

2206

2207-

2905

(3485 -

610)

2906 -

3484

1008 -

1621

Y

X

2m-1 0

Often, the address

space is viewed as

a circle.

Data item “D”:

H(“D”)=3107 H(Node X)=2906

DHT: Routing to destination

 Hash(query)

 Use shortcuts to reach destination in

minimum steps (typically O(log(n)))

(3107, (ip, port))

Value = pointer to location of data

Key = H(“my data”)

Node 3485 manages

keys 2907-3485,

Initial node

(arbitrary)

H(„my data“)

= 3107

2207

2906

3485

2011
1622

1008

709

611

Chord: Ring-based DHT

 Build log(n) fingers

 finger [k] = first node that succeeds

(n+2k-1)mod2m

 Ring invariant

must hold

N1

N8

N14

N21N32

N38

N42

N48

N51

N56

finger 1,2,3

finger 4

finger 6

finger 5

DHT Desirable Properties

 Keys should mapped evenly to all nodes in

the network (load balance)

 Each node should maintain information about

only a few other nodes (scalability, low

update cost)

 Messages should be routed to a node

efficiently (small number of hops)

 Node arrival/departures should only affect a

few nodes

DHTs: Core Components

 Hash table
– Uniform distribution

– Shifted view for each node (adding a node-related offset)

 Mapping function
– Node Ids and item keys share the same key-space

– Rules for associating keys to particular nodes

 Routing tables
– Per-node routing tables that refer to other nodes

– Rules for updating tables as nodes join and leave/fail

 Routing algorithms (operations on keys):
– XOR-based (e.g. Kademlia)

– Shift operations (e.g. D2B)

– Distance-based (e.g. Chord)

– Prefix-based (e.g. Pastry)

Motivation for Omicron

 Goal
– Design of an effective P2P Overlay Network

– Merge Super-Peer and DHT properties

 Challenge
– Handle efficiently the large number of conflicting requirements,

e.g.

– Heterogeneity versus load-balance

!

?

Distributed Hash Tables (DHTs) Hierarchical Networks

Super peers

?

!

Issues

• Heterogeneity

• Maintenance cost

Issues

• Potential bottlenecks

• Fault-tolerance

Omicron: Two-tier Overlay

Structured macro level (de Bruijn)

 Scalable

– Asymptotically optimal

 Diameter

 Average node
distance

– Fixed node degree

 Stable nodes are necessary

Clustered micro level

 Redundancy and
fault-tolerance

 Locality aware

 Finer load balance

 Handling hot spots

Clusters

de Bruijn graph

Two-tier architecture

 Common overlay network operations

– Maintaining structure (topology)

– Routing queries

– Indexing advertised items

– Caching popular items

Maintainer

Indexer

Cacher

Router
Cluster

Organized

Maintenance,

Indexing,

Caching and

Routing in

Overlay

Networks

Cluster

Fuzzynet: Motivation

Motivation

 Advantages of the ring

– Easy Navigation (greedy routing)

– Clear responsibility ranges

– Easy to bootstrap long-range links

 BUT!

– Keeping the ring invariant is a difficult task:

– Expensive maintenance (periodic, eager)

– Non-transitivity effect (A→B, B→ C, but not A→ C)

 Firewalled peers, NATs

 Routing anomalies

Small-World Graphs (Networks)

 Regular Graph slightly "rewired" Random Graph

Regular Graph Slightly

rewired graph

Random graph

Clustering

Coefficient

high high low

Path Length high low low

Fuzzynet: Zero maintenance ringless
overlay (2)

 Fuzzynet
– No ring structure (only Small-World “long-range”

links)

– No predefined responsibility ranges

– Data is probabilistically stored in the data-key
vicinity

– Compatible with any Small-World network

– Typical DHT replication rate

– Network construction without the help of the ring
(peer order is considered)

– Lookup (Read) – simple greedy routing

– Publish (Write) – greedy routing + write burst

Write phase 1: Greedy-Approach

 Routing from the originator peer (P0.56) to the greedy-closest peer (P0.21) where the
greedy approach towards the target key 0:175 (actual-closest peer P0.17) is no further
possible.

Peers sorted by their

identifiers and mapped

on unit interval

(there is no explicit

ring structure!)

P0.56 (source)

P0.17 (target)

P0.21 (stop)

Publish key 0.175
by peer P

0.56

Greedy routing

Write phase 2: Write-Burst

 The greedy-closest peer (P0.21) seeds the replicas in the cluster vicinity of
the key 0.175 using the Write-Burst.

P0.56 (source)

P0.17 (target)

P0.21 (stop)

Write
-Burst f

rom P0.21 (st
op)

towards th
e key 0.175

Lookup (read)

 After writing the data in the vicinity of the key 0.175, the lookup (read) from any node will
have very high chance finding at least one of the data replicas.

P0.14 (replica)
R

ea
d

a
ke

y
0.

17
5

by

pe
er

 P
0.

77

G
reedy routing finds one of the

data copies w
ith high probability

P0.77 (read)

P2P Application & Service Domains

File Sharing: music, video and other data

 Napster, Gnutella, FastTrack (KaZaA, ...), eDonkey, eMule,
BitTorrent, eXeem, etc.

Distributed Storage/Distributed File sharing

 (Anonymous) Publication: Freenet

 PAST, OceanStore, etc.

Collaboration

 P2P groupware

 Groove

 P2P content generation

 Online Games

 P2P instant messaging

Distributed Computing - GRID

 P2P CPU cycle sharing

 GRID Computing, ..., distributed simulation
– SETI@home: search for extraterrestrial intelligence

– Popular Power: former battle to the influenza virus

Security and Reliability

 Resilient Overlay Network (RON)

 Secure Overlay Services (SOS)

Application Layer Multicast

 Narada

VoIP

 Skype

P2P: When is it useful?

 P2P paradigm provides

– Scalable means for communication

– Infrastructure-less deployment of distributed

systems

– Incrementally deployable services

– Fault-tolerance

– Anti-censorship means for sharing ideas

– Utilize spare end-node resources

P2P: When it is more a curse than a
blessing?

 P2P may introduce hassles when

– Business plans require absolute control of

provided services

– Small scale network use cases

– Unreliable end-nodes

– Complete authentication is crucial

– Trust is hard to establish

– Copyright management issues

