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• Scientists in many other disciplines had to deal with irregularly

sampled data for many years

• Several techniques have been developed for that

• Only one method was specifically developed for computer vision
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How can we do image processing when the data are not

regularly sampled?

• Interpolate the data so that they appear on a regular grid:
griding

Involves an extra step;
May introduce errors;
• Perform the operations directly on the available data
How?
� Some techniques of IP readily applicable to irregularly placed
data, eg
Co-occurrence matrices
Mathematical morphology
� BUT: linear IP is largely based on the use of a regular grid
convolution based
transform based
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INTERPOLATION OF IRREGULARLY SAMPLED DATA

• Kriging

• Iterative error correction

• Normalised convolution
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Kriging

In a nutshell:

Give to the missing points values that are weighted linear com-

binations of the values of the points you have.

Choose the weights so that the covariances of the data are pre-

served.

BLUE: Best Linear Unbiased Estimator

5



P1, P2, . . . , Pn: irregularly placed data points

m: their mean

σ2: their variance

V (Pi): random variable defined at points P1, P2, . . . , Pn.

Problem: Estimate the value of this variable at point P0.

Kriging estimation:

V̂ (P0) =
n∑
i=1

wi(P0)V (Pi) (1)

Residual error:

R(P0) ≡ V̂ (P0)− V (P0) (2)

Choose weights wi so that the variance of error R(P0) is min-

imised.
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Variance of the error function:

σ̃2
R =

n∑
i=1

n∑
j=1

wiwjC̃ij − 2
n∑
i=1

wiC̃i0 + σ̃2 (3)

where

C̃ij: covariance between random variables V (Pi) and V (Pj)

C̃i0: covariance between random variables Vi and V0.

From the given data work out the covariance matrix C̃

Choose weights so that the variance of the error is minimal,

subject to the condition

n∑
i=1

wi = 1 (4)

Use Lagrange Parameter optimisation.
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Minimise:

σ̃2
R =

n∑
i=1

n∑
j=1

wiwjC̃ij − 2
n∑
i=1

wiC̃i0 + σ̃2 + 2µ

 n∑
i=1

wi − 1


︸ ︷︷ ︸

0

(5)

where
µ is the Lagrange multiplier.
We have (n+ 1) unknowns now.
Differentiate (5), with respect to the (n+ 1) unknowns and set
these first partial derivatives to zero:

CW = D (6)

Solve for the weights:

W = C−1D (7)

where
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C =


C̃11 . . . C̃1n 1
· · · · · · · · · · · ·
C̃n1 . . . C̃nn 1
1 . . . 1 0


(n+1)×(n+1)

(8)

W =


w1
· · ·
wn
µ


(n+1)×1

(9)

D =


C̃10
· · ·
C̃n0
1


(n+1)×1

(10)
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Estimation of the covariance matrix of the data

This is done via the Variogram (or semi-variogram)

To reduce the effect of noise, we use a parametric model to fit

the variogram

10



Variogram definition

Semi-variogram: half the expected squared difference between
two data points separated by a distance vector h:

γ(h) ≡
1

2
E{[V (Pi)− V (Pi + h)]2} (11)

where
E: the expectation operator.
N(h): the total number of distinct pairs of data points Vi and
Vj, the positions of which are at a distance h from each other.
Then:

γ(h) =
1

2|N(h)|
∑

(i,j)|dij=h

(Vi − Vj)
2 (12)
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Relationship between the variogram and its corresponding

covariance

γ(h) = σ̃2 − C̃(h) (13)

where

σ̃2: the variance of the random variables.
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Three important parameters of the semi-variogram

•Nugget: For a very small value of the distance, it is expected

that the value of the semi-variogram will reach zero but if the

value of the variogram does not approach zero due to sampling

error or some other factors, then this nonzero value is known as

the nugget effect.

•Range:As the distance between the data points increases the

value of the semi-variogram also increases. After a certain point,

the increase in the distance does not have any effect on the value

of the variogram, i.e. after this particular distance the value of

the variogram becomes constant. This particular distance is

known as the Range.

•Sill: The maximum vertical height attained by the semi-variogram

at the range is known as the Sill.
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Variogram models

• Fractal model

γ̃(h) = γ0h
2H ⇒ log γ̃(h) = log γ0 + 2H logh (14)

The corresponding fractal covariance function

C̃(h) =

{
C0 + C1 if |h| = 0
C0 + C1 − γ0h

2H if |h| > 0
(15)

where C0 is the nugget effect, C0 + C1 is the sill.
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Example of variogram fitting with the fractal model.

Vertical dotted line: the distance up to which the model fits.
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• Exponential model

γ̃(h) =

 0 if |h| = 0

C0 + C1

(
1− exp

(
−|h|
a

))
if |h| > 0

(16)

The corresponding covariance function:

C̃(h) =

 C0 + C1 if |h| = 0

C1 exp
(
−|h|
a

)
if |h| > 0

(17)

where C0 is the nugget effect, C0 + C1 is the sill and a is the

range.
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• Spherical model

γ̃(h) =

{
C0 + C1 if |h| ≥ a

C0 + C1

(
1.5ha − 0.5(ha)

3
)

if |h| < a
(18)

The corresponding covariance function:

C̃(h) =

{
0 if |h| ≥ a

C1

(
1− 1.5ha + 0.5(ha)

3
)

if |h| < a
(19)

17



• Gaussian model

γ̃(h) = C0 + C1 − C1 exp

(
−|h|2

a2

)
(20)

• Linear model

γ̃(h) = C0 + C1
h

a
if |h| > 0 (21)
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(a) Original (b) Given data (c): Iter 1 (d): Iter 2

(e): Iter 3 (f): Iter 4 (g): Iter 5 (h): Iter 6

(i): Iter 7 (j): Iter 8 (k) : Iter 9
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Iterative error correction

Problem statement: Given a sequence of sampled values of

some unknown signal, design functions called frames such that

the internal product, indicated by < · >, of the unknown signal

with the frame functions is equal to the values of the signal at

the sampling points.

Theory of frames: under certain conditions it is possible to

determine frame functions from which a Frame Operator used

to reconstruct the signal from its samples in an iterative way.
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Difference from using basis functions of the function space to

cover the whole space and express any signal as a linear combi-

nation of them:

1) The coefs of the expansion in terms of basis functions are

unique; not so the expansion in terms of frames.

2) The number of frames is larger than the number of basis

functions (frames do not constitute an orthogonal basis).

21



In practice:

f : the function we wish to reconstruct;

A: a frame operator.

Set

f0 = Af (22)

and

fn+1 = fn +A(f − fn). (23)

For an appropriate A it can be shown that

lim
n→∞ fn = f, (24)

with the estimation error after n iterations being

||f − fn|| ≤ γn+1||f ||, (25)

where γ < 1 is a constant and || || is an appropriate norm
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Different methods according to the type of initial guess and op-
erator A:
• Wiley/Marvasti (WILMAR) method: initial guess is a triv-
ial interpolation, where all the unknown points are set equal to
zero.
• Adaptive Weights (ADW) method: the trivial interpolation
is weighted by some factors that reflect the distance of the ir-
regular samples from the neighbouring sampling points.
• Voronoi (VOR) method: uses the nearest neighbour inter-
polation.
• Piecewise-linear method: interpolation with a linear contin-
uous function defined between successive sampling points.
• Projection onto Convex Sets (POCS) method: operator
A not linear: the iterations are obtained by application of succes-
sive projections. A projection is equivalent to low pass filtering
in the Fourier domain. A projection, therefore, limits the band
of the signal.
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An example
f(x): the continuous signal;
f(n): set of N irregular samples, for n = 1, . . . , N .

Step 1: Use the Voronoi method to interpolate the samples
on a regular grid.
Step 2: Calculate the Fourier transform of the regularly re-
sampled signal.
Step 3: Discard the high frequencies.
Step 4: Calculate the inverse FT, to produce estimate f1.
Step 5: Calculate the error committed at the irregularly sam-
pled coordinates f(n)− f1(n), for n = 1, . . . , N .
Step 6: Interpolate the error using the Voronoi method
Step 7: Use the estimated error at each point to produce im-
proved estimate f2(n).
Go to step 2 and repeat.
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Convergence to the continuous signal is guaranteed if the maxi-

mal gap between two irregular samples is smaller than the Nyquist

limit.

Typically 20 iterations

Fastest algorithm: ADW
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Normalised Convolution

f(x, y): an image

g(x, y): a smoothing filter

(xs, ys), for s = 1, . . . , S: random positions for which the image

values are known.

c(x, y): the sampling mask:

c(x, y) =

{
1 if (x, y) = (xs, ys) for some s ∈ [1, S]
0 otherwise

(26)
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Step 1: Convolve f(x, y)c(x, y) with g(x, y):

C(x, y) ≡
(
f(x, y)c(x, y)

)
∗ g(x, y). (27)

Step 2: Convolve c(x, y) with g(x, y):

NC(x, y) ≡ c(x, y) ∗ g(x, y). (28)

Step 3: Divide the two results point by point:

f̃(x, y) =
C(x, y)

NC(x, y)
. (29)
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Use for g(x, y) a low pass filter, eg the integral of the Canny filter.

Proposed filter by Westin and Knutsson:

g(x, y) =

{
r−α cosβ( πr

2rmax
) if r < rmax

0 otherwise
, (30)

where:

r ≡
√
x2 + y2

α and β: some positive integers.
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Filter g(x, y) for α = 0, β = 2 and rmax = 8:

−10
−5

0
5

10

−10
−5

0
5

10
−1

−0.5

0

0.5

1

xy
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x,
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10% of the original number of pixels.
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An example

f(t) =
[
x1,0,0, x4, x5,0, x7,0

]
, (31)

xi: known samples, while the missing samples are zeros.

Sampling sequence:

c(t) =
[
1,0,0,1,1,0,1,0

]
(32)

Filter:

g(t) =
[
1

3
,
1

3
,
1

3

]
. (33)
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Step 1:

f(t) ∗ g(t) =
[
x1
3
,
x1
3
,
x4
3
,
x4 + x5

3
,
x4 + x5

3
,
x5 + x7

3
,
x7
3
,
x7 + x1

3

]
.

(34)

Step 2:

c(t) ∗ g(t) =
[
1

3
,
1

3
,
1

3
,
2

3
,
2

3
,
2

3
,
1

3
,
2

3

]
(35)

Step 3:

f̃(t) =
f(t) ∗ g(t)
c(t) ∗ g(t)

=
[
x1, x1, x4,

x4 + x5
2

,
x4 + x5

2
,
x5 + x7

2
, x7,

x7 + x1
2

]
.

(36)
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A numerical example:

The perfect signal:

f(t) = [1,2,3,4,4,1,1,1,2,4,5,4,3,2,1]. (37)

An irregular sampling of this signal:

fi(t) = [1,0,3,4,0,1,0,1,0,4,5,0,0,0,1], (38)

c(t) = [1,0,1,1,0,1,0,1,0,1,1,0,0,0,1]. (39)

Filter:

g(t) =
[
1

3
,
1

3
,
1

3

]
(40)
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• Error iterative correction produces better results than Nor-

malised Convolution.

BUT!

• Normalised convolution can cope with lower rates of sub-

sampling (bigger gaps).

• If I know how to do convolution with irregularly sampled im-

ages, I know how to do linear Image processing!!!

• Gradient detection: straightforward!
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This leads to the problem of estimating features directly from

the irregular samples!

Can we compute the Fourier transform from irregular samples?
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DFT OF IRREGULARLY SAMPLED DATA

Continuous FT:

P (ω) =
∫ +∞

−∞
p(x)e−jωxdx. (41)

Inverse Continuous FT:

p(x) =
1

2π

∫ +∞

−∞
P (ω)ejωxdω (42)
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From Continuous FT to DFT:

Function p(x) is sampled at N regular intervals equal to TS, to

produce samples pn, so that:

pn ≡ p(xn) where xn = nTS, for n = 0, . . . , N − 1

Total signal duration: T = NTS
The Fourier transform of pn is defined only at certain regularly

spaced frequencies:

function P (ω) is only for certain values ωm.

Samples P (ωm) are regularly spaced as well;

they are multiples of a dominant frequency 1
T :

ωm ≡ m

(
2π
T

)
, for m = 0, . . . , N − 1.
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P (ωm) ≡
N−1∑
n=0

p(xn)e
−jωmxn (43)

Or:

P (ωm) =
N−1∑
n=0

p(xn)e
−j
(
m2π

T

)(
nTS

)
=

N−1∑
n=0

p(xn)e
−j
(
m 2π
NTS

)(
nTS

)
(44)

Finally DFT:

P (m) =
N−1∑
n=0

p(n)e−j
2π
N mn (45)

Inverse DFT:

p(n) =
1

N

N−1∑
m=0

P (m)ej
2π
N mn (46)
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From DFT to Non-uniform Discrete Fourier Transform
(NDFT)

• Usually, we want to know the frequency content at regularly
placed frequency samples:

P (m) =
N−1∑
n=0

p(n)e−jm∆kxn (47)

Set ∆k = 2π
T where T is the range of extension of samples xn.

NDFT similar to DFT except for the presence of the spatial
coordinates xn instead of index n. So:

P (m) =
N−1∑
n=0

p(n)e−j
2π
T mxn (48)
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An example

A 1D continuous signal p(t), sampled at integer values of t:

[0,1,2,3,4,2,0,2,4,2,0,2,4,3,2,1,0] and the real part of its DFT.
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Reconstruction of the signal using N = 9, N = 8 and N = 6

regularly spaced samples:
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Use an irregular sampling pattern ti = [−8,−7,−4,−2,−1,1,5,6,8]

resulting in the sequence: pi(t) = [0,1,4,0,2,2,3,2,0].
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Reconstruction of the signal using the irregularly spaced samples:
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How can we do general Image Processing and Pattern

Recognition with irregularly sampled data?

There are alternative representations of the image information

that do not rely on the use of regular grids.

We do not need to use features that make perceptual sense!

They may make mathematical sense, or pattern recognition sense

instead!

We may use features that can do the job, just like the human

brain does it in the subconscious level.

Sub-conscious Image processing!
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The trace transform
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Features from the Trace transform

• Compute from the image a functional T along tracing lines

(φ, p).

Trace transform: ResultT (φ, p).

• Compute on ResultT (φ, p) a functional P for all values of p

Circus function: ResultP (φ).

• Compute on ResultP (φ) a functional Φ for all values of φ

Triple feature: A number that depends on the combination

TPΦ.
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T Functional

1
∑N

i=0 xi
2

∑N
i=0 ixi

3 2nd Central Moment/Sum of all values

4
√∑N

i=0 x
2
i

5 MaxNi=0xi
6

∑N−1
i=0 |xi+1 − xi|

7
∑N−1

i=0 |xi+1 − xi|2
8

∑N−3
i=3 |xi−3 + xi−2 + xi−1 − xi+1 − xi+2 − xi+3|

9
∑N−2

i=0 |xi−2 + xi−1 − xi+1 − xi+2|
10

∑N−4
i=4 |xi−4 + xi−3 + ...+ xi−1 − xi+1 − ...− xi+3 − xi+4|

11
∑N−5

i=5 |xi−5 + xi−4 + ...+ xi−1 − xi+1 − ...− xi+4 − xi+5|
12

∑N−6
i=6 |xi−6 + xi−5 + ...+ xi−1 − xi+1 − ...− xi+5 − xi+6|

13
∑N−7

i=7 |xi−7 + xi−6 + ...+ xi−1 − xi+1 − ...− xi+6 − xi+7|
14

∑N−4
i=4

∑4
k=0 |xi−k − xi+k|

15
∑N−5

i=5

∑5
k=0 |xi−k − xi+k|

16
∑N−6

i=6

∑6
k=0 |xi−k − xi+k|

17
∑N−7

i=7

∑7
k=0 |xi−k − xi+k|

18
∑N−10

i=10

∑10
k=0 |xi−k − xi+k|

19
∑N−15

i=15

∑15
k=0 |xi−k − xi+k|

20
∑N−20

i=20

∑20
k=0 |xi−k − xi+k|
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P Functional

1 MaxNi=0xi
2 MinNi=0xi

3
√∑N

i=0 x
2
i

4

∑N

i=0
ixi∑N

i=0
xi

5
∑N

i=0 ixi

6 1
N

∑N
i=0(xi − x)̂

2

7 c so that:
∑c

i=0 xi =
∑N

i=c xi
8

∑N−1
i=0 |xi+1 − xi|

9 c so that:
∑c

i=0 |xi+1 − xi| =
∑N−1

i=c |xi+1 − xi|
10

∑N−4
i=0 |xi − 4xi+1 + 6xi+2 − 4xi+3 + xi+4|
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Φ Functional

1
∑N−1

i=0 |xi+1 − xi|2
2

∑N−1
i=0 |xi+1 − xi|

3
√∑N

i=0 x
2
i

4
∑N

i=0 xi
5 MaxNi=0xi
6 MaxNi=0xi- MinNi=0xi
7 i so that xi = MinNi=0xi
8 i so that xi = MaxNi=0xi
9 i so that xi = MinNi=0xi without first harmonic
10 i so that xi = MaxNi=0xi without first harmonic
11 Amplitude of the first harmonic
12 Phase of the first harmonic
13 Amplitude of the second harmonic
14 Phase of the second harmonic
15 Amplitude of the third harmonic
16 Phase of the third harmonic
17 Amplitude of the fourth harmonic
18 Phase of the fourth harmonic
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• Use many functional combinations to produce thousands of

features

• Select the features that do the job you want

• Method has been demonstrated on texture recognition, moni-

toring the level of use of a car park, face recognition, etc
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Advantages:

• A tracing line can be made up from points that do not come

from a regular grid!

• Working with tracing lines allows us to escape from the need

of regular grids!

• In practice: We may use the Hough transform to identify which

sampling points form lines and use them in the trace transform.

• We may use the process to reverse engineer the human vision

system!
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Which features do the humans use to group textures in percep-

tual classes?

Make sure you do not bias the answer!!!

• Produce thousand of features

• Select those that rank textures the same way as human do

• Check whether these features will rank a totally new and dif-

ferent set of textures the same way as the humans.

• Thus form an opinion on which features the human brain might

use
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Combinations of functionals from the tables that produce the

same ranking of textures as humans.

T Functional P Functional Φ Functional∑N−1
i=0 |xi+1 − xi| MaxNi=0xi

∑N−1
i=0 |xi+1 − xi|2∑N−1

i=0 |xi+1 − xi| MinNi=0xi
∑N−1
i=0 |xi+1 − xi|2∑N−1

i=0 |xi+1 − xi| MinNi=0xi Amplitude of the
fourth harmonic∑N−1

i=0 |xi+1 − xi|
∑N
i=0 ixi

∑N−1
i=0 |xi+1 − xi|2∑N−4

i=4
∑4
k=0 |xi−k − xi+k|

∑N−4
i=0 |xi − 4xi+1 Amplitude of the

+6xi+2 − 4xi+3 + xi+4| second harmonic
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SALIENCY
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A model for V1

i

How it 
looks from
the side

Sensitivity in 16 orientations

Each layer:
a pair of neurons, 
one excitatory
and one inhibitory

How it looks from the top

(one per layer)

A hypercolumn of neurons at the same location    in V1 
=same receptive field
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dxiθ
dt

= −αxxiθ −
∑
∆θ

ψ(∆θ)gy(yi,θ+∆θ)

+J0gx(xiθ) +
∑

j 6=i,θ′
Jiθ,jθ′gx(xjθ′) + Iiθ + I0 (49)

dyiθ
dt

= −αyyiθ + gx(xiθ) +
∑

j 6=i,θ′
Wiθ,jθ′gx(xjθ′) + Ic (50)

where
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xiθ: the membrane potential of the excitatory cell;

yiθ: the membrane potential of the inhibitory cell;

αx: the time constant of decay of the excitatory cell;

αy: the time constant of decay of the inhibitory cell;

Jiθ,jθ′: excitatory synaptic strengths or horizontal cortical con-

nections;

Wiθ,jθ′: inhibitory synaptic strengths or horizontal cortical con-

nections;

gx(xiθ): sigmoid-type analogue activation function modelling the

firing rate of the excitatory cell;

gy(yiθ): sigmoid-type analogue activation function modelling the

firing rate of the inhibitory cell;

ψ(∆θ): an even function modelling inhibition within the hyper-

column;
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J0: self-excitatory constant;
I0: background input to the excitatory cell;
Ic: background input to the inhibitory cell;
Iiθ: the external input to the excitatory cell;

Iiθ = Îiβφ(θ − β) (51)

where
Îiβ: the magnitude of the edgel (gradient) detected at i with
orientation β;
φ(θ − β): orientation tuning function between the orientation to
which the neuron is sensitive and the orientation of the edgel:

φ(θ − β) = e−
|θ−β|8
π (52)

61



62



From V1 to computational economics

A Digital Business Ecosystem(DBE) is a closed or semi-closed

system of Small and Medium Enterprises (SMEs), which come

together in cyberspace the same way companies gather in a busi-

ness park in the physical world. These companies will interact

with each other through buyer-seller relationships.

How can we model and study the dynamics of such a system?
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Health of a company ⇐⇒ membrane potential of a neuron

In lack of any external stimulus, it decays like:

dy

dt
= −τy ⇒ y = y0e

−τt (53)

where

τ : the time constant of the system

y0: the value of y for the boundary condition t = 0.
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Ci: company i

yi: measures how well the company does

• The stronger a company is, the more strong it is likely to be-

come:

This is a self-excitation term, of the form J0gy(yi).

• Effects in real life are only linear over a certain scale. They

saturate and the benefit we receive by changing the independent

variable yi levels off. On the other hand, before this positive

feedback in the strength is triggered, a so called “critical mass”

of strength yi has to be reached.

Use sigmoid function gy(yi) to model this
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A company gets excitatory signals from other companies if they

want to buy what it sells

Excitatory signal: Model it according to the number of prod-

ucts Eij company Ci sells that Cj wants to buy:

Jij ≡ 1− e−Eij (54)

How much Cj will stimulate Ci depends on how strong Cj is.

Include also a weight Wij to model mutual trust:∑
j∈C,j 6=i

WijJijgy(yj) (55)
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A company gets inhibitory signals from other companies if they

sell the same products

Inhibitory signal: Model it according to the number of similar

products Fij companies Ci and Cj sell:

Kij ≡ 1− e−Fij (56)

How much Cj will inhibit Ci depends on how strong Cj is.

−
∑

j∈C,j 6=i

Kijgy(yj) (57)

67



Ii: external input to the company, like total volume of transac-

tions originating outside the DBE

I0: expresses the background input, eg the general economic

climate

Putting them all together:

dyi
dt

= −τyyi+J0gy(yi)+
∑

j∈C,j 6=i

WijJijgy(yj)−
∑

j∈C,j 6=i

Kijgy(yj)+Ii+I0

(58)

A set of coupled differential equations concerning all companies

in the ecosystem.
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NETWORKS OF IDEAS
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(a)Random; (b)Scale-free; (c)Hierarchical
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Characterising a network

Shortest path: the shortest path connecting any two nodes;

mean path the average of the shortest paths calculated between

all pairs of nodes in the graph, between which a path exists

k: the degree (or connectivity) of a node;

how many links the node has with other nodes.
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P (k): The degree distribution;
the probability that a selected node has k links
Networks of different topologies have different degree distribu-
tions:

For scale-free networks:

P (k) ∼ k−c (59)

c: characterises the behaviour of the network
c > 3: the hubs are not relevant and the scale-free network be-
haves like a random network;
2 ≤ c ≤ 3: there is a hierarchy of hubs;
c < 2: only the most connected hub has a role.
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(a) Random network (b) Scale-free network

k

P(
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k
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(c) Poisson distribution (d) Power law distribution
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Most biological networks, the Internet and social networks have

c ≤ 3, which gives them robustness and a particular resilience to

failure.

What is the topology of the network of ideas in our brain?
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We designed an experiment to assess the structure of the net-

work of ideas in the human brain

The ideas were poked either visually or verbally

The same ideas in both experiments

The same people took part in both experiments
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Conclusions:

• Low mean path between nodes: a small world behaviour of the

networks obtained both by visual and verbal cues

• Same number of hubs in both networks

• the two networks were found to be statistically equivalent in

topology

• the two networks were consistent with being scale-free with

c ∼ 1.7

• the two networks were appeared to be distinct as different

concepts acted as hubs in them!
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