Logic-based Argumentation Systems: An overview

Vasiliki Efstathiou

ITI - CERTH

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Table of Contents

- Introduction
 - Argumentation as a cognitive process
 - Motivation for automating
- Overview on some Computational Argumentation Frameworks
 - Abstract argumentation
 - Assumption-based argumentation
 - Argumentation based on defeasible logic
 - Argumentation based on classical logic
- Applications and Research topics

< A > < E

- Humans use argumentation in their daily life in order to evaluate information when trying to make some decision
 - Which film should I watch tonight?
 - What are the pros and cons of becoming an architect when I grow up?
- Or in order to present information and support an opinion
 - You should watch 'The Artist' because it won the best picture award
 - If you become an architect you will have a creative job

< A > < > > <

Argument definition

 'A reason or set of reasons given in support of an idea, action or theory' ^a

^aThe Oxford Dictionary of English

^bInternet Encyclopaedia of Philosophy http://www.iep.utm.edu

Argument definition

- 'A reason or set of reasons given in support of an idea, action or theory' ^a
- 'An exchange of diverging or opposite views' ^a

^bInternet Encyclopaedia of Philosophy http://www.iep.utm.edu

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

^aThe Oxford Dictionary of English

Argument definition

- 'A reason or set of reasons given in support of an idea, action or theory' ^a
- 'An exchange of diverging or opposite views' ^a
- 'The statement a person makes in the attempt to convince someone of something, or present reasons for accepting a given conclusion'^b

^bInternet Encyclopaedia of Philosophy http://www.iep.utm.edu

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

^aThe Oxford Dictionary of English

- 'A reason or set of reasons given in support of an idea, action or theory'
 - Evaluate information for decision support

4 A N

- 'A reason or set of reasons given in support of an idea, action or theory'
 - Evaluate information for decision support
- 'An exchange of diverging or opposite views'
 - Debate

- 'A reason or set of reasons given in support of an idea, action or theory'
 - Evaluate information for decision support
- 'An exchange of diverging or opposite views'
 - Debate
- 'The statement a person makes in the attempt to convince someone of something, or present reasons for accepting a given conclusion'
 - Persuasion

Types of Argumentation

- Monological argumentation for individual analysis or presentation of information e.g. a political speech before the elections
- **Dialogical argumentation** for exchange of information between agents e.g. a debate between the leaders of two political parties before the elections

- Typically we start with an argument that supports a case of interest, then counter arguments to this argument are presented, counter-counter arguments and so on
- We can analyze series of arguments and counter arguments in order to draw conclusions
- Some arguments are refutable while some other are winning

Is the use of CCTV for surveillance good for the citizens?

A (10) A (10)

- Is the use of CCTV for surveillance good for the citizens?
 - CCTV surveillance provides security and security is good for the citizens, therefore CCTV surveillance is good for the citizens

Is the use of CCTV for surveillance good for the citizens?

- CCTV surveillance provides security and security is good for the citizens, therefore CCTV surveillance is good for the citizens
- CCTV surveillance invades privacy and privacy invasion is not good for the citizens therefore CCTV surveillance is not good for the citizens

Is the use of CCTV for surveillance good for the citizens?

- CCTV surveillance provides security and security is good for the citizens, therefore CCTV surveillance is good for the citizens
- CCTV surveillance invades privacy and privacy invasion is not good for the citizens therefore CCTV surveillance is not good for the citizens
- Security is more vital than privacy therefore CCTV surveillance is good for the citizens

• .

Why would we need to automate argumentation?

- It simulates human reasoning when dealing with conflicting information
- It provides a way of handling uncertainty
- Useful for decision support systems

4 A N

Modelling Argumentation

- Define structures that represent arguments
- Formalize counter argument relations between arguments
- Define formal criteria for comparing arguments and identify which are the winning ones
- Automate all the above

Modelling Argumentation

- Various formalisations exist for modelling argumentation.
- Based on different theories (e.g. classical logic/graphs based approaches)
- They vary in terms of expressivity, the way they define attack relations and evaluation criteria

Abstract argumentation is a simple, yet illustrative way for formalising the mechanism of argumentation. ¹

¹ P. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. *Artificial Intelligence*, 77:321–357, 1995.

Abstract argumentation is a simple, yet illustrative way for formalising the mechanism of argumentation.¹

Arguments are depicted as nodes in a directed graph (A,→)

 ¹ P. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and

 n-person games. Artificial Intelligence, 77:321–357, 1995.

 <</td>
 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 >

 <

Abstract argumentation is a simple, yet illustrative way for formalising the mechanism of argumentation. ¹

- Arguments are depicted as nodes in a directed graph
- Arcs linking pairs of nodes denote the attack relation between the nodes of the pair

¹ P. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. *Artificial Intelligence*, 77:321–357, 1995.

Evaluation of information

- Apart from the binary attack relation between pairs of nodes in (A,→), further relations are defined according to the interrelated attacks in the graph
- More composite notions provide the means for analysing the overall information depicted in the graph

For instance, a set of arguments S ⊆ A is said to defend an argument B ∈ A iff for each argument B' ∈ A, if B' attacks B then each of the elements of S attacks B'.

² further examples and a comprehensive review in Ph. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008, O

- For instance, a set of arguments S ⊆ A is said to defend an argument B ∈ A iff for each argument B' ∈ A, if B' attacks B then each of the elements of S attacks B'.
- e.g. $\{A_1, A_3\}$ defends A_3^2

² further examples and a comprehensive review in Ph. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008, O

Summary

- A simple structual way for representing binary attack relations in a given set of arguments
- Further definitions for an overall evaluation of a situation
- No method for deducing individual arguments from some knowledgebase
- Limited expressivity

Implementation

A java-based implementation of Abstract argumentation ^a can be found at http://www.argkit.org

^aM. South, G. Vreeswijk, and J. Fox. Dungine: a java dung reasoner. In *Proceeding of the 2008 conference on Computational Models of Argument*, pages 360–368, Amsterdam, The Netherlands, The Netherlands, 2008. IOS Press.

Assumption-based argumentation ^{*a b*} is a more expressive formalism for modelling argumentation.

- An instantiation of Abstract argumentation
- It is based on logic and incorporates deduction
- Allows generating arguments from assumptions (facts) and rules

^bP. M. Dung, R. Kowalski, and F. Toni. Dialectical proof procedures for assumption-based admissible

argumentation. Artificial Intelligence, 170:114-159, 2006.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

^a A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-theoretic approach to default reasoning. *Artificial Intelligence*, 93(1-2):63 – 101, 1997.

Definition (Assumption-based argumentation framework)

An assumption-based argumentation (ABA) framework is a tuple $\langle L, R, A, \overline{\bullet} \rangle$ such that

- *R* is a set of rules of the form $s_1 \leftarrow s_2, ..., s_n$ each s_i is a sentence
- $A \subseteq L$ is a set of assumptions (i.e. literals assumed to hold)
- An assumption cannot be the head of any rule
- ā is the contrary of assumption a

Definition (Argument in an ABA framework)

- In an Assumption-based argumentation framework, an argument is a deduction supported by a set of assumptions and obtained along with the rules available.
- An argument *B* attacks another argument *B*' if the conclusion of *B* is the contrary of one of the assumptions supporting *B*'.

Assumption-based argumentation

' An argument B attacks another argument B' if the conclusion of B is the contrary of one of the assumptions supporting B'. '

Summary

- A logic-based formalisation for argumentation
- Provides methods for constructing arguments for a given knowledge by deductive inference
- More detailed and expressive knowledge representation
- Still, restricted language syntax and proof theory compared to classical logic

Implementation

A Prolog-based implementation of Assumption-based argumentation exists ^a http://www.doc.ic.ac.uk/~dg00/casapi.html

^aD. Gaertner and F. Toni. Casapi: a system for credulous and sceptical argumentation. In *Proc. Workshop on* Argumentation for Non-monotonic Reasoning. (2007), pages 80–95, 2007.

Defeasible logic ^a incorporates two kinds of rules

- defeasible rules: they represent weak information (notation: ≺)
- strict rules: they represent sound information (notation: ←)

イロト イ理ト イヨト イヨト

Defeasible logic ^a incorporates two kinds of rules

- defeasible rules: they represent weak information (notation: ≺)
- **strict rules:** they represent sound information (notation: ←)

'Defeasible rules can be regarded as tentative information that can be used as long as nothing could be posed against it'

Defeasible logic ^a incorporates two kinds of rules

- defeasible rules: they represent weak information (notation: ≺)
- strict rules: they represent sound information (notation: ←)

'Defeasible rules can be regarded as tentative information that can be used as long as nothing could be posed against it' $flies(x) \prec bird(x)$

Defeasible logic ^a incorporates two kinds of rules

- defeasible rules: they represent weak information (notation: ≺)
- strict rules: they represent sound information (notation: ←)

'Defeasible rules can be regarded as tentative information that can be used as long as nothing could be posed against it' $flies(x) \prec bird(x)$, bird(tweety)
Defeasible logic ^a incorporates two kinds of rules

- defeasible rules: they represent weak information (notation: ≺)
- strict rules: they represent sound information (notation: ←)

 $\begin{array}{ll} \text{`Defeasible rules can be regarded as tentative information that can be used} \\ \text{as long as nothing could be posed against it'} \\ & \textit{flies}(x) \prec \textit{bird}(x), \textit{bird}(\textit{tweety}) & \textit{flies}(\textit{tweety}) \end{array}$

Defeasible logic ^a incorporates two kinds of rules

- defeasible rules: they represent weak information (notation: ≺)
- strict rules: they represent sound information (notation: ←)

'Defeasible rules can be regarded as tentative information that can be used as long as nothing could be posed against it'

 $flies(x) \prec bird(x)$, bird(tweety)

flies(tweety)

but tweety is a penguin ...

Defeasible logic ^a incorporates two kinds of rules

- defeasible rules: they represent weak information (notation: ≺)
- strict rules: they represent sound information (notation: ←)

'Defeasible rules can be regarded as tentative information that can be used as long as nothing could be posed against it'

 $flies(x) \prec bird(x)$, bird(tweety)

flies(tweety)

イロト イヨト イヨト イヨト

but tweety is a penguin ...

 $bird(x) \leftarrow penguin(x)$

 \sim flies(x) \leftarrow penguin(x)

The statement *flies(tweety)* cannot be used further as an assumption because it is inconsistent with this definite piece of information (*'Defeasibility'*)

^aD. Nute. *Defeasible logics*, volume 3: Nonmonotonic Reasoning and Uncertainty Reasoning. Oxford University Press, 1994

Definition (Defeasible logic Program (DeLP))

A Defeasible Logic Program ^a P = (Π, Δ)
 Π set of strict rules and facts (literals)
 Δ set of Defeasible rules.

- An Argument in a DeLP (Π, Δ) is a pair (A, h) such that h is a literal and A is a set of defeasible rules s.t. :
 - There exists a derivation of *h* from $\Pi \cup A$
 - I $\cup \mathcal{A}$ is a non-contradictory set
 - A is minimal: There exists no proper subset of A satisfying the above conditions

< < >> < <</p>

^aA. García and G. Simari. Defeasible logic programming: An argumentative approach. *Theory and Practice of Logic Programming*, 4(1):95–138, 2004.

Example

$$\Pi = \left\{ egin{array}{l} \textit{bird}(x) \leftarrow \textit{chicken}(x) \ \textit{chicken}(\textit{tina}) \ \textit{scared}(\textit{tina}) \end{array}
ight\}$$

$$\Delta = \begin{cases} flies(x) \prec bird(x) \\ \sim flies(x) \prec chicken(x) \\ flies(x) \prec chicken(x), scared(x) \end{cases}$$

One argument for \sim *flies*(*tina*):

 $\langle \{\sim flies(tina) \prec chicken(tina)\}, \sim flies(tina) \rangle$

Two arguments for *flies*(*tina*):

Example

$$\Pi = \left\{ \begin{array}{l} bird(x) \leftarrow chicken(x) \\ chicken(tina) \\ scared(tina) \end{array} \right\}$$
$$\Delta = \left\{ \begin{array}{l} flies(x) \prec bird(x) \\ \sim flies(x) \prec chicken(x) \\ flies(x) \prec chicken(x), scared(x) \end{array} \right\}$$

One argument for \sim *flies*(*tina*):

 $\langle \{\sim flies(tina) \prec chicken(tina)\}, \sim flies(tina) \rangle$

Two arguments for *flies*(*tina*):

Example

$$\Pi = \begin{cases} bird(x) \leftarrow chicken(x) \\ chicken(tina) \\ scared(tina) \end{cases}$$

$$\Delta = \begin{cases} flies(x) \prec bird(x) \\ \sim flies(x) \prec chicken(x) \\ flies(x) \prec chicken(x), scared(x) \end{cases}$$

One argument for \sim *flies*(*tina*):

 $\langle \{\sim flies(tina) \prec chicken(tina)\}, \sim flies(tina) \rangle$

Two arguments for *flies*(*tina*):

Example

$$\Pi = \begin{cases} bird(x) \leftarrow chicken(x) \\ chicken(tina) \\ scared(tina) \end{cases}$$

$$\Delta = \begin{cases} flies(x) \prec bird(x) \\ \sim flies(x) \prec chicken(x) \\ flies(x) \prec chicken(x), scared(x) \end{cases}$$

One argument for \sim *flies*(*tina*):

 $\langle \{\sim flies(tina) \prec chicken(tina)\}, \sim flies(tina) \rangle$

Two arguments for *flies*(*tina*):

Example (Who flies and who doesn't?)

 Although we have contradictory information inferred (*flies*(*tina*) and ~ *flies*(*tina*)) both the inferred literals are valid in the related DeLP. Both are consistent with the strict knowledge available

$$\Pi_{tina} = \left\{ egin{array}{l} \textit{bird}(x) \leftarrow \textit{chicken}(x) \ \textit{chicken}(tina) \ \textit{scared}(tina) \end{array}
ight\}$$

• The difference with tweety: *flies(tweety)* contradicts the set of the related strict rules.

$$\Pi_{tweety} = \begin{cases} bird(x) \leftarrow penguin(x) \\ \sim flies(x) \leftarrow penguin(x) \\ penguin(tweety) \end{cases}$$

Since we do not withdraw the information about tina's flying or non-flying status we use other ways for evaluating the situation

Attack between arguments

• $\langle A_1, h_1 \rangle$ attacks $\langle A_2, h_2 \rangle$ at literal *h* iff there exists a sub-argument $\langle A, h \rangle$ of $\langle A_2, h_2 \rangle$ such that $\Pi \cup \{h, h_1\}$ is a contradictory set.

Since we do not withdraw the information about tina's flying or non-flying status we use other ways for evaluating the situation

Attack between arguments

• $\langle A_1, h_1 \rangle$ attacks $\langle A_2, h_2 \rangle$ at literal *h* iff there exists a sub-argument $\langle A, h \rangle$ of $\langle A_2, h_2 \rangle$ such that $\Pi \cup \{h, h_1\}$ is a contradictory set.

Example

 $\langle \{ flies(tina) \prec bird(tina) \}, flies(tina) \rangle$ $\langle \{ \sim flies(tina) \prec chicken(tina) \}, \sim flies(tina) \rangle$ Both arguments attack each other (in this case the sub-argument is the argument itself)

イロト イ理ト イヨト イヨ

 In order to evaluate an argument A₁ we draw a tree with A₁ in its root, arguments that attack A₁ as its children, counter arguments to these at the next level and so on exhaustively.

Summary

- Another logic-based approach that provides mechanisms for deducing arguments
- Defeasible rules capture the way humans tend to make inferences through observations and withdraw some conclusions in the presence of new information
- Allows for priorities on rules to be defined
- Expressivity is limited compared to classical logic approaches

Implementation

A Prolog-based implementation of DeLP exists ^a

http://lidia.cs.uns.edu.ar/delp_client/index.php

^aA. García and G. Simari. Delp client.

- Classical logic is very expressive
- Detailed knowledge representation and inference mechanisms
- An approach introducing a sophisticated way for defining counter arguments ^{a b}

^aPh. Besnard and A.Hunter.Argumentation based on classical logic. Argumentation in Artificial Intelligence,

pages 133-152, 2009

^bPh. Besnard and A. Hunter. A logic-based theory of deductive arguments. *Artificial Intelligence*, 128:203–235,

2001.

Definition (Argument (Classical logic argumentation))

An **argument** (for α) is a pair $\langle \Phi, \alpha \rangle$ such that Φ is a set of formulas and α is a formula in classical logic s.t.^{*a*}

- Φ is consistent
- $\bigcirc \Phi \vdash \alpha$
- **③** there is no $\Phi' \subset \Phi$ such that $\Phi' \vdash \alpha$

A D N A B N A B N

^aPh. Besnard and A. Hunter. A logic-based theory of deductive arguments. *Artificial Intelligence*, 128:203–235, 2001.

finishHW(Rachel) → party(Rachel) If Rachel finishes her homework she'll go to the party rainsOutside → getUmbrella(Rachel) If it rains outside Rachel will get an umbrella finishHW(Rachel) Rachel finished her homework Rachel has an argument for going to the party {{finishHW(Rachel), finishHW(Rachel) → party(Rachel)}, party(Rachel)}

• □ ▶ • # # ▶ • = ▶ •

finishHW(Rachel) → party(Rachel) If Rachel finishes her homework she'll go to the party rainsOutside → getUmbrella(Rachel) If it rains outside Rachel will get an umbrella finishHW(Rachel) Rachel finished her homework Rachel has an argument for going to the party {{finishHW(Rachel), finishHW(Rachel) → party(Rachel)}, party(Rachel)}

Whether she'll get an umbrella or not is not of our interest - not included in our syllogism (minimality)

• • • • • • • • • • • •

Comparing arguments

- Some arguments are more general while others are more specific
- Some arguments may encompass others.
- A more conservative argument is more general: it is less demanding on the support and less specific about the consequent

Comparing arguments

- Some arguments are more general while others are more specific
- Some arguments may encompass others.
- A more conservative argument is more general: it is less demanding on the support and less specific about the consequent

Definition

An argument $\langle \Phi, \alpha \rangle$ is **more conservative** than an argument $\langle \Psi, \beta \rangle$ iff $\Phi \subseteq \Psi$ and $\beta \vdash \alpha$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Consider the following knowledge about who is going to the party. ^a

- party(Rachel) Rachel goes to the party
- party(Rachel) → ¬party(Paul) ∧ ¬party(Quincy)
 If Rachel goes to the party, neither Paul nor Quincy go

< 同 > < ∃ >

^aPh. Besnard and A.Hunter.Argumentation based on classical logic. *Argumentation in Artificial Intelligence*, pages 133–152, 2009

The following are arguments from the given knowledge

 $\langle \{ party(\textit{Rachel}), party(\textit{Rachel}) \rightarrow \neg party(\textit{Paul}) \land \neg party(\textit{Quincy}) \}, \neg party(\textit{Paul}) \rangle \rangle$

 $\langle \{ party(\textit{Rachel}), party(\textit{Rachel}) \rightarrow \neg party(\textit{Paul}) \land \neg party(\textit{Quincy}) \}, \neg party(\textit{Quincy}) \rangle \rangle$

The following are arguments from the given knowledge

 $\langle \{\textit{party}(\textit{Rachel}),\textit{party}(\textit{Rachel}) \rightarrow \neg\textit{party}(\textit{Paul}) \land \neg\textit{party}(\textit{Quincy}) \}, \neg\textit{party}(\textit{Paul}) \rangle$

 $\langle \{ party(Rachel), party(Rachel) \rightarrow \neg party(Paul) \land \neg party(Quincy) \}, \neg party(Quincy) \rangle \rangle$

This is a more conservative argument, encompassed in both $\langle \{party(Rachel), party(Rachel) \rightarrow \neg party(Paul) \land \neg party(Quincy) \},$ $\neg (party(Paul) \land party(Quincy)) \rangle$

So if we are told that the following hold:

party(Paul) party(Quincy)

which support the argument that both Paul and Quincy are going: $\langle \{party(Paul), party(Quincy)\}, party(Paul) \land party(Quincy) \rangle$

So if we are told that the following hold:

party(Paul) party(Quincy)

which support the argument that both Paul and Quincy are going: $\langle party(Paul), party(Quincy) \rangle$, party(Paul) $\wedge party(Quincy) \rangle$

1st counter argument:

 $\langle \{ party(Rachel), party(Rachel) \rightarrow \neg party(Paul) \land \neg party(Quincy) \}, \neg party(Paul) \rangle \rangle$

So if we are told that the following hold:

party(Paul) party(Quincy)

which support the argument that both Paul and Quincy are going: $\langle party(Paul), party(Quincy) \rangle$, party(Paul) $\wedge party(Quincy) \rangle$

1st counter argument:

 $\langle \{ party(\textit{Rachel}), party(\textit{Rachel}) \rightarrow \neg party(\textit{Paul}) \land \neg party(\textit{Quincy}) \}, \neg party(\textit{Paul}) \rangle \rangle$

2nd counter argument:

 $\langle \{ party(Rachel), party(Rachel) \rightarrow \neg party(Paul) \land \neg party(Quincy) \}, \neg party(Quincy) \rangle \rangle$

So if we are told that the following hold:

party(Paul) party(Quincy)

which support the argument that both Paul and Quincy are going: $\langle party(Paul), party(Quincy) \rangle$, party(Paul) $\wedge party(Quincy) \rangle$

1st counter argument:

 $\langle \{ party(\textit{Rachel}), party(\textit{Rachel}) \rightarrow \neg party(\textit{Paul}) \land \neg party(\textit{Quincy}) \}, \neg party(\textit{Paul}) \rangle \rangle$

2nd counter argument:

 $\langle \{party(Rachel), party(Rachel) \rightarrow \neg party(Paul) \land \neg party(Quincy) \}, \neg party(Quincy) \rangle$ 3rd counter argument:

 $\{ (party(Rachel), party(Rachel) \rightarrow \neg party(Paul) \land \neg party(Quincy) \}, \}$

 $egic{(party(Paul) \land party(Quincy))}{}$

イロト イ理ト イヨト イヨ

Argument trees

- We use the 'most conservative' counter arguments
- Counter arguments of this kind attack the set of assumptions of another argument altogether and not just one of its assumptions
 - $\langle \Psi, \alpha \rangle$ is a counter argument for $\langle \Phi, \beta \rangle$ when $\langle \Psi, \neg \bigwedge \Phi \rangle$ holds
- We draw trees with series of counter arguments

Argumentation based on classical logic

We mark nodes as *'undefeated'* or *'defeated'* recursively like in DeLP (but our nodes here are classical-logic 'conservative' arguments!)

Summary

- Powerful language, simple and intuitive syntax and semantics
- Well established proof theory and extensive foundational results
- Concise representation of the most meaningful counter arguments
- Propositional and First-Order logic (hence also fragments of FO logic, Modal logic, Description logics ...)
- Expressivity vs complexity

Implementation

A java-based implementation of argumentation based on classical propositional logic exists ^a

http://www.ing.unibs.it/comma2010/demos/Efstathiou_etal.pdf

^aV. Efstathiou and A.Hunter. JArgue: An implemented argumentation system for classical propositional logic, COMMA 2010

Applications and Research topics

- e-democracy ³
- Medical decision support ^{4 5}
- Idea visualisation and sharing ^{6 7}
- Argument diagramming ⁸
- Multiagent negotiation ⁹
- Semantic Web ¹⁰
- Legal reasoning ¹¹

```
3
http://www.csc.liv.ac.uk/~parmenides/
```

⁴ N.Gorogiannis, A.Hunter and M.Williams. An argument-based approach to reasoning with clinical knowledge. International Journal of Approximate Reasoning: 51(1):1-22, 2009

⁹J. Fox, V. Patkar and R. Thomson. Decision support for health care: the PROforma evidence base. Informatics in Primary

Care, 14 : 49Ű54, 2006

```
6
http://debategraph.org
7
http://cohere.open.ac.uk/
8
http://araucaria.computing.dundee.ac.uk/doku.php
9
http://www.argugrid.eu
```

¹⁰I. Rahwan, B. Banihashemi, C. Reed, D. Walton and S. Abdallah. Representing and classifying arguments on the Semantic Web. The Knowledge Engineering Review, 26 : pp 487-511, 2011

11 H. Prakken and G. Sartor. Argument-based logic programming with defeasible priorities Journal of Applied Non-classical Logics, 7: 25-75, 1997)
Summary

- Argumentation is a cognitive process employed by humans when trying to make decisions; especially when dealing with conflicting information
- Computational argumentation can be used by decision support systems; particularly useful for conflict resolution
- Various frameworks have been proposed for modelling argumentation, based on different underlying logics
- Several theories extend these frameworks and a number of tools has been implemented to support the various applications of argumentation

Image: Image:

Still, many practical challenges to overcome

Too much information. We need to distinguinsh which is relevant to our case.

cloudy(outside) It is cloudy outside finishHW(Rachel) \rightarrow party(Rachel) If Rachel finishes her homework she'll go to the party $rain(outside) \rightarrow getUmbrella(Rachel)$ If it rains outside Rachel will get an umbrella likesIcecream(Rachel) Rachel likes ice cream sisters(Rachel, Anna) Rachel and Anna are sisters finishHW(Rachel) Rachel finished her homework

Missing information. A human would argue

'It is cloudy outside, Rachel should get an umbrella'

But the actual underlying reasoning is:

cloudy(outside) $cloudy(outside) \rightarrow rain(outside)$ $rain(outside) \rightarrow getUmbrella(Rachel)$

Computability issues to overcome

< 17 ▶