From Computer to Robotic Vision: just a step or a leap forward?

Computer Vision and Active Perception Lab. Centre for Autonomous Systems

KTH - Royal Institute of Technology Stockholm, Sweden

30 May 2012 - Thessaloniki, Greece Information Technologies Institute - Centre of Research and Technology Hellas

OUTLINE

- what's the difference?
- from computers to Robots
 - goals / priorities / challenges / adaptation
- new possibilities
 - active perception
 - cognitive Vision/Robotics
- some thoughts

what's the difference?

robot vision as the "daughter" of computer vision

• younger

- "simple" methods
- "simple" problems
- happy with "small" achievements
- still not sure how to use its capacities

CV RV

from computers to Robots

+

robot + vision

robot + vision

- categorization
- recognition
- navigation
- manipulation

SPARTAN

SPAring Robotics Technologies for Autonomous Navigation

SPACE EXPLORATION

- Stereo Vision
- Visual Odometry
- 3D reconstruction

Visual Odometry

PRIORITIES

- real-time
- robustness
- reliability

 employing bio-inspired & perceptual organization rules in stereo depth estimation

- Circular support region
- Adaptipe support weights aggregation (Gestalt laws of proximity, similarity, and continuity)

$$distance(x', y')|_{x,y} = \sqrt{(x - x')^2 - (y - y')^2}$$
$$dissimilarity(x', y')|_{x,y} = \frac{1}{3} \sum_{c \in R, G, B} |I_c(x, y) - I_c(x', y')|$$
$$discontinuity(x', y', d)|_{x,y,d} = \frac{AD(x', y', d)}{\max(AD)}$$

 Logarithmic response to stimuli (Weber-Fechner law)

 $w_{dist}(x', y', d)|_{x,y,d} = -k_1 \ln (distance(x', y', d)|_{x,y,d})$

 $w_{dissim}(x',y',d)|_{x,y,d} = -k_2 \ln\left(dissimilarity(x',y',d)|_{x,y,d}\right)$

 $w_{discon}(x', y', d)|_{x,y,d} = -k_3 \ln\left(discontinuity(x', y', d)|_{x,y,d}\right)$

	nonocc		all		disc	
	error	variation	error	variation	error	variation
proposed	3.62		5.52		14.6	
no continuity	5.19	+43.37%	7.17	+29.89%	21.7	+48.63%
no log. response	8.89	+145.58%	10.5	+90.22%	36.1	+147.26%
no circ. window	3.79	+4.70%	5.62	+1.81%	15.8	+8.22%

 using 2D histograms of depth images to detect "dominant" planes and "obstacles"

CHALLENGES

- simplicity of calculations
- non-ideal lighting
- de-calibrated input

Dealing with non-Ideal Lighting

Dealing with non-Ideal Lighting Luminosity-Compensating Dissimilarity Measure

Definition of LCDM in the HSL color space

$$\mathbf{P}_k = S_k e^{iH_k}$$

$$LCDM_{P_1,P_2} = |\mathbf{P}_1 - \mathbf{P}_2|$$

= $|S_1 e^{iH_1} - S_2 e^{iH_2}|$
= $\sqrt{S_1^2 + S_2^2 - 2S_1 S_2 \cos(H_1 - H_2)}$

Dealing with non-Ideal Lighting LCDM-based Algorithm

Vetenskapsrådet

our DAM robot: moves & manipulates

Theta-disparity

- radial arrangement of objects
- basic attention mechanism
- common treatment of
 - object detection
 - obstacle avoidance

(a) A synthetic source of the considered sources

(b) View of the Kineet sensor

(b)

...

new possibilities

a seeing system/robot uses Vision to control its Motions (Perception precedes Action)

KTH head "Charlie" in 90's

ACTIVE VISION

Object Segmentation

- Taking time into account
- Agent moving in the scene
- Multiple observations improve/ simplify the segmentation
- Object segmentation by active perception

Object Segmentation

Object Segmentation

Sensorimotor Contingency theory O'Regan & Noe, 2001

- Philosophers
- Psychologists
- Neurophysiologists
- Pathophysiologists
- Neuroscientists
- Roboticists

Beyond **perception**, complex aspects of **cognition** are grounded in sensorimotor interactions "'Red" is knowing the structure of the changes that "red" causes.

e.g.

a system can only truly understand what a sponge is if it can experience the sponginess by squeezing the object and observing the sensory consequences. Having this understanding allows the system to grasp and use the sponge correctly

> O'Regan and Noë, "A sensorimotor account of vision and visual consciousness", Behavioral and Brain Sciences, vol. 24, no. 5, pp. 939-1031, 2001.

- constant self-calibration
- tolerance to changes/damages/failures
- adaption to a dynamic & ambiguous environments

some thoughts

- the transition from Computer to Robot Vision most importantly involves a body - embodiment
- Al seems to need both mind & body (just like humans!!)
- abstraction is required for "Scene Understanding" (pixels, features, patches, histograms...)
- robots (seeing ones!!) can help
 understand how cognition emerges!!!

- autonomous robots are not mature enough
- learning methods difficult to scale-up to real-world
- "Give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime."
 > a cognitive system requires rules rather than facts

Thank you very much!!

Lazaros Nalpantidis

web: www.csc.kth.se/~lanalpa
email: lanalpa@kth.se