Introduction to Description Logics and their usage in multimedia analysis

Stamatia Dasiopoulou 11 Nov 2009

Outline

- Description Logics (DLs)
 - Basics (syntax, semantics, inference services)
 - OWL as a DL language
- DLs and multimedia analysis
 - Content representation (briefly)
 - Knowledge-based extraction / interpretation of content semantics

What are Description Logics?

- A family of logic-based knowledge representation formalisms
 - Descendants of semantics networks, frame-based systems
- Distinguished by
 - Formal semantics
 - Decidable fragments of FOL
 - Inference
 - Sound & complete, highly optimized (implemented) algorithms

What does it mean to "be" a formal language?

- Syntax
 - What expressions form valid sentences
- Semantics
 - What is the meaning of the expressed sentences
- Reasoning procedures
 - How is implicit knowledge derived from the explicitly stated one
 - (e.g. If Socrates is human and every human is mortal, I can derive the fact Socrates is mortal)

DL Basics

- Concept names are equivalent to unary predicates
 - Interpreted as sets of objects e.g. Person, Student
- Role names are equivalent to binary predicates
 - Interpreted as binary relations on objects e.g. hasChild, likes
- Individual names equal constants e.g. Mary, John, India
- Constructors: concept and role forming operators

DL family

- A given DL is defined by the set of allowed constructors
- Smallest propositionally closed DL is \mathcal{ALC} , concept constructed using
 - Π,⊔,¬
 - restricted \exists and \forall quantifiers
 - atomic roles

E.g., Person all of whose children are either Doctors or have a child who is a Doctor:

Person $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)

DL family (cont.)

- Additional letters indicate other extension, e.g.:
 - H for role inclusion axioms (role hierarchy)
 - O for nominals (singleton classes)
 - I for inverse roles
 - N for number restrictions ($\geq nR$, $\leq nR$)
 - Q for qualified number restrictions (≥nR.C, ≤nR.C)

KR architecture based on DLs

DL knowledge base (cont.)

- A DL Knowledge base \mathcal{K} is a pair $\langle \mathcal{T}, \mathcal{A} \rangle$ where
 - *T* is a set of "terminological" axioms (the TBox)
 - *A*is a set of "assertional" axioms (the ABox)
- TBox axioms are of the form: $C \sqsubseteq \Box D, C \equiv D, R \sqsubseteq S, R \equiv S \text{ and } R^+ \sqsubseteq R$

where ${\rm C},\,{\rm D}$ concepts, ${\rm R},\,{\rm S}$ roles, and ${\rm R}^+$ set of transitive roles

 ABox axioms are of the form: x:C, (x,y):R (concept/role assertion respectively) where x,y are individual names, C a concept and R a role

DL semantics

- Semantics defined by interpretations
- An interpretation $\mathcal{I}_{=}(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where
 - $\Delta^{\mathcal{I}}$ is the domain (a non-empty set)
 - *.*^{*T*} is an interpretation function that maps:
 - $\bullet \ Concept \ (class) \ name \ A \ \rightarrow subset \ A^{\mathcal{I}} \ of \ \Delta^{\mathcal{I}}$
 - Role (property) name ${\rm R} \to$ binary relation ${\rm R}^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$
 - Individual name $\mathrm{i} \to \mathrm{i}^\mathcal{I}$ element of $\Delta^\mathcal{I}$

DL Semantics (cont.)

(FROM: I.Horrocks, OWL: A Description Logic Based Ontology Language, Seminar at the Centre for Intelligent Systems and their Applications, Uni. Of Edinburgh, Scotland, March, 2006)

DL Semantics (cont.)

 Interpretation function ¢^I extends to concept (and role) expressions

$$\begin{array}{rcl} (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\neg C)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ \{x\}^{\mathcal{I}} &=& \{x^{\mathcal{I}}\} \\ (\exists R.C)^{\mathcal{I}} &=& \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\} \\ (\forall R.C)^{\mathcal{I}} &=& \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\} \\ (\leqslant nR)^{\mathcal{I}} &=& \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\} \\ (\geqslant nR)^{\mathcal{I}} &=& \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\} \\ (R^{-})^{\mathcal{I}} &=& \{(x, y) \mid (y, x) \in R^{\mathcal{I}}\} \end{array}$$

DL knowledge base Semantics

An interpretation I satisfies (is a model) a TBox axiom A (I² A):

 $\mathcal{I}^{2} C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \quad \mathcal{I}^{2} C \equiv D \text{ iff } C^{\mathcal{I}} = D^{\mathcal{I}}$ $\mathcal{I}^{2} R \sqsubseteq S \text{ iff } R^{\mathcal{I}} \subseteq S^{\mathcal{I}} \quad \mathcal{I}^{2} R \equiv S \text{ iff } R^{\mathcal{I}} = S^{\mathcal{I}}$ $\mathcal{I}^{2} R^{+} \sqsubseteq R \text{ iff } (R^{\mathcal{I}})^{+} \subseteq R^{\mathcal{I}}$

- I satisfies a TBox T (I² T) iff I satisfies every axiom A in T
- An interpretation I satisfies (models) an ABox axiom A (I² A):

 $\mathcal{I}^{\,\mathbf{2}} \mathbf{x}: \mathbf{D} \text{ iff } \mathbf{x}^{\mathcal{I}} \in \mathbf{D}^{\mathcal{I}} \qquad \mathcal{I}^{\,\mathbf{2}} \langle \mathbf{x}, \mathbf{y} \rangle: \mathbf{R} \text{ iff } (\mathbf{x}^{\mathcal{I}}, \mathbf{y}^{\mathcal{I}}) \in \mathbf{R}^{\mathcal{I}}$

- I satisfies an ABox A (I² A) iff I satisfies every axiom A in A
- \mathcal{I} satisfies an KB \mathcal{K} ($\mathcal{I}^2 \mathcal{K}$) iff \mathcal{I} satisfies both \mathcal{T} and \mathcal{A}

CWA vs OWA

- Closed World Assumption: assumes that the available information is complete
 - If an assertion cannot be derived then its negation is deduced
- Open World Assumption: absence of information means lack of information
 - The assertion holds in some models, and doesn't hold in others

Example

 A_E={hasChild(Iokaste,Edipus), hasChild(Iokaste,Polyneikes), hasChild(Edipus,Polyneikis), hasChild(Polyneikis,Thesandros), Patricide(Edipus), ¬Patricide(Thesandros)}.

 $A_E = \{Iokaste: \exists hasChild.(Patricide \exists hasChild. Patricide)\}$??

Inference Services

- Every logical formalism provides its own reasoning services.
- Description Logics (DLs) provide reasoning services for TBoxes, ABoxes and Knowledge Bases (TBoxes and ABoxes together).

Inference Services for TBoxes

- Satisfiability: A concept C is satisfiable w.r.t. a TBox T if there exists a model I of T such that C^I≠Ø. Then I is called a model of C.
- Subsumption: A concept C is subsumed by a concept D w.r.t. T, written C □ D, if for every model I of T, C^I ⊂ D^I.
- Equivalence: Two concepts C and D are equivalent w.r.t. T, written C=D, if for every model I of T, C^I =D^I.
- Disjointness: Two concepts C and D are disjoint, w.r.t. T, written C≠D, if for every model I of T, C^I ≠D^I.

Some examples

- Is Man⊓¬Man satisfiable w.r.t. an empty TBox? No
- Is Man⊓Woman satisfiable w.r.t. an empty TBox? Yes
- Woman⊑Person w.r.t. empty TBox?
 No! one can create an interpretation where Woman^I⊇Person^I
- Man⊆Person w.r.t. T={Person≡Man⊔Woman}?
 Yes! in all models I of T, Person^I contains all objects of Man^I plus all of Woman^I.

Inference Services for ABoxes

- **Consistency:** An ABox A is *consistent* w.r.t. a TBox T if there exists a model of T which satisfies each assertion in A.
- Entailment (Instance Checking): An ABox A *entails* an assertion φ , written $A \models \varphi$ iff every interpretation that satisfies A also satisfies the assertion.

Some examples

- Is A={Man(Jim), Woman(Jim)} consistent w.r.t. an empty TBox? Yes
- Is the above ABox A consistent w.r.t.
 T={Woman=Person⊓Female, Man=Person⊓¬Female}? No

Automated reasoning

- State of the art DL systems typically use (highly optimised) tableaux algorithms
- Tableaux algorithms work by trying to construct a concrete example (model) consistent with KB axioms:
 - Start from ground facts (ABox axioms)
 - Explicate structure implied by complex concepts and TBox axioms
 - Syntactic decomposition using tableaux expansion rules
 - Infer constraints on (elements of) model

Tableaux Expansions rules

□-rule	if 1. $(C_1 \sqcap C_2) \in \mathcal{L}(v)$, v is not indirectly blocked, and
	2. $\{C_1, C_2\} \not\subseteq \mathcal{L}(v)$
	then $\mathcal{L}(v) \to \mathcal{L}(v) \cup \{C_1, C_2\}.$
⊔-rule	if 1. $(C_1 \sqcup C_2) \in \mathcal{L}(v)$, v is not indirectly blocked, and
	2. $\{C_1, C_2\} \cap \mathcal{L}(v) = \emptyset$
	then $\mathcal{L}(v) \to \mathcal{L}(v) \cup \{E\}$ for some $E \in \{C_1, C_2\}$
∃-rule	if 1. $\exists r. C \in \mathcal{L}(v_1), v_1$ is not blocked, and
	2. v_1 has no safe r-neighbour v_2 with $C \in \mathcal{L}(v_1)$,
	then create a new node v_2 and an edge $\langle v_1, v_2 \rangle$
	with $\mathcal{L}(v_2) = \{C\}$ and $\mathcal{L}(\langle v_1, v_2 \rangle) = \{r\}.$
∀-rule	if 1. $\forall r.C \in \mathcal{L}(v_1), v_1$ is not indirectly blocked, and
	2. there is an r-neighbour v_2 of v_1 with $C \notin \mathcal{L}(v_2)$
	then $\mathcal{L}(v_2) \to \mathcal{L}(v_2) \cup \{C\}.$
∀ ₊ -rule	if 1. $\forall r.C \in \mathcal{L}(v_1), v_1$ is not indirectly blocked, and
	2. there is some role r' with Trans (r') and $r' \equiv r$
	3. there is an r'-neighbour v_2 of v_1 with $\forall r'.C \notin \mathcal{L}(v_2)$
	then $\mathcal{L}(v_2) \to \mathcal{L}(v_2) \cup \{ \forall r'.C \}.$
choose-rule	if 1. $\leq n r.C \in \mathcal{L}(v_1)$, v_1 is not indirectly blocked, and
	2. there is an r-neighbour v_2 of v_1 with $\{C, \neg C\} \cap \mathcal{L}(v_2) = \emptyset$
	then $\mathcal{L}(v_2) \to \mathcal{L}(v_2) \cup \{E\}$ for some $E \in \{C, \neg C\}$.
≥-rule	if $1. \ge n r.C \in \mathcal{L}(v)$, v is not blocked, and
	2. there are not n safe r-neighbours v_1, \ldots, v_n of v
	with $C \in \mathcal{L}(v_i)$ and $v_i \neq v_j$ for $1 \leq i < j \leq n$

DLs Reasoners

- Mature, highly optimized implementations
 - Research implementations
 - FaCT++, Pellet, KAON2, CEL, HermiT...
 - Commercial implementations
 - Cerebra, RacerPro, SHER..

(http://www.cs.manchester.ac.uk/~sattler/reasoners.html)

The Web Ontology Language (OWL) as a DL language

- OWL is W3C recommendation (i.e. a standard)
 - OWL DL is equivalent to the SHOIN
 - OWL Lite is equivalent to SHIF
 - Further connections issue from the recent OWL1.1 and OWL2 recommendations
- OWL exploits results of 15+ years of research in DLs
 - Well defined semantics
 - Complexity, decidability results
 - Reasoning algorithms
 - Implemented systems

OWL class constructors

Constructor	DL Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1(x) \wedge \ldots \wedge C_n(x)$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1(x) \lor \ldots \lor C_n(x)$
_complementOf	$\neg C$	¬Male	$\neg C(x)$
oneOf	$\{x_1\}\sqcup\ldots\sqcup\{x_n\}$	{john} ⊔ {mary}	$x = x_1 \lor \ldots \lor x = x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	$\forall y. P(x, y) \rightarrow C(y)$
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\exists y. P(x,y) \land C(y)$
maxCardinality	$\leqslant nP$	≤1hasChild	$\exists^{\leqslant n}y.P(x,y)$
minCardinality	$\geqslant nP$	≥2hasChild	$\exists^{\geqslant n}y.P(x,y)$

OWL axioms

OWL Syntax	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
equivalentClass	$C_1 \equiv C_2$	$Man \equiv Human \sqcap Male$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	$cost \equiv price$
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $+ \sqsubseteq$ ancestor

OWL Syntax	DL Syntax	Example
type	a : C	John : Happy-Father
property	$\langle a,b angle$: R	$\langle John, Mary \rangle$: has-child

Summing up DLs

- Represent world (and its semantics) in terms of concepts, roles, individuals
- Very expressive formal knowledge representation languages with well-defined inference services
- Allow to handle effectively incomplete knowledge and reason over it
 - e.g., Tall ⊔ Intelligent (Tom), ¬Student(Jim)
- Reasoning amounts to constructing logical models, hence the added complexity
 - Avoid using them to declare data structures and perform algorithmic computations

DLs in multimedia analysis related tasks

- DLs (ontologies) have been used for
 - Representation of domain specific knowledge for annotation purposes
 - Representation of media specific knowledge including low-level features and content structure/decomposition (so called multimedia ontologies)
 - Representation of domain-specific knowledge and linking with perceptual features in order to support the extraction of content semantics

Multimedia Ontologies (in a nutshell)

- Based in their majority on MPEG-7, multimedia ontologies aim to
 - Attach formal semantics to the XML-based Schema MPEG-7 definitions
 - Make explicit the normative specifications
 - Alleviate the ambiguities resulting from descriptions with multiple meanings
- Analysis, annotation, search, retrieval, presentation...

Multimedia Ontologies (cont.)

- Hunter's ontology developed within the Harmony project (chronologically first initiative, 2001)
- The Multimedia Structure Ontology & Visual Descriptor Ontology, developed within aceMedia
- The Multimedia Content Ontology & Multimedia Descriptor Ontology, developed within BOEMIE
- SmartWeb, DS-MIRG, Rhizomik..
- The COMM (core) multimedia ontology (K-Space)

🔶 Metadata(mpeg7) 🥚 OVVLClasses 🍵	Properties	s 🔷 Individuals	E Forms	
SUBCLASS EXPLORER	CL	ASS EDITOR for Vid	leoSegment	(instance of owl:Class)
For Project: 🔵 +DecompositionConcept	For	r Class: http://smart	web.semantic	web.org/ontology/mpeg7#VideoSegment
Asserted Hierarchy	r 😪 🚊	3 😼 🍫 🔜		
🖲 owl: Thing		Pr	operty	
🔻 😑 Decomposition	-	rdfs:comment		Describes a set of frames of a video sequence
🦲 AudioSegmentTemporalDecompositio	n 🗖	Irdfs:label		VideoSegment
MovingRegionSpatialDecomposition				
MovingRegionSpatioTemporalDecomp	osition			
MovingRegionTemporalDecomposition	ñ			
StillRegion3DSpatialDecomposition				
StillRegionSpatialDecomposition				
TextDecomposition				
VideoSegmentSpatialDecomposition				
🥏 VideoSegmentSpatioTemporalDecom	position			
🥮 VideoSegmentTemporalDecompositio	n			
🛑 Frame				
🛛 🥮 MultimediaContent		Segment		
e Audio		spatialDecompositio	n only VideoS	egmentSpatialDecomposition
🛑 AudioVisual	0	spatioTemporalDeco	mposition only	y VideoSegmentSpatioTemporalDecomposition
e Image		temporalDecomposi	tion only Video	oSegmentTemporalDecomposition
e Text				
leo Video				100V
🗸 🕘 Segment				at0105,
AudioSegment				Top Olice
MovingRegion			-+V	Ver -
StillRegion		cma	IL.	i
StillRegion3D		2111	-	avtract
TextSegment				CA
VideoSegment				

Multimedia Ontologies

- Differences in
 - Coverage
 - Modeling
 - Level of axiomatisation (semantics clarity)
 - Linking with domain ontologies
- R.Troncy, O.Celma, S.Little, R.García, C.Tsinaraki, **MPEG-7 based Multimedia Ontologies: Interoperability Support of Interoperability Issue?**, in Workshop on MM Annotation and Retrieval enabled by Shared Ontologies (MAReSO'07), Genova, Italy, December 5, 2007.
- S.Dasiopoulou. I.Kompatsiaris, M.G,Strintzis, **Enquiring MPEG-7 based Ontologies**, in Multimedia Tools and Appls., SI Data Semantics, 2009.

Knowledge-Based Semantics Extraction

- Huge topic, vast literature (dates back to 1970s, AI..)
 - focus on recent DL related approaches only
 - present (some) representative examples
- TBox: background knowledge
 - defines valid (coherent) interpretation
- ABox: extracted descriptions
 - analysis facts

The FUSION project (*)

*J.Hunter,J.Drennan,S.Little, *Realizing the Hydrogen Economy through Semantic Web Technologies*, in IEEE Intelligent Systemsm, S.I. on eScience, 2004.

Domain knowledge definition and linking with low-level representations

	Attribute	Value
Show regions	Image regions regions DominantEclorRange DominantEclorRange DominantColor Orientation Area Color MinColor StdColor Eccentricity MaxColor coord: BoundingBox Centroid 3 CU J	(Incal/suzanne/apr28dała/) (173, 73,173) (170, 70,170) 11.6935 64616.0 ((184,184,184),(*80,180,1 (98,98,98) (14.3042,14,3042,14.3342) 0.8993 (220,220,220) ((1, 1', (2, 1), (3, 1), (4, 1) ((0.5, 0.5), i410.5, 0.5), (41 (172,3048, 86,7030000000
/local/suzanre/apr28data/1.1a10000x2Cdeg.BC.jpc 🧾	N	
mpeg7:StillFegion A / mpeg7:Depicts / fusin	an Electrolyte 🥂 IF	
	4	

Scene Interpretation with DLs(*)

(*B.Neumann, R.Moller, On Scene Interpretation with Description Logics, in Cognitive Vision Systems, 2006.)

Scene interpretation with DLs (cont.)

- Scene interpretation as model construction
- Logical aggregates capture complex objects/events

(equivalent cover (and configuration

(exactly 1 cv-pl plate)
(exactly 1 cv-sc (and saucer (some near plate)))
(exactly 1 cv-cp (and cup (some on saucer)))
(subset cv-pl (compose cv-sc near))
(subset cv-sc (compose cv-cp on))))

Scene interpretation with DLs (cont.)

- The available geometric descriptions are assumed to be
 - correct and non conflicting (which is not usually the case)
 - crisp (information loss)
 - complete (i.e. not missing)

Abductive reasoning for multimedia interpretation^(*)

(*S.Peraldi, A.Kaya, S.Meltzer, R.Moller & M.Wessel, **Towards a Media Interpretation Framework for the Semantic Web**,. In *Proc. of IEEE/WIC/ACM Conference on Web Intelligence (WI'07*), 2007.)

Abductive reasoning for multimedia interpretation (cont.)

 ABox abduction: given a background knowledge Σ(T,A) and a set of observations Γ derive a set of assertions Δthat <u>explain</u> Γ
 i.e. Σ⊔Δ ⊨ Γ

 Γ is divided into bona fiat (that need to be explained) and bona fide (that are taken to be true) assertions

Abductive reasoning for multimedia interpretation (cont.)

 $Jumper \sqsubseteq Human$ $Pole \sqsubseteq Sports_Equipment$ $Bar \sqsubseteq Sports_Equipment$ $Pole \sqcap Bar \sqsubseteq \bot$ $Pole \sqcap Jumper \sqsubseteq \bot$ $Jumper \sqcap Bar \sqsubseteq \bot$ $Jumping_Event \sqsubset \exists_{\leq 1} hasParticipant.Jumper$ $Pole_Vault \sqsubseteq Jumping_Event \sqcap \exists hasPart.Pole \sqcap \exists hasPart.Bar$ $High_Jump \sqsubseteq Jumping_Event \sqcap \exists hasPart.Bar$ $near(Y, Z) \leftarrow Pole \ Vault(X), hasPart(X, Y), Bar(Y),$ hasPart(X, W), Pole(W), hasParticipant(X, Z), Jumper(Z) $near(Y, Z) \leftarrow High_Jump(X), hasPart(X, Y), Bar(Y),$ hasParticipant(X, Z), Jumper(Z)

bona fiat

 $\begin{array}{c} pole_{1}:Pole\\human_{1}:Human\\bar_{1}:Bar\\(bar_{1},human_{1}):near\end{array}$

bona fide

- $-\Delta_{1} = \{new_ind_{1} : Pole_Vault, (new_ind_{1}, bar_{1}) : hasPart, (new_ind_{1}, new_ind_{2}) : hasPart, new_ind_{2} : Pole, (new_ind_{1}, human_{1}) : hasParticipant, human_{1} : Jumper\}$
- Δ_2 = {new_ind_1 : Pole_Vault, (new_ind_1, bar_1) : hasPart, (new_ind_1, pole_1) : hasPart,

 $(new_ind_1, human_1) : hasParticipant, human_1 : Jumper \}$

 $-\Delta_3 = \{new \ ind_1 : High \ Jump, (new \ ind_1, bar_1) : hasPart, (new \ ind_1, human_1) : hasParticipant, human_1 : Jumper\}$

Enhancing Image Semantics Extraction using fuzzy DLs ^(*)

(*S.Dasiopoulou,I.Kompatisiaris, M.G.Strintzis, **Investigating fuzzy DLs-based Reasoning in Semantic Image Analysis**, in *Multimedia Tools and Apps.*, 2009.)

Uncertainty Issues

- Machine learning provides now generic methodologies for supporting more than 100 concepts
 - captures conveniently complex associations between perceptual features and semantics
 - successful application examples, yet variable general performance
- Semantics goes beyond perceptual manifestations
 - possibly contradictory (Mountain, Sand and Indoor)
 - possibly overlapping / complementary (Beach and Sea)
 - of restricted abstraction w.r.t. semantic expressiveness (face inside sea vs Swimmer)
- Learning-based extracted annotations need to be *semantically interpreted* into a *consistent* description

Semantics goes beyond perceptual manifestations

	Search Topic	Best Detector	AP
~	Two visible tennis players on the court	Athlete	0.6501
otween	A goal being made in a soccer match	Stadium	0.3429
all tic is	Basketball players on the court	Indoor Sports Venue	0.2801
repartenentieness	A meeting with a large table and people	Furniture	0.1045
Disci seressiv	People with banners or signs	People Marching	0.1013
ex6,	One or more military vehicles	Armored Vehicles	0.0892
	Helicopter in flight	Helicopters	0.0791
	A road with one or more cars	Car	0.0728
	An airplane taking off	Classroom	0.0526
	A tall building	Office Building	0.0469
	A ship or boat	Cloud	0.0427
weend	George Bush entering or leaving vehicle	Rocket Propelled Grenades	0.0365
v betwarnet	Omar Karami	Chair	0.0277
pancy nd les	Graphic map of Iraq, Baghdad marked	Graphical Map	0.0269
Discreted conantition	Condoleeza Rice	US National Flag	0.0237
	One or more palm trees	Weapons	0.0225

Best Possible

Semantics goes beyond perceptual manifestations

 $(image:\exists contains.Sand) \ge 0.75$ $(image:\exists contains.Sky) \ge 0.87$ $(image:\exists contains.Foliage) \ge 0.76$ $(image:\exists contains.Conifers) \ge 0.88$ $(image:Landscape) \ge 0.92$

- Conifers detector semantics pertain to mountainous scenes
- Sand detector semantics pertains to beach scenes

 $(image:\exists contains.Sand) \ge 0.75$ $(image:\exists contains.Sea) \ge 0.81$ $(image:\exists contains.Person \ge 0.67$ $(image:\exists contains.Foliage) \ge 0.76$ $(image:\exists contains.Grass) \ge 0.58$ $(image:Beach) \ge 0.85$ $(image:Beach) \ge 0.67$

- Sea and Sand detectors entail Beach scene
- Beach scenes entails both Natural and Outdoor scenes

Fuzzy DLs based approach

• **Goal:** enhance the robustness and completeness of learning-based extracted annotations

How: semantics utilization

- to interpret initial annotations
 - semantic integration
 - to detect and resolve inconsistencies
- to enrich by means of entailment

Methodology: fuzzy DL based reasoning

- crisp TBox to conceptualize the domain semantics
- fuzzy ABox to capture the uncertainty of initial annotations

General Framework

Outdoor images TBox extract

 $Countryside_buildings \sqsubseteq \exists contains.Buildings \sqcap \exists contains.Foliage$

 $Countryside_buildings \sqsubseteq Landscape$

 $\exists \text{contains.Forest} \ \sqcup \ \exists \text{contains.Grass} \ \sqcup \ \exists \text{contains.Tree} \ \sqsubseteq \ \exists \text{contains.Foliage}$

Rockyside $\sqsubseteq \exists contains.Cliff$

Rockyside $\sqsubseteq \exists$ contains.Mountainous

Roadside $\sqsubseteq \exists contains.Road$

Roadside \sqsubseteq Landscape

 $\exists \text{contains.Sea} \equiv \text{Coastal}$

 $Coastal \sqsubseteq Natural$

 $\exists \text{contains.Forest} \sqsubseteq \text{Landscape}$

 $Beach \equiv Coastal \sqcap \exists contains.Sand$

 $Beach \sqsubseteq Natural$

 $Cityscape \sqsubseteq ManMade$

 $\exists \text{contains.Sky} \sqsubseteq \text{Outdoor}$

 $\exists \text{contains.Trunk} \sqsubseteq \exists \text{contains.Tree}$

Mountainous \sqcap Coastal $\sqsubseteq \perp$

Natural \sqcap ManMade $\sqsubseteq \perp$

Conclusions

- The use of explicit semantics is integral in multimedia semantics extractions; yet not the only necessary component
- Handling uncertainty is a critical factor
 - formal handling of annotations uncertainty semantics
 - utilization of domain semantics
 - consistent interpretations / descriptions
- Largely misestimated degrees/analysis descriptions can mislead the interpretation

Future Directions

- Investigation of additional knowledge
 - probabilistic information in the form of co-occurrence patterns
 - spatial relations among object level concepts (aligning different segmentation masks)
- Investigation of intermediate representation level
 - link domain definitions with qualitative visual features
 - inconsistent at domain level interpretations are not simply rejected
- Experimentation with descriptions coming from other than image analysis sources
 - text, tags (expressed in ontological terms)
 - provenance-based weights

Thank you for listening

Any Questions ??

Additional References

- F.Baader, D.Calvanese, D.L.McGuinness, D.Nardi, P.F.Patel-Schneider, The Description Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press 2003.
- I.Horrocks, Hybrid Logics and Ontology Languages, Keynote at Inter. Workshop on Hybrid Logics, Seattle, USA, Aug. 2006.
- I.Horrocks, OWL: A Description Logic Based Ontology Language, Seminar at the Centre for Intelligent Systems and their Applications, Uni. Of Edinburgh, Scotland, March, 2006.
- J.Hunter, Adding Multimedia to the Semantic Web, Building an MPEG-7 Ontology, 1st Semantic Web Working Symposium, Stanford University, California, USA, 2001.
- C.Tsinaraki, P.Polydoros, S.Christodoulakis, Integration of OWL ontologies in MPEG-7 and TV Anytime Compliant Indexing, 16th Inter. Conf. on Advanced Information Systems Engineering (CAiSE), Riga, Latvia, 2004.
- R.Garcia, O.Celma, Semantic Integration and Retrieval of Multimedia Metadata, in Inter. Semantic Web Conference (ISWC), Galway, Ireland, 2005.
- R.Arndt, R.TRoncy, S.Staab, L.Hardman, M.Vacura, COMM: Designing a Well-Founded Multimedia Ontology for the Web, in Inter. Semantic Web Conference (ISWC), Busan,Korea, 2007.