



#### nodes G = (V, E)edges



### graph basics

#### node degree

#### deg(v<sub>i</sub>) = k<sub>i</sub> = number of neighbors

In directed graphs, we differentiate between in- and out-degree.

#### adjacency matrix

A<sub>ij</sub> = link between nodes *i* and *j* 

 $\begin{array}{c} 0 \rightarrow \text{ no link} \\ 1 \rightarrow \text{ link} \\ \alpha \rightarrow \text{ link with weight equal to } \alpha \end{array}$ 

# graph construction from Web data 1

#### Webpage www.x.com

href="www.y.com" href = "www.z.com"

#### Webpage www.y.com

href="www.x.com" href = "www.a.com" href = "www.b.com"

#### Webpage www.z.com

href="www.a.com"



# graph construction from Web data 2



#### web pages as graphs



#### cnn.com

Lots of links, lots of images. Similar use of divs and tables for layouting purposes. (1316 tags)

blue: for links (the A tag)
red: for tables (TABLE, TR and TD tags)
green: for the DIV tag
violet: for images (the IMG tag)
yellow: for forms (FORM, INPUT, TEXTAREA, SELECT and OPTION tags)
orange: for linebreaks and blockquotes (BR, P, and BLOCKQUOTE tags)
black: the HTML tag, the root node
gray: all other tags

http://www.aharef.info/2006/05/websites\_as\_graphs.htm

#### web pages as graphs

# 2



#### boingboing.net

One essential container that contains all other tags, essentially links, images, and tags to layout the text. A typical content driven website. (1056 tags)

blue: for links (the A tag)
red: for tables (TABLE, TR and TD tags)
green: for the DIV tag
violet: for images (the IMG tag)
yellow: for forms (FORM, INPUT, TEXTAREA, SELECT and OPTION tags)
orange: for linebreaks and blockquotes (BR, P, and BLOCKQUOTE tags)
black: the HTML tag, the root node
gray: all other tags

#### Internet as a graph

#### nodes = service providers edges = connections

hierarchical structure

S. Carmi,S. Havlin, S. Kirkpatrick, Y. Shavitt, E. Shir. A model of Internet topology using k-shell decomposition. PNAS 104 (27), pp. 11150-11154, 2007



# blogosphere as a graph



http://datamining.typepad.com/gallery/blog-map-gallery.html

### social web as a graph

announcement of Mubarak's resignation

nodes = twitter users
edges = retweets on #jan25 hashtag



10

### emerging structures

- graphs on the web present certain structural characteristics
- groups of nodes interacting with each other → dense inter-connections → functional/topical associations
- what can we gain by studying them?
  - > topic analysis
  - > photo clustering
  - > improved recommendation methods

The concept of Community

# BASICS

# bulleting board

|                                                                                                                                                                                                                                                                                                                                                                                   |                | Ice Chewers Bulletin Board - All about Chewing Ice<br>A place to share about ice chewing |          |               | Love Ice Chewing?<br>Click here to see what else<br>there is to crave |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------|----------|---------------|-----------------------------------------------------------------------|--|
| 🛛 Login 🗹 Register                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                          |          |               | 🕑 FAQ 🔍 Search                                                        |  |
| View upanswered posts   View                                                                                                                                                                                                                                                                                                                                                      | w active topic |                                                                                          | It is cu | rrently Mon I | Mar 28, 2011 2:48 pm                                                  |  |
| Board index                                                                                                                                                                                                                                                                                                                                                                       |                |                                                                                          |          | All times     | are UTC - 5 hours [ DST ]                                             |  |
| <u>GoldenDeals</u> Προσφορές για εκπτώσεις έως -90%! Κάνε εγγραφή τώρα στο GoldenDeals. www.GoldenDeals.gr<br><u>Maldives Luxury Resorts</u> Exclusive, Luxury Maldives Resorts By The Local Maldives Travel Guru AtoliParadise.co<br><u>Ez-Glide Synth. Ice Rink</u> ->♥ An artificial Ice Skating surface You can afford your own Ice Rink! www.ezglide350.com<br>Ads by Google |                |                                                                                          |          |               |                                                                       |  |
| New Forums Announced!                                                                                                                                                                                                                                                                                                                                                             |                |                                                                                          | 0        |               |                                                                       |  |
| Monthly Discussion Topics                                                                                                                                                                                                                                                                                                                                                         |                | Forum                                                                                    | Topics   | Posts         | Last post                                                             |  |
| What is your favorite salty<br>food?                                                                                                                                                                                                                                                                                                                                              | Theories       | 5                                                                                        |          |               |                                                                       |  |
| Smells:<br>What is the "dirtiest" smell<br>that you can't get enough<br>of?<br>Butter:<br>Butter in the bedroom?<br>Beer:<br>Bud or Miller? Which one<br>and why?                                                                                                                                                                                                                 |                | Why?<br>Why do you chew ice?                                                             | 57       | 210           | No posts                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                   |                | Medical Reasons<br>Possible medical based reasons for ice chewing.                       | 41       | 235           | No posts                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                   |                | Other<br>Other possible reasons for ice chewing.                                         | 9        | 35            | No posts                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                   | Personal       |                                                                                          |          |               |                                                                       |  |
| Chocolate:<br>What is your favorite brand<br>of chocolate and why?                                                                                                                                                                                                                                                                                                                |                | Stories<br>Share your ice chewing stories.                                               | 273      | 962           | No posts                                                              |  |
| Plus, don't forget to check<br>all cravings here:                                                                                                                                                                                                                                                                                                                                 |                | Recipes<br>What makes the Best Ice?                                                      | 75       | 285           | No posts                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                   | Misc.          |                                                                                          |          |               |                                                                       |  |

#### Facebook group



http://www.facebook.com/group.php?gid=5475162391&v=wall

# Flickr group



http://www.flickr.com/groups/49246928@N00/pool/with/417646359/

#### #hashtag



# Web community types

- explicit
  - > the result of conscious human decision

- implicit
  - > emerging from the interactions & activities of users
  - > need special methods to be discovered

### what is a Web community?



Group of people sharing a common interest and creating web pages around it  $\rightarrow$  these pages tend to link to each other more often than to the rest of the Web

R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins. Trawling the web for emerging cybercommunities. Computer Networks, 31(11-16):1481-1493, 1999.





# A Web community is a set of web objects (documents and users) that includes its own semantic and logical structures.

Y. Zhang, J. Xu Yu, J. Hou. Web Communities: Analysis and Construction. Springer 2006.

### what is a Web community?

3



Communities correspond to groups of nodes on a graph that share common properties or have a common role in the organization/operation of the system.

S. Fortunato, C. Castellano. Community structure in graphs. arXiv:0712.2716v1, Dec 2007.

### communities and graphs

- Often communities are defined with respect to a graph, G = (V,E) representing a set of objects (V) and their relations (E).
- Even if such graph is not explicit in the raw data, it is usually possible to construct, e.g. feature vectors → distances → thresholding → graph
- Given a graph, a community is defined as a set of nodes that are more densely connected to each other than to the rest of the network nodes.

#### communities and graphs - example



#### community attributes





hierarchy

# graph cuts

Given nodes *u* and *v* of graph *G* = (*V*,*E*) a cut is a set of edges *C* ⊂ *E*, such that the two nodes are unconnected on the graph *G*' = (*V*,*E*-*C*).



Using s to denote a "source" node and t to denote a "terminal" node, a cut (S,T) of G = (V,E) is a partition of V in sets S and T = V-S, such that s ∈ S and t ∈T.

# modularity

- A graph can be split into communities in numerous ways, i.e. for each graph there are many possible community structures. In the simple case, a community structure is defined as a graph partition into a set of node sets C = {C<sub>i</sub>}.
- To provide a measure of the quality of a community structure, we make use of **modularity**.
- Modularity quantifies the extent to which a given graph partition into communities presents a systematic tendency to have more intra-community links than the same community structure would present if the links would be rewired under ER (Erdos-Renyi) graph model.

# modularity computation

Modularity is computed as follows:



- > **A**ij: adjacency matrix
- > k: degree of node i
- > c<sub>i</sub>: community of node i
- >  $\delta(c_{i}, c_{j}) = 1$  if *i*, *j* belong to the same community
- > *m*: number of edges on the graph

# modularity - example

- In a random graph (ER model), we expect that any possible partition would lead to Q = 0.
- Typically, in non-random graphs modularity takes values between 0.3 and 0.7.



Taxonomy of Community Detection Algorithms

# **METHODS**

#2

# graph partition

- Given a graph **G**=(V,E), find a partition of V in k disjoint subsets, such that the number of edges in *E* of which the endpoints belong to different subsets is minimized.
- Various solutions: Kernighan-Lin algorithm [Kernighan70], spectral bisection [Pothen90].
- Multi-level partition (metis) [Karypis99]: Repeated application of bisection until the graph is partitioned into k parts under constraint to the sizes of the subsets.
- Not satisfactory solution, since the number of communities needs to be provided as input to the algorithm. Sometimes event the community sizes need to be provided as inputs.

B. W. Kernighan, S. Lin. An Efficient Heuristic Procedure for Partitioning of Electrical Circuits. Bell Systems Technical Journal, Vol. 49, No. 2, pp. 291- 307, February 1970.

A. Pothen, H.D. Simon and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM journal of Matrix Analysis and Applications, 11: 430-452, 1990.

G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1): 359–392, 1999. 29



S. Papadopoulos, Y. Kompatsiaris, A. Vakali, P. Spyridonos. "Community detection in Social Media". In Data Mining and Knowledge Discovery, Springer (accepted 2011)

# subgraph discovery



# subgraph discovery

• (μ,ε)-core:

> based on the concept of structural similarity



# divisive - use of edge centrality

- Find edges that stand between communities.
- Progressively remove more "central" edges until the graph breaks into separate communities.
- As the graph splitting progresses, new communities are assigned to a hierarchical structure.
- Edge centrality is defined similarly to node centrality:

$$bc(v) = \sum_{\substack{s \neq t \neq v \\ s,t \in V}} \frac{\sigma_{s,t}(v)}{\sigma_{s,t}}$$

- $\sigma_{{}_{s,t}}(v) : \text{number of paths from node } \textbf{\textit{s}} \text{ to } \textbf{\textit{t}} \\ \text{that include node } \textbf{\textit{v}}$ 
  - $\sigma_{\scriptscriptstyle s,t}$  : total number of paths from  ${\it s}$  to  ${\it t}$



Depiction of node centrality: red (min)  $\rightarrow$  blue (max)

# Girvan - Newman algorithm

- GN algorithm is one of the most important algorithms stimulating a whole wave of community detection methods.
- Basic principle:
  - > Compute betweenness centrality for each edge.
  - > Remove edge with highest score.
  - > Re-compute all scores.
  - > Repeat 2<sup>nd</sup> step.
- Complexity: **O(n<sup>3</sup>)**
- Many variations have been presented to improve precision by use of different betweenness measures or reduce complexity, e.g. by sampling or local computations.

Girvan, M., Newman, M.E.J. "Community structure in social and biological networks". In Proceedings of National Academy of Science, U. S. A. 99(12), 7821–7826, 2002

### Girvan - Newman (example)



Social network in Zachary karate club



Hierarchical community structure detected by the algorithm.

# modularity maximization

- Modularity indicates the quality of a given community structure.
- A class of methods seeks for a community structure that maximizes the value of modularity.
- The search space is exponential with respect to the number of nodes, thus approximate and heuristic schemes are devised.
# modularity maximization example



# greedy solution

- Merge nodes trying in each merging step to maximize the graph modularity (Newman, 2004).
- Leads to hierarchical structure.
- Complexity in a sparse graph: **O(n<sup>2</sup>)**
- Use of appropriate data structures (max-heaps) and heuristics can lead to complexity reduction (Clauset et al., 2004) → O(nlog<sup>2</sup>n) but can also lead to the formation of gigantic communities.

M. E. J. Newman. Fast algorithm for detecting community structure in networks. Physical Review E, 69:066133, 2004

A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks. Physical Review E, vol. 70, Issue 6, id. 066111, 2004.

# efficient solution

V. D. Blondel, J. Guillaume, R. Lambiotte and E. Lefebvre: Fast unfolding of communities in large networks, J. Stat. Mech., 2008.



- Initially, each node belongs to its own community (N nodes → N communities)
- We go through each node with a standard order. To each node, we assign the community of their neighbor as long as this leads to an increase in modularity.
- This step is repeated many times until a local modularity maximum is found.

# efficient solution

# 2



- Folding: Create new graph in which nodes correspond to the communities detected in the previous step.
- Edge weights between community nodes are defined by the number of inter-community edges.
- Folding ensures rapid decrease in the number of nodes that need to be examined and thus enables large-scale application of the method.

# efficient solution - example

- Application on a graph with 118 million nodes and one billion edges in 152 minutes.
- Application on a mobile phone call network (snapshot).
- Hierarchical community structure.



# local methods

- More often than not we cannot have access to the whole graph (e.g. Web).
   U: unexplored portion of graph
- In that case local methods are valuable for detecting communities.



- A local method starts from a set of C: "inside" part of community nodes (seeds) and expands the community
  - boundaries using some criterion to stop.

# local methods

### Local modularity

$$R = \frac{\sum_{ij} B_{ij} \delta(i,j)}{\sum_{ij} B_{ij}}$$

 $B_{ij} = \begin{cases} 1 & \text{if vertices } i \text{ and } j \text{ are connected,} \\ & \text{and either vertex is in } \mathcal{B} \\ 0 & \text{otherwise.} \end{cases}$ 

A. Clauset. Finding local community structure in networks. Physical Review E, 72, 026132, 2005.

• Subgraph modularity  $M = \frac{ind(S)}{outd(S)}$   $\frac{ind(S): in-degree of subgraph S}{outd(S): out-degree of subgraph S}$ 

F. Luo, J. Z. Wang, E. Promislow. Exploring Local Community Structures in Large Networks. In Proceedings of the 2006 IEEE/WIC/ACM international Conference on Web intelligence (December, 2006). Web Intelligence. IEEE Computer Society, Washington, DC, 233-239, 2006.

Node outwardness

$$\Omega_v(C) = \frac{1}{k_v} \sum_{i \in n(v)} \left( \left[ i \notin C \right] - \left[ i \in C \right] \right)$$

k<sub>u</sub>: degree of u
n(u): neighborhood of i

J. P. Bagrow. Evaluating Local Community Methods in Networks. J. Stat. Mech., 2008 (5): P05001.

## local methods - example



F. Luo, J. Z. Wang, E. Promislow. Exploring Local Community Structures in Large Networks. In Proceedings of the 2006 IEEE/WIC/ACM international Conference on Web intelligence (December, 2006). Web Intelligence. IEEE Computer Society, Washington, DC, 233-239, 2006.

# evaluation

- How to quantify how well a given method detects communities that exist in a graph
  - > Synthetic graph with known (generated) community structure.
  - > Small real-world graphs with known community structure.
  - > Large graphs and subjective discussion/evaluation of results.
  - > Deployment of community structure in some task (e.g. tag recommendation) and evaluation of results comparing the performance against a community structure produced by a baseline/state-of-the-art method or against a solution that does not leverage community structure.
- Computational complexity
- Memory requirements

## compare to ground truth

- Fraction of correctly assigned nodes
  - > not always well-defined, e.g. in the case where two community structures have different numbers of communities
- Normalized Mutual Information (NMI)

$$NMI(A,B) = \frac{-2\sum_{i=1}^{c_A}\sum_{j=1}^{c_B}N_{ij}log\left(\frac{N_{ij}N}{N_{i.}N_{.j}}\right)}{\sum_{i=1}^{c_A}N_{i.}log\left(\frac{N_{i.}}{N}\right) + \sum_{j=1}^{c_B}N_{.j}log\left(\frac{N_{.j}}{N}\right)}$$

- > **N***ij*: confusion matrix
- > Ni: sum over elements of row i
- > cA, CB: number of communities in "true" and "detected" community structure

# synthetic graphs

- The simplest synthetic test:
  - > A graph of 128 nodes split in 4 communities of 32 members. All nodes have the same degree. Inter-community edges are randomly placed (parameter z<sub>out</sub>).

M. E. J. Newman, M. Girvan. Finding and evaluating community structure in networks. Physical Review E, 69:026113, 2004.



# synthetic graphs

# 2

- The previous synthetic test is very simple. → Most algorithms do good.
  - > Harder test in which the community sizes and node degrees follow a power law distribution.

A. Lancichinetti, S. Fortunato, J. Kertész. Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 2009



# small real-world graphs

- Zachary karate club
- American football teams
- Dolphin social network
- Researchers & conferences (DBLP)





# evaluation in the context of task

- We exploit community structure detected by a given algorithm for some information retrieval task, e.g. tag recommendation.
- We compare between the following:
  - one using the community structure produced by a reference method (baseline)
  - > one using the community structure detected by our method
- We collect usage data (e.g. tagging activities) that are publicly available through a web service (e.g. flickr).
- We hold a portion of the data for training (community detection) and the rest we use as ground truth.
- We compare between the two methods by means of information retrieval measures (precision, recall).

# performance evaluation - theoretical

| Method                                                                                                                                                                    | Complex-A                                                     | Complex-B                                              | Scale                                                                             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Cohesive substructure detection                                                                                                                                           |                                                               |                                                        |                                                                                   |  |  |  |
| Bron-Kerbosch [15]<br>k-core detection (Batagelj and Zaversnik [10])<br>SCAN (Xu et al. [110])                                                                            | $\begin{array}{c} O(3^{n/3}) \\ O(n^2) \\ O(n^2) \end{array}$ | $O(3^{n/3})$ $O(n)$ $O(n)$                             | S<br>L<br>L                                                                       |  |  |  |
| Vertex clustering                                                                                                                                                         |                                                               |                                                        |                                                                                   |  |  |  |
| embedding in space + k-means<br>Walktrap (Pons and Latapy [85])<br>Donetti-Munoz [29]                                                                                     | $O(C n^2) O(n^4) O(C n^2)$                                    | $O(C n^2) O(n^2 \log n) O(C n^2)$                      | M<br>M<br>M                                                                       |  |  |  |
| Community quality optimization                                                                                                                                            |                                                               |                                                        |                                                                                   |  |  |  |
| Clauset-Newman-Moore [23]<br>Extremal optimization (Arenas et al. [4])<br>Spectral optimization (Newman [77])<br>Community folding (Blondel et al. [12])                  | $O(n^2 d \log n)$ $O(n^2 \log n)$ $O(n^3 d)$ $O(n^2)$         | $O(n \log^2 n)$ $O(n^2 \log n)$ $O(n^2 \log n)$ $O(n)$ | $egin{array}{c} \mathbf{M} \ \mathbf{M} \ \mathbf{M} \ \mathbf{L} \end{array}$    |  |  |  |
| Divisive                                                                                                                                                                  |                                                               |                                                        |                                                                                   |  |  |  |
| Girvan-Newman [43]<br>Information centrality (Fortunato et al. [35])<br>Edge clustering coefficient (Radicchi et al. [88])<br>Max flow + Gomory-Hu tree (Ino et al. [49]) | $O(n^5)$ $O(n^7)$ $O(n^6)$ $O(n^4 \log n)$                    | $O(n^3)$ $O(n^4)$ $O(n^2)$ $O(n^3 \log n)$             | S<br>S<br>M<br>S                                                                  |  |  |  |
| Model-based                                                                                                                                                               |                                                               |                                                        |                                                                                   |  |  |  |
| MCL (Van Dongen [30])<br>Minimum encoding cost (Chakrabarti [18])<br>Label propagation (Raghavan [89], Leung [62])<br>Infomap (Rosvall and Bergstrom [92])                | $O(n^3)$ $O(n^2)$ $O(n^2)$ $O(n^2 \log n)$                    | $O(n^3) O(n) O(n) O(n \log n)$                         | $egin{array}{c} \mathbf{M} \\ \mathbf{L} \\ \mathbf{L} \\ \mathbf{L} \end{array}$ |  |  |  |

S. Papadopoulos, Y. Kompatsiaris, A. Vakali, P. Spyridonos. "Community detection in Social Media". In Data Mining and Knowledge Discovery, Springer (accepted 2011) 51



### LOUVAIN

Modularity maximization with the use of heuristics and community folding.

V. D. Blondel, J. Guillaume, R. Lambiotte and E. Lefebvre: Fast unfolding of communities in large networks, J. Stat. Mech., 2008.

#### CNM

Modularity maximization using max-heaps and hierarchical merging.

A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks. Phys. Rev. E70 (6), 066111, 2004.

### INFOMAP

Description compression (Huffman code) of information flow in the graph. M. Rosvall, C. T. Bergstrom. Maps of information flow reveal community structure in complex networks. PNAS 105, 1118, 2008

### WALKTRAP

Similarity computation between nodes using random walks. P. Pons, M. Latapy. Computing communities in large networks using random walks. arXiv:physics/0512106, 2005



LPROP

Label propagation process.

U. N. Raghavan, R. Albert, S. Kumara. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)

### LDEIGEN

Use spectrum of modularity matrix.

M. Newman. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)

### MCL

Markov Cluster algorithm: Use of "special" operations on adjacency matrix. S. van Dongen. A cluster algorithm for graphs. Technical Report INS-R0010, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000

### SPIN

Use models from statistical mechanics on the graph.

J. Reichardt, S. Bornholdt. Statistical mechanics of community detection. Phys. Rev. E 74, 016110, 2006

### execution time



### community structure precision (NMI)









### memory consumption





Citation networks, Social Tagging, Photo Clustering and POI Recommendation

# APPLICATIONS







## ITI citation network





# ITI author communities

- Petrou
- Strintzis Grammalidis Malassiotis
- Tzovaras Moustakas (not incl. some team members)
   > Darlagiannis + ex-colleagues
- Kompatsiaris Mezaris (not incl. some team members)
  - > Dasiopoulou + semantic web community (Staab et al.)
  - > S.Papadopoulos, Zigkolis + AUTH community (Vakali et al.)
  - > Tsampoulatidis
- Daras

# tag clustering

- In a social tagging system (delicious, flickr, BibSonomy), users annotate resources (articles, photos, citations) with tags.
- Using tag co-occurrence in the context of resources, we can create **tag graphs**.
- We can then apply community detection methods on such graphs.
- The extracted communities usually correspond to topics that are of interest to the tagging system under study.

# tag clustering - example 1

Topic of interest detection by means of local community detection on tag graphs (Lycos IQ, questions & answers).



S. Papadopoulos, A. Skusa, A. Vakali, Y. Kompatsiaris, N. Wagner. "Bridge Bounding: A Local Approach for Efficient Community Discovery in Complex Networks." In arXiv:0902.0871.

# tag clustering - example 2

| (a) Basic folksonomy statistics |                     |                 |        |                |         |                 |              |           |            |        |
|---------------------------------|---------------------|-----------------|--------|----------------|---------|-----------------|--------------|-----------|------------|--------|
| Dataset                         | #triplets           | U               |        | R T            |         | _               |              |           |            |        |
| BIBSONOMY-200K                  | 234,403             | 1,185           |        | 34,119         | 12,216  |                 |              |           |            |        |
| FLICKR-1M                       | 927,473             | 5,463           |        | 23,585         | 27,969  |                 |              |           |            |        |
| DELICIOUS-7M                    | 7,501,032           | 112,950 1,3     |        | 332,796        | 251,352 |                 |              |           |            |        |
| (b) Ta                          | ag graph statistics | (for large      | compor | nent)          |         | _               |              |           |            |        |
| Dataset                         | V                   | E               |        | $\overline{k}$ | cc      | 2-1             | lM           | DEI       | LICIOUS    | 8-7M   |
| BIBSONOMY-200K                  | 11.949              | 236.791         |        | 39.63          | 0.66    | 89 N            | HGC          | CNM       | SCAN       | HGC    |
| FLICKB-1M                       | 27.521              | 693,412         |        | 50.39          | 0.85    | 12 <sup>5</sup> |              |           | $56,\!893$ |        |
| DELICIOUS-7M                    | 216.844             | 3.443.367       | 7      | 31.76          | 0.80    | 18 3            | 49,851       | 56,166    | $13,\!974$ | 33,107 |
|                                 |                     | 3,113,337 01110 |        | 0.000          | .9      | $11,\!454$      | 1,022        | $3,\!624$ | 6,258      |        |
|                                 | $U_{TP}$            | 189             | 717    | 837            | 305     | 1,399           | 1,666        | 459       | 1,506      | 2,628  |
|                                 | P (%)               | 1.81            | 22.59  | 11.90          | 3.73    | 46.38           | 22.98        | 1.82      | $25,\!93$  | 18.90  |
|                                 | R (%)               | 1.79            | 7.36   | 9.24           | 3.71    | 18.65           | <b>20.50</b> | 1.80      | 6.37       | 11.00  |
|                                 | F (%)               | 1.80            | 11.10  | 10.40          | 3.72    | 26.60           | 21.67        | 1.81      | 10.23      | 13.91  |
|                                 | P@1 (%)             | 1.68            | 3.96   | 5.09           | 1.95    | 8.02            | 9.85         | 1.64      | 2.78       | 7.95   |
|                                 | P@5~(%)             | 2.18            | 29.06  | 17.27          | 3.41    | <b>46.84</b>    | 21.27        | 2.35      | 36.91      | 29.49  |

S. Papadopoulos, Y. Kompatsiaris, A. Vakali. "Leveraging Collective Intelligence through Community Detection in Tag Networks." In Proceedings of CKCaR'09 Workshop on Collective Knowledge Capturing and Representation, Redondo Beach, California, USA (September 1, 2009)

S. Papadopoulos, Y. Kompatsiaris, A. Vakali. "A Graph-based Clustering Scheme for Identifying Related Tags in Folksonomies." In Proceedings of DaWaK'10, 12th International Conference on Data Warehousing and Knowledge discovery (Bilbao, Spain), Springer-Verlag, 65-76

# tag disambiguation

#### tag co-occurrence graph

overlapping community detection

senses

S. Papadopoulos, A. Vakali, Y. Kompatsiaris. "Community Detection in Collaborative Tagging Systems." In Book Community-built Database: Research and Development, Springer (2011)

|                         | networks (BIBSONOMY-200K)                                                                                                       |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Network analysis        | socialanalysis, socialdynamics, sociophysics, autocorrelation, swarm, percolation, selforg, fitnesslandscapes, socialstructure, |
| Epidemic spread         | large, spreading, enidtl, kcore, dtl, pysics, epidemic, gda, vespignani, networks, delivery, pastorsatorras                     |
| Bibliometrics           | citation, reputation, publication, bibliometrics, academics, impact,                                                            |
| VoIP networks           | voip, phone, skype, telephony, jajah, vonage, internettelephony,                                                                |
| Security                | proxy, encryption, wlan, password, openssl, cracker, https, wep,                                                                |
|                         | bridge (FLCIKR-1M)                                                                                                              |
| Bac de Roda             | bacderoda, puente de calatrava, bru, puente luminoso, structural,                                                               |
| Bridge of Sighs (Bisbe) | carrer del bisbe, bridge of sighs, footbridge, cobblestone, bascule,                                                            |
| Port bridge             | port, puerto, sea, port vell, ship, boat                                                                                        |
| Pont del Centenari      | transporte, pont, montserrat, new                                                                                               |
|                         | bean (DELICIOUS-7M)                                                                                                             |
| Plant seeds             | lentils, blackbean, greenbean, kidneybeans, hummus, chickpeas,                                                                  |
| Coffee beans            | grown, arabica, robusta, pricey, coffea, wholesaler                                                                             |
| Bean bag                | toffet, velveteen, crushed, swirl, tuffet, herbagreeen, swirled                                                                 |
| Java beans              | spring, hibernate, jsf, ejb                                                                                                     |
| Travis Bean             | guitars, fender, musicstuff, giger, telecaster, strat, stratocaster,                                                            |
| Frances Bean Cobain     | courtneylove, cobain, francesbean, lindacarroll, thevoid, girlgerms,                                                            |

# Flickr photo clustering

casa mila, la pedrera

### tag similarity

#### co-occurrence

latent semantic indexing

S. Papadopoulos, C. Zigkolis, G. Tolias, Y. Kalantidis, P. Mylonas, Y. Kompatsiaris, A. Vakali. "Image Clustering through Community Detection on Hybrid Image Similarity Graphs." In Proceedings of ICIP 2010, International Conference on Image Processing (Hong Kong), IEEE, pp. 2353-2356

SURF

### visual similarity

# landmark & event detection





S. Papadopoulos, C. Zigkolis, Y. Kompatsiaris, A. Vakali. "Cluster-based Landmark and Event Detection on Tagged Photo Collections." In IEEE Multimedia Magazine 18(1), pp. 52-63, 2011

# landmark & event detection

Image: Segrada familia, cathedral, catholic15.2mImage: Segrada familia, cathedral, catholic15.2mImage: Segrada familia, cathedral, catholic31.8mImage: Segrada familia, cathedral, catholic31.8mImage: Segrada familia, cathedral, catholic9.6m



camp nou, fc barcelona, nou camp

18.7m



# landmark & event detection





#### music, concert, gigs, dj 43.1%



#### conference, presentation 6.5%



local traditional, parades 4.6%



# cluster-based city exploration



analysis and clustering of user contributed photos." In Proceedings of the 1st Acivi international conference on Multimedia Retrieval (ICMR '11). ACM, New York, NY, USA, , Article 65, 2 pages.
## **POI recommendation**



M. Janik, S. Papadopoulos, B. Sigurbjornsson. "D3.3 Mass Classification and Clustering." Technical report, WeKnowlt project, 2010.

## conclusions

• Network:

an omni-present model of relational structure

• Community detection:

a valuable tool for understanding structure in massive networks

- Applications:
  - > Classic social networks analysis (e.g. citation graph)
  - > Multimedia clustering and mining
- Challenges
  - > scalability, dynamic networks
  - > interpretation of results, evaluation

## questions

