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Mixture subclassdiscriminant analysis
Nikolaos Gkalelis, Vasileios Mezaris, Ioannis Kompatsiaris

Abstract—In this letter, mixture subclass discriminant analysis
(MSDA) that alleviates two shortcomings of subclass discriminant
analysis (SDA) is proposed. In particular, it is shown that for
data with Gaussian homoscedastic subclass structure a) SDA
does not guarantee to provide the discriminant subspace that
minimizes the Bayes error, and, b) the sample covariance matrix
can not be used as the minimization metric of the discriminant
analysis stability criterion (DSC). Based on this analysis MSDA
modifies the objective function of SDA and utilizes a novel par-
titioning procedure to aid discrimination of data with Gaussian
homoscedastic subclass structure. Experimental results confirm
the improved classification performance of MSDA.

EDICS Category: IMD-PATT

I. I NTRODUCTION

Linear discriminant analysis (LDA) is one of the most pop-
ular techniques in statistical pattern recognition [1]. However,
there are three major drawbacks restricting its use: i) The so-
called small sample size problem (SSS) [2], [3], ii) The (com-
mon) situation that real-world data have heteroscedastic class
distributions, which violates the fundamental homoscedasticity
assumption of LDA [3]–[5], and, iii) The instability of the
LDA criterion in cases when the metric to be minimized and
the metric to be maximized are in “conflict” [6]. Subclass
discriminant analysis (SDA) [5] overcomes the above limi-
tations. However, as we show, it presents two shortcomings
with respect to its use on data with Gaussian homoscedastic
subclass structure, which may be the case even if the class
distributions are heteroscedastic. In this work, mixture SDA
(MSDA) is proposed to alleviate the latter shortcomings.

This letter is organized as follows. Section II reviews
discriminant analysis (DA) methods and in section III we
present the proposed method. Experiments are reported in
section IV and conclusions are drawn in section V.

II. D ISCRIMINANT ANALYSIS

The problem of discriminant analysis can be generally
stated as follows [1]. Given a training set ofN labelled
samplesU = {x1, . . . ,xN} belonging to one ofC classes
{X1, . . . ,XC}, find a singular transformation matrix̃Ψ =
[ψ̃1, . . . , ψ̃D], ψ̃d ∈ RF , D << F , for mapping theF -
dimensional samplex onto a D-dimensional discriminant
subspace spanned by the column vectors ofΨ̃. The transfor-
mation matrix is usually identified by maximizing the objective
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function J(Ψ) = tr(ΨT AΨ)
tr(ΨT BΨ)

subjectto constraints imposed in
the properties ofΨ, whereA, B are metric matrices andtr()
is the trace of a matrix.

A. Linear discriminant analysis

LDA seeks directions efficient for class separability. For
C Gaussian homoscedastic class distributions, LDA provides
the (C − 1)-dimensional subspace that minimizes the Bayes
error [1]. The objective function of LDA isJlda(Ψ) =
tr(ΨT SbΨ)
tr(ΨT SwΨ)

, definingthe between-class scatter matrix asSb =∑C
i=1 pi(µi−µ)(µi−µ)T and the within-class scatter matrix

asSw =
∑C

i=1 piΣi, where,Ni, Σi = 1
Ni

∑
x∈Xi

(x−µi)(x−
µi)T , pi = Ni/N and µi = 1

Ni

∑
x∈Xi

x are the number
of samples, the sample covariance matrix, the prior and the
sample mean ofi-th class, respectively.

B. Robust linear discriminant analysis

One of the major drawbacks of LDA is the so-called
small sample size (SSS) problem, i.e., the situation that the
number of training samplesN is small compared with their
dimensionalityF . In this case the class covariance matrix
estimatesΣi and equivalently the within-class scatter matrix
Sw are highly unreliable [3]. To alleviate this, taking into
account thatΣx = Sb + Sw and that Σx is generally
a more stable estimate thanSw, a robust LDA criterion
has been proposedJ ′lda(Ψ) = tr(ΨT SbΨ)

tr(ΨT ΣxΨ)
. Consideringthat

tr(ΨT ΣxΨ) = tr(ΨT SbΨ) + tr(ΨT SwΨ), J ′lda(Ψ) and
Jlda(Ψ) have the same maximizer according to the following
theorem (e.g. see [3]):

Theorem 2.1:Suppose that∀ψ ∈ RF , u(ψ) ≥ 0, v(ψ) ≥
0, u(ψ) + v(ψ) > 0. Let h1(ψ) = u(ψ)

v(ψ)
and h2(ψ) =

u(ψ)

u(ψ)+v(ψ)
. Thenh1(ψ) has the maximum (including positive

infinity) at point ψ̃ iff h2(ψ) has the maximum at the same
point.

C. Mixture discriminant analysis

A fundamental assumption of LDA is that class distributions
are homoscedastic, which is rarely true in practice. A more
realistic strategy is to assume that there exists a subclass
homoscedastic partition of the data,{X1,1, . . . ,XC,HC

}, where
Xi,j denotes thej-th subclass of thei-th class,Hi is the num-
ber of subclasses in thei-th class, andH is the total number
of subclasses (H=

∑C
i=1 Hi). Upon this assumption, mixture

discriminant analysis (MDA) [4] models classes as mixtures
of Gaussian subclasses and the following objective function is
utilized Jmda(Ψ) = tr(ΨT SbsΨ)

tr(ΨT SwsΨ)
, where the between-subclass
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scattermatrix Sbs is defined as

Sbs =
C∑

i=1

Hi∑

j=1

pi,j(µi,j − µ)(µi,j − µ)T , (1)

the within-subclass scatter matrixSws as Sws =∑C
i=1

∑Hi

j=1 pi,jΣi,j , and pi,j ,µi,j ,Σi,j are the prior,
sample mean and sample covariance matrix ofXi,j subclass
respectively. Using theorem 2.1 and considering that
Σx = Sbs + Sws, a more stable criterion can be formed

J ′mda(Ψ) =
tr(ΨT SbsΨ)
tr(ΨT ΣxΨ)

. (2)

D. Discriminantanalysis stability criterion

The discriminant analysis stability criterion (DSC) [6],
summarized in Theorem 2.2, has been formulated to detect
cases where DA does not work.

Theorem 2.2:Let ΨA = [ψA1
, . . . , ψAp

] and ΛA =
diag(λA1 , . . . , λAp) be the eigenvector and eigenvalue matri-
ces of the metricA to be maximized, i.e.,AΨA = ΨAΛA,
and,ΨB = [ψB1

, . . . , ψBq
] andΛB = diag(λB1 , . . . , λBq ) be

the eigenvector and eigenvalue matrices of the metricB to be
minimized , i.e.,BΨB = ΨBΛB , wherep andq are the ranks
of A andB respectively,λA1 ≥ · · · ≥ λAp , λB1 ≥ · · · ≥ λBq ,
andq ≥ p. Define the discriminant analysis stability criterion

Θ =
1
r

r∑

i=1

i∑

j=1

(cos θi,j)2 =
1
r

r∑

i=1

i∑

j=1

(ψT
Ai

ψBj
)2 ≥ 0 , (3)

wherer ≤ p, and θi,j is the angle between the eigenvectors
ψAi

and ψBj
. Then if Θ 6= 0 the basis vectors given by

maximizing the DA criterion will not guarantee to minimize
the Bayes error for the given data distribution.

We should note that a largeΘ indicates a severe “conflict”
between DA metrics. Therefore, the design of algorithms
minimizing Θ may have a beneficial effect on DA methods.

E. Subclass discriminant analysis

The between-subclass matrix (1) measures the scatter be-
tween all subclasses. Therefore, the overall solution provided
by the MDA criterion (2) may be biased towards the directions
minimizing the distance between subclasses of the same class.
In subclass discriminant analysis (SDA) [5], a more useful
objective function is used to emphasize the separation of
subclasses belonging to different classes

Jsda(Ψ) =
tr(ΨT SbsbΨ)
tr(ΨT ΣxΨ)

, (4)

whereSbs in (2) has been replaced bySbsb, measuring only
the scatter between subclasses of different classes

Sbsb =
C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hk∑

l=1

pi,jpk,l(µi,j −µk,l)(µi,j −µk,l)
T .

(5)
The optimization of (4) is done using an iterative procedure,
where at ther-th iteration a nearest neighbor based (NN-
based) clustering algorithm is used to provide a new subclass
partition of the data{X (r)

1,1 , . . . ,X (r)
C,HC

}. At each iteration

the number of the subclasses referring to thei-th class is
increased by one,H(r)

i = H
(r−1)
i + 1, and, therefore, the

total number of subclasses is increased byC, i.e., H(r) =∑C
i=1 H

(r)
i = H(r−1)+C. Each subclass partition is evaluated

using either a leave-one-out-cross-validation based (LOOCV-
based) criterion, or the DSC criterion (3) settingA = Sbsb

andB = Σx, and the best subclass partition is chosen as the
one that optimizes the respective criterion.

III. M IXTURE SUBCLASS DISCRIMINANT ANALYSIS

For data with a Gaussian homoscedastic subclass structure
and under stable situations (according to theorem 2.2) we pro-
pose the following mixture-based subclass objective function

Jmsda(Ψ) =
tr(ΨT SbsbΨ)
tr(ΨT SwsΨ)

. (6)

This provides a discriminant subspace that minimizes the
Bayes error, as can be easily proven by treating the Gaussian
homoscedastic subclasses as the main classes and constructing
linear likelihood classification rules [1].

A. Shortcomings of SDA

Here we show that the SDA objective function (4) proposed
in [5] is not equivalent with (6), i.e., SDA does not necessarily
minimize the Bayes error under the conditions identified at
the beginning of section III. The between-class scatter matrix
can be rewritten asSb =

∑C−1
i=1

∑C
k=i+1 pipk(µi−µk)(µi−

µk)T , (e.g., see [7]–[9]). Similarly to this, we can express the
between-subclass scatter matrix (1) as

Sbs =
C∑

i=1

Hi∑

j=1

C∑

k=i

Hk∑

l=Γ

pi,jpk,l(µi,j − µk,l)(µi,j − µk,l)
T ,

where,Γ =
{

j + 1 if k = i;
1 if k > i. . We can rewrite the above as

Sbs =
C∑

i=1

Hi∑

j=1

Hi∑

l=j+1

pi,jpi,l(µi,j − µi,l)(µi,j − µi,l)
T

+
C−1∑

i=1

Hi∑

j=1

C∑

k=i+1

Hk∑

l=1

pi,jpk,l(µi,j − µk,l)(µi,j − µk,l)
T

= Sbsw + Sbsb , (7)

whereSbsb (5) is the scatter of means of subclasses between
different classes (inter-subclass scatter of means) andSbsw is
the scatter of means of subclasses within the same classes
(intra-subclass scatter of means). Therefore, the sample co-
variance matrix can be expressed as

Σx = Sbs + Sws = Sbsb + Sbsw + Sws . (8)

Replacing this expression in the optimization criterion of SDA
(4), and assuming thattr(ΨT SwsΨ) > 0 we get

Jsda(Ψ) = tr(ΨT SbsbΨ)
tr(ΨT SbsbΨ)+tr(ΨT SbswΨ)+tr(ΨT SwsΨ)

= Jmsda(Ψ)
Jmsda(Ψ)+h(Ψ)+1 , (9)

whereh(Ψ) = tr(ΨT SbswΨ)
tr(ΨT SwsΨ)

is a function that varies indepen-
dently with Jmsda(Ψ). Due to this fact, theorem 2.1 can not
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be usedto show thatJsda(Ψ) and Jmsda(Ψ) have the same
maximum. Furthermore, according to (8) minimizingΣx has
the desired effect of minimizingSws, as well as the undesired
effect of minimizingSbsb. This conclusion is important as it
reveals a second drawback of SDA, i.e.,Σx can not be used
as the minimization metricB in theorem 2.2.

B. Mixture subclass discriminant analysis

Based on the above analysis and according to theorem 2.1
we further propose the following robust mixture SDA (MSDA)
objective function

J ′msda(Ψ) =
tr(ΨT SbsbΨ)
tr(ΨT Σ̆xΨ)

, (10)

whereΣ̆x is definedasΣ̆x ≡ Sbsb+Sws. The optimization of
(6) or (10) is performed using an iterative procedure similar
to SDA, and each subclass partition is evaluated using the
LOOCV-based criterion or the DSC criterion (3) settingA =
Sbsb andB = Sws.

Moreover, in contrary to SDA, at each iteration a specific
class is selected and only the number of subclasses of this
class is increased by one, i.e., only one additional subclass is
introduced at each iteration (H(r) = H(r−1)+1). The selection
of the class to be re-partitioned is done using a nongaussianity
criterion based on the skewness and kurtosis. Estimates of the
standardized skewness and kurtosis of theXi,j subclass along
the k-th dimension can be computed as follows,

γ
(n)
i,j,k =

1
Ni,j

∑
xk∈Xi,j

(xk − µi,j,k)n

σn
i,j,k

, (11)

setting n = 3 and n = 4 respectively, wherexk is the
k-th element of samplex, and µi,j,k, σi,j,k are the sample
mean and standard deviation ofXi,j subclass along thek-th
dimension. Then, an estimate of the skewnessγ

(3)
i,j and kurtosis

γ
(4)
i,j of theXi,j subclass can be obtained by averaging along

all dimensions

γ
(3)
i,j =

1
F

F∑

k=1

|γ(3)
i,j,k| , γ

(4)
i,j =

1
F

F∑

k=1

|γ(4)
i,j,k − 3| , (12)

where|β| denotes absolute value ofβ. Skewness and kurtosis
measure the deviation of a probability density from the Gaus-
sian density in terms of asymmetry and peakedness respec-
tively, and their estimates in (12) will be zero ifXi,j subclass
has a Gaussian distribution, and deviate from zero the more
the subclass distribution deviates from a Gaussian distribution.
Thus, a measure of nongaussianity ofXi,j subclass can be
defined asΦi,j = γ

(3)
i,j + γ

(4)
i,j and similarly a measure of

nongaussianity ofXi class with respect to its subclasses can
be defined as

Φi =
1
Hi

Hi∑

j=1

Φi,j =
1
Hi

Hi∑

j=1

(γ(3)
i,j + γ

(4)
i,j ) . (13)

Therefore,at ther-th iterationΦ(r)
i is computed for each class,

and the classXy to be re-partitioned is selected according to
the following rule

y = argmax
i=1,...,C

(Φ(r)
i ) . (14)

IV. EXPERIMENTS

A. Artificial dataset

An artificial dataset with Gaussian homoscedastic subclass
structure is used to justify the theoretical analysis of the
proposed method (Figure 1). The dataset consists of two
main classesX1,X2, and three subclassesX1,1,X1,2,X2,1, i.e.,
the first class consists of two Gaussian subclasses, whereas
the second class is a single Gaussian. The parameters of
the Gaussian distributions are:µ1,1 = [ 2 1 ]T , µ1,2 =
[ 6 − 3 ]T , µ2,1 = [ 5 0 ]T , Σ1,1 = Σ1,2 = Σ2,1 =
[ 1 0.7 ; 0.7 1 ]. The true subclass labelling of the data
is directly used, and LDA, SDA, and MSDA are applied to
derive the one dimensional projection that maximizes their
objective function. We should note that, in this example, re-
covering another 2D subspace would be useless, as this would
result in the same computational complexity and classification
error as the original space. The derived projection directions,
ψLDA, ψSDA and ψMSDA, are shown in Figure 1. As ex-
pected, LDA does not recover the optimal projection as the first
class consists of two separate Gaussian distributions. Although
the data have a clear subclass homoscedastic structure, SDA
also fails to provide the optimal projection. On the other
hand, using (10) MSDA correctly identifies the projection that
minimizes the Bayes error.

Fig. 1. Artificial dataset with Gaussian homoscedastic subclass distributions.

In a second experiment with the same data, we evaluate
two different formulations of the DSC criterion, denotedΘx
and Θws. In the former, the minimization metricB is set to
B = Σx as in [5], while in the latter the within-subclass
scatter matrix is used (B= Sws). The NN-based algorithm
[5] is applied to partition each class toL subclasses, where
L ∈ [1, 5]. Table I shows thatΘx is minimized forL = 1, i.e.,
this criterion suggests to preserve the original class structure,
which is clearly wrong. In contrary,Θws is minimized for
L = 2, which provides a better subclass division. This shows
that formulating the DSC criterion usingB = Sws (MSDA
algorithm) instead ofB = Σx (SDA algorithm) is more
effective for selecting the suitable subclass division.

B. Real-life datasets

A subset of the MediaMill Challenge dataset is used to eval-
uate the proposed algorithm for event recognition [10]. This
subset consists of 492 shots in total belonging to one of five
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TABLE II
Classification rates of various methods.

Dataset\ Method PCA LDA aPAC FS-LDA SDAS MSDAS MGMD SDAL MSDAL

MediaMill 68% (101) 64.9%(4) 63.5%(4) 63.9%(4) 67.2%(44) 68% (46) 69.5%(27) 69.3%(35) 71.4% (23)
Sheffield 94.9%(236) 95.5%(19) 96.6%(19) 96.8%(19) 96% (19) 97% (21) – 97.2%(31) 97.6% (24)

TABLE I
Comparison of the two different formulations of the stability criterion.

L 1 2 3 4 5
Θx 3 · 10−3 0.99 0.99 0.99 0.99
Θws 2 · 10−3 10−4 0.99 7 · 10−4 0.96

different sport events, namely, baseball, basketball, football,
golf and soccer. Each shot is represented by a 101-dimensional
model vector, where theκ-th component of this vector is in
the range[0, 1], expressing the degree of confidence that the
κ-th concept (out of 101 concepts) is present in the shot [10].
Likewise, the multiview Sheffield (previously UMIST) face
database is used to perform experiments for face recognition
[11]. This database offers 564 gray-scale cropped facial images
of 20 individuals. The facial images are scaled to size32×32
pixels using bicubic interpolation and then scanned column-
wise to provide 1024-dimensional feature vectors.

These two datasets are used for comparing the proposed
method (MSDAS or MSDAL) with SDAS , SDAL, principal
component analysis (PCA), LDA [2], fractional step LDA (FS-
LDA) [8], approximate pairwise accuracy criterion (aPAC)
LDA [7], and the method proposed in [9] for the maximization
of the geometric mean of divergences, denoted as MGMD(α),
where α ∈ [0, 1] is a combination factor. SubscriptsS and
L in SDA and MSDA denote that the optimization of the
algorithm is performed using the stability criterion or the
LOOCV procedure respectively. The latter, in the case of
MSDA, takes advantage of the objective function (10) and the
subclass partitioning of section III-B, but replaces the criterion
of theorem 2.2 with a well-performing but more computation-
ally expensive cross-validation procedure (e.g., see [5]). For
FS-LDA we experimented with different weighting functions
d−t, t = 4, 6, 8, 10, 12, where d is the Euclidean distance
between class means, and similarly, for MGMD(α) we used
different combination factorsα = 0.25, 0.45, 0.65, 0.85. The
evaluation of the methods is done by applying a 30-fold cross-
validation (CV) procedure, where at each validation cycleη%
of the samples from each class are removed to form the test
set, while the remaining(100− η)% of the samples are used
to form the training set. The values ofη were set toη = 20
andη = 60 for event recognition (MediaMill dataset) and face
recognition (Sheffield dataset) respectively. Test samples are
classified using the NN rule. For aPAC, FS-LDA, MGMD(α),
SDAL and MSDAL, at each CV cycle the maximum correct
classification rate (CCR) for the different examined dimen-
sionalities is retained. Consequently, the overall performance
of a method is measured using the average CCR (ACCR)
along all CV cycles. The ACCR of each algorithm along
with the average dimensionality of the discriminant subspace,
computed by averaging the dimensionality of the projected

samplesD along all CV cycles, are presented in Table II.
In this table we separate MSDAL, SDAL and MGMD from
the other methods to denote that they require considerably
more processing time during optimization. We should note
that we do not report results for MGMD on the Sheffield
dataset, because in this dataset the classes consist of only a
few high dimensional samples and MGMD, which requires the
inversion of class covariance matrices, is severely affected by
the SSS problem [12]. From these results it is concluded that
MSDAS outperforms SDAS and different LDA variants, and
that MSDAL provides the highest classification performance.

V. CONCLUSIONS

In this letter, two shortcomings of SDA have been presented
and upon their analysis MSDA has been proposed. Experimen-
tal results showed the effectiveness of the proposed method.
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