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Abstract: Adopting effective techniques to automatically detect and identify small drones is a very
compelling need for a number of different stakeholders in both the public and private sectors. This
work presents three different original approaches that competed in a grand challenge on the “Drone
vs. Bird” detection problem. The goal is to detect one or more drones appearing at some time point in
video sequences where birds and other distractor objects may be also present, together with motion
in background or foreground. Algorithms should raise an alarm and provide a position estimate only
when a drone is present, while not issuing alarms on birds, nor being confused by the rest of the scene.
In particular, three original approaches based on different deep learning strategies are proposed and
compared on a real-world dataset provided by a consortium of universities and research centers,
under the 2020 edition of the Drone vs. Bird Detection Challenge. Results show that there is a range
in difficulty among different test sequences, depending on the size and the shape visibility of the
drone in the sequence, while sequences recorded by a moving camera and very distant drones are the
most challenging ones. The performance comparison reveals that the different approaches perform
somewhat complementary, in terms of correct detection rate, false alarm rate, and average precision.

Keywords: drone detection; deep learning; drone vs. bird; automatic recognition; image and video
signal processing

1. Introduction

The use of drones, whose origin is in the military domain, has been extended to several
application fields including traffic and weather monitoring [1], precision agriculture [2],
and many more [3]. With the COVID-19 pandemic, there has been a radical increase in the
use of drones for autonomous delivery of essential grocery and medical supplies, but also
to enforce social distancing. Nowadays small quadcopters can be easily purchased on the
Internet at low prices, which brings unprecedented opportunities but also poses a number
of threats in terms of safety, privacy and security [4].

Already from the early days of powered flight, birds have been a concern to aviation
safety. Since 1912, bird strikes have caused 47 fatal accidents involving commercial air
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transport [5]. Since aircraft and birds share the same airspace at lower altitudes, the hazard
of bird strikes always exists. The cost of bird strikes to the aviation industry is estimated to
be more than one billion euros annually [6]. Similarly, unmanned aerial vehicles (UAVs)
bring an important set of challenges to the aviation industry. Despite the restrictions of
flying drones near airports, and reserved airspaces to ensure that they do not infringe each
others’ area, there are still several challenges involved.

Adopting effective detection and countermeasure techniques to face the rising threat
of small drones is a great concern of security agencies and governments today. There is
indeed a gap in current surveillance systems, since the small size and fast maneuvers make
drones a difficult category of targets to be detected, compared to traditional aircrafts [7–11].
Surveillance and detection technologies based on different modalities are under inves-
tigation, with different trade-offs in terms of complexity, maximum coverage in range,
and capabilities [12]. Technologies that have been employed include 3D LIDAR sensors,
passive radio detectors, video analytics, and passive acoustic sensors [13,14]. All these
technologies have pros and cons, if individually considered, and can be effective only
under specific operating conditions. Systems implementing an integrated approach that
combines the benefits of different technologies have been recently investigated also in
Horizon 2020 European research projects SafeShore ( http://safeshore.eu, accessed on: 14
April 2021) [15] and ALADDIN ( https://aladdin2020.eu, accessed on: 14 April 2021).

Technology can be well utilized in such cases to reduce human effort and provide
analytical data and representation. Artificial Intelligence (AI) is one such field that tries
to mimic how humans learn and is an active research field. This paper focuses on recent
advances on the detection of drones or birds using machine learning based approaches,
more specifically deep learning algorithms. The need for such sophisticated methods
stems from the recognised difficulty for air traffic controllers to detect and differentiate
between birds and drones. Even in computer vision, detecting and classifying drones and
birds under different operational conditions is a very challenging task. They are also not
easy to be detected at large distances as most object detection models are designed for
medium-sized object detection. Convolutional Neural Networks (CNNs) tend to look for
meaningful features that can help to classify the images or, in the case of object detection,
to draw the boundary boxes enclosing the target of interest. Unfortunately, only limited
annotated datasets were available for this purpose.

A Drone vs. Bird Detection Challenge has been launched ( https://wosdetc2020.wo
rdpress.com/Dronevs.Bird-detection-challenge/, accessed on: 14 April 2021) in 2017, dur-
ing the first edition of the International Workshop on Small-Drone Surveillance, Detection
and Counteraction Techniques (WOSDETC) [16] organized in Lecce, Italy, as part of the
14th edition of the IEEE International Conference on Advanced Video and Signal based
Surveillance (AVSS). A second edition of the challenge has been organized in 2019, again
as part of the WOSDETC and held at the 16th edition of AVSS in Taipei, Taiwan. The aim
of this challenge is to address the technical issues of discriminating between drones and
birds [16,17]. Given their characteristics, in fact, drones can be easily confused with birds,
particularly at long distances, which makes the surveillance task even more challenging.
The use of video analytics can solve the issue, but effective algorithms are needed that can
operate under unfavorable conditions, namely weak contrast, long range, low visibility, etc.

The present paper discusses and compares the most recent advances in this respect,
originated from the 3rd edition of the grand challenge held in 2020. The dataset of provided
video sequences has been expanding over the years, as it will be described in the following
section, and represents today one of the few freely available datasets for research in video-
based drone detection. Over the three editions of the challenge, more than one hundred
research groups from all over the world have obtained the dataset.

The rest of this paper is organized as follows. Section 2 describes the Drone vs. Bird
Detection Challenge 2020, including details on the dataset, evaluation protocol, and par-
ticipating teams. Section 3 provides a review of the state of the art on drone detection,
with emphasis on deep learning approaches, also reviewing the other datasets available in

http://safeshore.eu
https://aladdin2020.eu
https://wosdetc2020.wordpress.com/Drone vs. Bird-detection-challenge/
https://wosdetc2020.wordpress.com/Drone vs. Bird-detection-challenge/


Sensors 2021, 21, 2824 3 of 27

the literature. Sections 4–6 are individually devoted to the three best teams that excelled
in the 2020 edition of the Drone vs. Bird Detection Challenge, named “Gradiant Team”,
“Eagledrone Team”, and “Alexis Team”: the proposed approach, processing, and evaluation
results are illustrated for each team. Section 7 reports the performance comparison among
the three methods, and finally Section 8 concludes the paper.

2. Drone vs. Bird Detection Challenge 2020

In the following section, the Drone vs. Bird Detection Challenge 2020 is described.
First, the dataset and its characteristics are introduced, followed by a description of the eval-
uation protocol. Then, some general information about the participation in the challenge is
provided. Note that due to the COVID-19 pandemic, the challenge was not part of the 17th
edition of AVSS in Washington DC, USA, which was postponed. Instead, the challenge
was organized as a separate virtual event.

2.1. Dataset

The training set for the challenge consists of 77 different videos. The videos com-
prise 1384 frames on average, while each frame contains on average 1.12 annotated drones.
Eleven of these videos originate from the previous installment of the challenge and were col-
lected using MPEG4-coded static cameras by the SafeShore project and by the Fraunhofer
IOSB research institute. In 2020, 45 further videos have been contributed by the AL-
ADDIN project in 3 different resolutions, namely 1920 × 1080 @25 fps, 720 × 576 @50 fps,
1280 × 720 @30 fps. The videos have been recorded at two locations with different geo-
characteristics. The videos contain 7 types of drones: 3 with fixed wings and 4 rotary ones.
The sequences are mostly short in duration (about 1 min each) with the exception of 2
videos that are 5 min long. The remaining 21 training videos were provided by Fraunhofer
IOSB and were recorded at different locations in Germany. Such videos include 5 rotary
drone types. In total, the videos exhibit 8 different types of drones (see Figure 1).

Figure 1. Examples of drone types present in the dataset, i.e., Parrot Disco, 2 custom fix wing drones,
DJI Inspire, DJI Phantom, DJI Mavic, DJI Matrice and 3DR Solo Robotics.

Overall, the training set exhibits a high variability in difficulty, including sequences
with sky or vegetation as background, different weather types (cloudy, sunny), direct sun
glare and variation in camera characteristics (see Figure 2). Moreover, the distance of
the drones from the camera varies strongly across and within the videos, yielding large
variations in drone sizes as shown in Figure 3. The drone sizes are in the range between
15 pixels and more than 1,000,000 pixels. The majority of annotated drones exhibits a size
less than 162 pixels or in the range between 162 and 322 pixels. The small size of occurring
drones makes the detection task very challenging. Many of the videos are recorded with a
static camera but also moving camera recordings are included. Each video is associated
with a separated annotation file containing the frame number and the bounding box
(expressed as [topx topy width height]) for the frames in which drones enter the scenes.
Birds not individually annotated occur in several of the videos and are the main disturbing
object type (see Figure 4).
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Figure 2. Sample frames extracted from the training videos exhibit the large variability of the dataset.
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Figure 3. Distribution of drone sizes across the ground truth annotations in the train data.

Figure 4. Examples with birds that are the main disturbing objects.

The challenge test set consists of further 14 videos for which no annotations are
provided. The videos contain similar characteristics to the training set. Some of the
locations displayed in the test set are also contained in the training set, but not all. The
test set contains three sequences with moving camera. Longer sequences were shortened
to 1 minute in order to avoid individual videos from dominating the resulting evaluation
scores. The dataset is freely available for download upon signing a Data Usage Agreement
(DUA). The annotations are available at https://github.com/wosdetc/challenge, accessed
on: 14 April 2021.

2.2. Evaluation Protocol

The Drone vs. Bird Detection Challenge 2020 allowed up to three submissions for
each participating team. Each submission had to include a result file for each sequence
similar to the provided annotation files. The particular result files had to provide the
frame numbers and the predicted bounding boxes ([top_x, top_y, width, height]) and
corresponding confidence scores for each frame. If the frame number was not listed, no
detection was assumed. To rank the submitted results, the popular Average Precision (AP)
was employed as evaluation metric. AP is based on the Intersection over Union (IoU)
criterion for matching ground truth and detected object boxes. The IoU is the ratio of the
area of overlap between the estimated bounding box and the ground truth bounding box
to the total area of union:

IoU =
detection∩ ground truth
detection∪ ground truth

.

https://github.com/wosdetc/challenge
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Detections are counted as true positive detections, if an IoU with a ground truth
annotation is above 0.5. Otherwise detections are counted as false positives. Ground truth
annotations that are not assigned to a detection, are counted as false negatives, i.e., missed
detections. As the AP is calculated by taking the area under the precision-recall curve, it
summarizes the whole precision-recall curve into a single metric and thus, encompasses
the various precision-recall trade-offs of a detector. Note that the test sequences have been
made publicly available one week before the submission deadline. Notice also that the
rules of the challenge do not restrict the training data used by the algorithms to the Drone
vs. Bird training set only.

2.3. Participation

In this edition of the challenge, 23 teams from different countries requested the dataset,
but only three of them succeeded in submitting valid results. In Figure 5, an overview of
the nationalities of the teams that participated in the 2020 edition of the Drone vs. Bird
challenge (marked with red color) is given, together with a more general overview of all
the 108 research groups who requested the challenge dataset since its first edition (marked
with blue color).

As concerns the relationship between the authors and the challenge, one should note
that the first six co-authors of this paper organized and handled the challenge, including
the analysis of the results submitted by the participating teams. The remaining co-authors
are from the three teams that succeeded in submitting valid results.

Figure 5. Research groups that participated to the Drone vs. Bird Challenge up to March 2021.

3. Related Work
3.1. Drone Datasets

In the following, an overview of existing drone detection datasets that are publicly
available is provided. Note that only datasets are reported that comprise EO or IR imagery,
while drone detection datasets based on other sensor modalities are not considered.

The Drone Dataset: Amateur Unmanned Air Vehicle Detection [18] published in 2019
comprises more than 4000 images with drones, whereof the most images contain a DJI
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Phantom. The image resolution varies between 300 × 168 pixels and 4k. In addition,
the dataset contains images with non-drone objects.

The Small Target Detection database (USC-GRAD-STDdb) [19] comprises 115 video
segments retrieved from YouTube. The image resolution is 1280 × 720 pixels and annota-
tions are provided for more than 25,000 frames. In total, more than 56,000 small objects
whose sizes are in the range between 4 × 4 and 16 × 16 pixels are annotated. The small
objects are categorized into drone, bird, boat, vehicle and person. 57 video segments with
12,139 frames contain either drones or birds.

The Purdue UAV dataset [20] consists of 5 video sequences of 1829 frames. The video
sequences are recorded by a camera mounted on a custom airframe with 30 frames per
second. The image resolution is either 1920 × 1080 or 1280 × 960 pixels. Each video
sequence comprises up to 4 drones. Ground truth annotations for each video sequence are
publicly available.

The Flying Object Detection from a Single Moving Camera dataset [21] comprises 20
video sequences with UAVs. Each image has a resolution of 752 × 480 pixels and contains
up to two objects of the same model. The video sequences are recorded by a camera
mounted on a flying drone. The variable appearance of drones due to changing attitudes,
lighting conditions, and even aliasing and saturation caused by small sizes makes the
dataset challenging. In addition, 20 video sequences with aircraft retrieved from Youtube
are provided. The image resolution of these video sequences varies between 640 × 480 to
1280 × 720 pixels.

Recently, the Real World Object Detection Dataset for Quadcopter Unmanned Aerial
Vehicle Detection [22] has been published. The dataset consists 51446 images for train-
ing and 5375 images for testing. The images are either downloaded from the Internet
or recorded by the authors. As the original image resolution is in the range between
640 × 480 pixels and 4 k, all images are scaled to 640 × 480 pixels. The train set comprises
52,676 drone instances, while the test set only contains 2863 drone instances, so that 2750
images of the test set do not contain any drone. A semi-automated labelling pipeline has
been used to speed-up the annotation task. In the train set, about 40.8% of drones are
smaller than 322 pixels, while 23.4% are larger than 962 pixels. In the test set, approximately
36.3% of drones are smaller than 322 pixels, while 28.3% are larger than 962 pixels.

The Anti-UAV Challenge dataset [23] has been published in 2020. The 1st Anti-
UAV Challenge was part of the of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2020. In contrast to the Drone vs. Bird Detection Challenge, the task
of the Anti-UAV Challenge is single object tracking. The dataset comprises 160 video
sequences (both IR and EO). The resolution of the IR images is 640 × 512 pixels and the
resolution of the EO images is 1920 × 1080 pixels. Annotations are provided for 100 video
sequences to train the tracking algorithms, while only the bounding boxes are given for
the first frame of each test video. The videos are recorded by a static ground camera with
an automatic rotation platform that can be remotely controlled by a computer. Hence,
the image content is limited to only a few scenarios. Furthermore, only 4 different drone
types are considered, i.e., DJI Inspire, DJI Phantom, DJI MavicAir and DJI MavicPRO.

The Multi-view drone tracking datasets [24], which has been proposed for reconstruc-
tion of 3D flight trajectories from ad-hoc camera networks, consist of five datasets. The
first four datasets comprise a flying drone (hexacopter), which is captured with multiple
consumer-grade cameras, while the latter one comprises 3 drones. The number of cameras
ranges from 4 to 7 and the flight duration from 2 to 10 minutes. 2D annotations are provided
for the first four datasets in terms of a single point. Compared to the Drone vs. Bird Detec-
tion Challenge dataset, these datasets are either smaller in size or diversity or designed for
different tasks such as single object tracking or reconstruction of 3D trajectories.

3.2. Drone Detection

In recent years, the application of deep learning based detection methods led to
excellent results for a wide range of applications including drone detection. Due to the
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absence of large amounts of drone detection datasets, a two-staged detection strategy
has been proposed in [25]. The authors examined the suitability of different flying object
detection techniques, i.e., frame differencing and background subtraction techniques,
locally adaptive change detection and object proposal techniques [26], to extract region
candidates in video data from static and moving cameras. In the second stage, a small CNN
classification network is applied to distinguish each candidate region into the categories
drone and clutter. In [27], a detection framework able to cope with targets of different size
(in the range of less than ten to hundreds of pixels) as well as with varying illumination
conditions has been proposed. Similar to [25], the approach consists of a first module used
to detect the most probable regions containing the target, followed by a second module
that classifies the detected target in either drone or other flying entity (e.g., a bird). The
first module adopts the Region Proposal Network [28]—a deep learning based object
proposal technique—to extract candidate regions, which are classified in the subsequent
module by applying a CNN classifier. Spatio-temporal semantic segmentation has been
exploited in [29] to detect small targets based on two separate CNNs. In a first step,
a U-Net architecture is used to identify the areas of interest in an up-scaled version of
the input image [30]. Then, the classification step is performed by resorting to a ResNet
network, which selects the most probable areas containing the target of interest. The entire
process is further enhanced by using spatio-temporal patches that represent typical drones
trajectories; in doing so, the detector can more easily distinguish drones from birds. The
adoption of different CNN architectures (e.g., Zeiler-Fergus (ZF) [31], Visual Geometry
Group (VGG16) [32]) for drone detection has been investigated in [33]. To overcome
the limited amount of data available for training the deep networks, authors exploited
transfer learning from ImageNet and performed a pre-training to fine-tune the models. The
experimental results revealed that VGG16 with Faster Region Based Convolutional Neural
Network (R-CNN) achieves the best performance among all the considered architectures.
The authors of Drone Detection in Long-Range Surveillance [34] worked on a previous
iteration of the same dataset, with quite good results in the detection of small objects.
They applied a Faster R-CNN network with various backbones and showed that ResNet-
101 had the best results. In [35], an end-to-end detection algorithm able to predict the
presence of a target in a sequence of video frames is presented. It is based on the adoption
of the deep learning based detection method termed YOLOv2 [36], whose training is
performed using an artificial dataset obtained by mixing real birds and drones images,
each with a different background. The obtained results demonstrate that the diversity and
the scale of the dataset have a positive impact on the detection and tracking processes.
In [37], the authors adopted YOLOv2 for drone detection in images of a multi-camera
array, while Unlu et al. [38] proposed the usage of its more recent variant YOLOv3 [39]
for drone detection in a tracking pipeline. The applicability of the Single Shot MultiBox
Detector (SSD) in an image processing pipeline for long range drone detection has been
demonstrated in [12]. In [40], Super-Resolution (SR) techniques have been incorporated
in the detection pipeline, with the aim of increasing the maximum detection range of the
system. Before applying the detection algorithm, the input image is up-scaled by a factor of
2 by means of a deep DCSCN model [41]. A significant increase in the recall performance
was observed by exploiting the joint optimization effects due to an end-to-end training of
the models.

4. Gradiant Team

This section shows how to take advantage of CNN anchor based architectures by
adapting these model parameters to characteristics of the bounding boxes present in the
data, showing important improvements on accuracy. Notice that the results provided in
this section do not refer to the final challenge test set and are not the ones used to compare
the approaches from the different teams.
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4.1. Methodology

The choice of Cascade R-CNN [42] architecture with a 101 ResNeXt as backbone was
made from previous experience with Cascade and its performance in COCO benchmark.
Furthermore, this model uses a FPN which adjusts to small drone detection, since its base
level is constructed over a stride four with respect to the original image input size. This fact
increases the capabilities of the network for detecting smaller drones compared to other
popular architectures, as for example, RetinaNet [43] which uses stride 8 for the base level,
at the cost of increasing computational complexity.

The main alteration made by Gradiant team was to design a reduced set of anchors that
fit train data bounding box distribution so that the model can detect drones at very different
scales with high accuracy. In localization based on bounding box regression, ground truth
boxes only influence training loss when their maximum overlap with predefined anchors
is greater than a specific threshold, usually predefined at 0.5. For this to happen, scales and
aspect ratios of anchors have to be representative of the ground truth data distribution.
In Figure 6 a visualization of training bounding box distribution in absolute pixels with
respect to crop dimensions is shown. Two main facts can be observed from this plot: most
boxes have small dimensions with respect to the crop size, and they tend to have larger
width than height.
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Figure 6. Dimension distribution for bounding boxes in the training set.

A new method that adjusts these anchors dynamically given the input image size,
the number of feature pyramid levels and their correspondent strides, is proposed. The idea
is to maximize the overlap between ground truth bounding boxes and anchors, trying to
match all boxes with at least one anchor by making the overlap between them greater than
the established threshold. The authors have open sourced all code and made it publicly
available in Github https://github.com/Gradiant/pyodi, accessed on: 14 April 2021.

Figure 7 shows four different plots that summarize the result of this matching. In the
upper left corner it can be observed a cumulative overlap distribution over the matching
results. Less than a 10% of the total bounding boxes have maximum overlap values below
0.5, this is, only less than a 10% ground truth bounding boxes will not influence the training
(when the augmentation effects are not taken into account). Upper right corners show the
distribution of the bounding boxes dimension, color intensity represents the maximum
overlap that each of them obtain after matching with generated anchors. Most low matches,
represented with dark colors, are produced for extreme scale ratios. Finally, two bottom
plots represent an histogram with relation between bounding scale and mean overlap (left)
and log scaled scale ratios.

https://github.com/Gradiant/pyodi
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4.2. Datasets Used

In order to ensure a robust validation strategy, the authors manually split the videos
in the train and validation data trying to maintain both sets as independent as possible.
Hence, videos that were recorded at exactly the same location must belong to the same
data split. A final selection of 16 videos was used as validation set.

Most videos were recorded at high frame per second rates which results in a large
amount of identical images. For avoiding this effect a subsampling was carried on by
taking one out of each ten frames, in other words, only a 10% out of the total data was used
for training and validating our model.

Apart from challenge data, external datasets were used for training the final model.
The first of them is the Purdue UAV dataset [20], which can be publicly accessed and
contains a total of 70,250 frames that were also subsampled until reaching 27,864 frames
with 10,461 bounding boxes. The second dataset is private and consists of 22,236 frames
and 14,152 bounding boxes.

Most of the images have a resolution of 1980 × 1080 pixels and training a network
with images of such dimensions is unmanageable. The effect of downscaling input images
would result in a loss of information, which is critical for detecting very small drones.
Areas of small objects would embrace only a few pixels after being resized; for this reason,
image crops of 720 × 720 pixels were extracted from each image, following a sliding
windows approach.

Furthermore, different techniques for data augmentation were applied such as the
addition of different types of noise, such as Gaussian or Median blur. Color transformations
such as RGB shift, HSV shift, Additive Random Brightness and other transformations (e.g.,
random rotations or random cutouts) were also performed. All these operations were
added in a stochastic fashion during the training phase so images in each data batch were
randomly altered.

4.3. Experimental Evaluation

In order to evaluate the performance of the proposed approach, a comparison between
three different configurations is provided. The first of them uses a standard Cascade
R-CNN architecture, with standard anchor configuration extracted from COCO dataset
and has been trained using all previously mentioned data sources. The second model
uses custom anchors and has been trained using the Drone vs. Bird challenge data only.
Finally, the model submitted to the grand challenge uses personalized anchors and has
been trained with all the available data.
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All experiment results have been obtained over the previously mentioned validation
dataset which consist of 16 videos. Although competition results are evaluated against
AP@0.5, this metric is not useful for evaluating how a model would perform in real
world [44]. In such situations, a confidence threshold for discarding low quality predictions
and fusing its result with other sensors must be provided. All these facts are not taken
into account with AP which suggests the use of other metrics that better align with real
applications. In addition, most datasets for drone detection include very few categories
(usually one) and often just an object per image. Under these settings, the AP ignores all
false positives as long as the prediction with the higher confidence is assigned to the object
of interest, as illustrated in Figure 8, where both images obtain the same AP (1.0–1.0) but a
huge gap in moLRP (0.0–0.944).

(a) Threshold at 0.5. (b) No threshold.
Figure 8. Comparison between different thresholds under same image.

Figure 9 reports a precision versus recall at IoU score of 0.5 comparison of the three
different models. It can be easily observed how default anchors model has the worst
performance, which shows the importance of designing a proper anchor set for object
detection problems like the one in this challenge. Differences between final submission
and the model trained only with a reduced dataset are highlighted when model threshold
is increased, whereas the final submission is able to maintain higher recall values.

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

Recall

Pr
ec

is
io

n

Our Submission
Only DvsB data
Default anchors

Figure 9. Precision vs. Recall at IoU = 0.5.

A similar comparison is shown in Figure 10 where different IoU values and their
corresponding F1-score values are plotted for each of the trained models. Once again,



Sensors 2021, 21, 2824 12 of 27

best results are achieved by the submitted model. For larger IoU values the three of them
converge to similar scores and this is due to the difficulty of achieving large IoU values for
very small ground truth objects, where small differences result in large changes in IoU.
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Figure 10. F1 score result for different IoU thresholds.

In Figure 11, a comparison between the number of hits (true positives) and misses
(false negatives) is shown. Ground truth bounding boxes are divided in three different
categories depending on their scale, so that one can visualize how models perform with
respect to target sizes. It is clear that main differences occur for small drone detection,
where models trained with our custom anchor set are able to achieve a higher number of
hits and at the same time reduce the number of misses. This fact supports the decision
made by Gradiant Team of creating specific anchors suitable to match small drones during
training and increase the capabilities of the model for detecting them.

4.4. Discussion

The proposed method by Gradiant Team focuses on reducing the gap between model
architecture and dataset characteristics. Factors such the characteristic shapes of drones,
their size and their position on the image can be used to optimize training. The use of
dynamic anchors extracted from the datasets outperforms models that use traditional
anchor sets that were designed for working in general object detection problems. It is
clear that main differences occur for small drones, where custom anchors boost detection
capabilities of the model. Nevertheless, further progresses will require the use of temporal
information to integrate frame information and help, for instance, to characterize those
drones that move away from the camera. Furthermore, the exploration of new metrics that
properly represent the complexity of this challenge must be addressed, in order to reinforce
the exploration of techniques and models that can be used in real environments.
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Figure 11. Hits and misses for different bounding box scales.

5. EagleDrone Team

The approach proposed by Mitra and Rajashekar (referred to as EagleDrone team)
adopts pyramid networks combined with Faster R-CNN. Issues with training using less
data and lower resolution impacts of the images are also investigated. As for the previous
section, the results provided here do not refer to the final challenge test set.

5.1. Methodology

In some detection tasks, accuracy of the detection model is in higher priority compared
to speed. Two-stage detectors have a better accuracy but a slower inference time. Faster
R-CNN was indeed selected for its best speed. Real-time surveillance videos show that
birds or drones cannot move into the camera view angle and disappear from the frame
within a few seconds. Faster R-CNN has an inference time of 0.2 s per frame so even if
few frames are missed, accurate advisories can be provided. Since birds and drones are
quite small in the videos, a feature pyramid network was introduced in addition to the
Faster R-CNN.

Additionally to Faster R-CNN, YOLOv5 was tested to evaluate the balance between
speed and performance. Moreover, the use of super-resolution techniques to improve
performance was explored, using ESRGAN [45].

5.2. Datasets Used

There were three open-sourced datasets which were considered for the project. These in-
cluded Little Birds in Aerial Images, Drone vs. Bird Competition dataset, and Birds in
background of Windmills dataset.

The first dataset had images from an aerial view. As the problem statement required
images ground-level view, the first dataset could not be used. The other two datasets had
problems with annotations. The second one, which is provided for the challenge, had
annotations for only drones while the last dataset had annotations for birds. In the third
plausible dataset, the background and the position of the camera was always fixed. As it is
preferable to choose a dataset with enough variation, only the Drone vs. Bird challenge
dataset was selected, since it had a good number of videos with different shapes of drones
and backgrounds, and no additional dataset was included in the training of the algorithm.
Figure 12 is an example that shows multiple drones in the same image.
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5.3. Experimental Evaluation

An initial training step was done on a GPU in Google Colab. Due to file constraints
on Google Colab, only 3000 images were chosen for the first iteration of the training.
150 images were chosen for the validation set. Training was done for 30 epochs and the
validation loss was monitored. The checkpoints where the validation loss decreased was
saved and it ensured that the saved checkpoint was not overfitting. The training loss
decreased as expected and validation score was close to the training score and the nature
of the curve indicated that overfitting had not started till the last few epochs.

Figure 12. Detection of Multiple Objects.

After the first round of training, it was seen that in images like Figure 13, where the
background does not contain the sky, the drone was not detected. Figure 14 contains blue
and white background and the model can easily detect the drone. This is due to the fact
that in the training images, there were mostly objects with sky as the background so the
model had considered that fact to classify the object. Also, it classified birds as drones.
This might be because training images with birds were very low and contained drones
that looked like birds. Thus the model could not understand the fact that those were a
separate class.

Figure 13. Example of drone detection issue.
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Figure 14. Drone detection is feasible in white and blue background.

To address this problem, the loss on all the images were calculated. Images with
objects being unclassified will have a higher loss and this would have given an idea of
which images contain the most unclassified objects. 3000 of such images were selected
using a linear sampling probability. Thus the one having the higher error had the greater
chance of selection. It was retrained using the same method as before.

This variation of hard modelling removed the previous problem but it unclassified
other things as seen in Figure 15 [46]. Measuring Catastrophic Forgetting in Neural
Networks might be a reason for why this was happening. When the model received the
new images, it fine tuned the weights to predict the objects in the new set of images. But as
a result of the fine tuning, the model did not store the information that was present before
fine tuning.

Figure 15. Model classifying random objects.

YOLOv5 is the best one stage object detector that is available at the moment. The higher
models could not be fit into the Colab, so YOLOv5s which is the smallest of the models in
their model base was tried. Figure 16 shows that YOLOv5 did not give excellent results
and as it was unable to perform, further investigation on one-stage object detectors was
not done.

Figure 16. Left image is the ground truth. In the right image, YOLOv5 is not able to detect.

ESRGAN is one of the most successful super-resolution technique available. In this
model, a Generative Adversarial Network is used. The generator is a model that generates
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a super-resolution image from a low-resolution image. The discriminator tries to predict if
the image generated is a super-resolution image or a high-resolution image. The generator
tries to fool the discriminator while the discriminator helps the generator to improve by
letting it know where changes need to be done. The authors chose 80 × 40 resolution
images and downsized them to 20 × 10 images and tried to bring them back to 80 × 40.
The results were not promising, as it can be observed in Figure 17, although the approach
performed better than normal bi-linear interpolation. In the original paper, the image sizes
were 128 × 128 and they were extended to 512 × 512. In this case, the low-resolution
image size are about one-eighth of the original size. The 20 × 10 image quality was already
degraded, hence applying this technique was not beneficial.

Figure 17. Examples of ESRGAN in given Dataset. The top row indicates original image, the bottom
indicates respective GAN images.

5.4. Discussion

Due to the limitations of Google Colab, all the images (95,000) could not be trained at
once. Future enhancement could be to train the complete dataset in a single experiment
using a high-end machine. The super-resolution technique can be added to the model so
that it helps to classify smaller objects. Video object detection can also be investigated so
that classification between birds and drones can be easily done. Multi-sensory data from
radar and other sources can also be used to further improve on the model.

6. Alexis Team

Gagné and Mercier (referred to as Alexis team) proposed a drone detection approach
based on YOLOv3 [39] and taking a single RGB frame as input. By integrating an image
tiling strategy, this approach is able to successfully detect small drones in high resolution
images. In addition, the tiling method can reduce the processing cost to track a drone.
After the first detection in the entire frame, the algorithm can remain focused on the region
of interest around the target and reprocess the entire frame every X frames to detect new
drones. Also in this case, the results provided in this section do not refer to the final
challenge test set.

6.1. Methodology

Alexis team selected the single-stage object detector YOLOv3 [39] because of its good
trade-off between speed and accuracy. In this section, its architecture, implementation, and
training are discussed.

In YOLOv3, predictions are made at 3 different scales (1/32, 1/16 and 1/8 of the input
image resolution). For each scale, it uses 3 predefined anchors for which they selected the
default sizes of (10 × 13), (16 × 30), (33 × 23), (30 × 61), (62 × 45), (59 × 119), (116 × 90),
(156 × 198) and (373 × 326) pixels. For each anchor, the network regresses the bounding
box location/dimensions and predicts an objectness score (class-agnostic) along with
class-specific scores.

Alexis team leveraged the public PyTorch implementation of YOLOv3 with Spatial
Pyramid Pooling (YOLOv3-SPP) made available by Ultralytics [47]. Spatial Pyramid
Pooling [48] is a simple technique for which the input features are processed by pooling
layers of different sizes in parallel and then concatenated to generate fixed-length feature
vectors. For SPP employed in combination with YOLO [49], the original feature map
resolution is kept by applying max pooling with appropriate padding. Output feature
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maps are then all concatenated together along with the input. In YOLOv3-SPP, the SPP layer
is added between the end of the backbone and the YOLO classification/regression layers.

Alexis team used YOLOv3-SPP pretrained on the Microsoft Coco dataset [50]. Then,
the network was trained with Stochastic Gradient Descent (SGD) for 5 epochs with a
learning rate of 0.001 (multiplied by a factor of 0.5 after epochs 3 and 4) and mini-batches
of 24 images (when using a training resolution of 480px). The network was trained using a
single class (drone) and was optimized for objectness (using the binary cross-entropy loss)
and bounding box regression (using the complete Intersection loss [51] instead of the sum
of squared error loss proposed in YOLOv3 [39]). Figure 18 shows examples of successful
detections made by Alexis team approach.

Figure 18. Alexis team approach based on YOLOv3 [39] is able to detect small drones in high
resolution images by using an image tiling strategy. Here are some examples of successful detections
made by their approach (green: predictions, red: ground-truths).

6.2. Datasets Used

In this section, the datasets used for training is described, along with the strategy for
image tiling and data augmentation.

The main dataset to train and test their approach was the 2020 Drone vs. Bird Chal-
lenge. Alexis team removed one of the 77 available annotated sequence (it appeared to
have bad annotations) for a total of 106,485 frames. The dataset contains instances of drones
and birds, but is annotated for drones only.

Additionally, Alexis team generated 26,500 synthetic images following the procedure
suggested in the paper Cut, Paste and Learn [52]. In order to generate the dataset, around
100 close-up images of drones and birds were acquired from Google Images. Object masks
were manually generated. The objects were then pasted on outdoor backgrounds using
different blending methods. An example of such image is shown in Figure 21a. Similarly
to the Drone vs. Bird dataset, bounding box annotations were used only for drones.

The particularity of drone detection is that drones can be really small (10–20 pixels)
compared to a full high-resolution image. The standard procedure of downsizing im-
ages before feeding them to deep convolutional neural networks is therefore impractical,
as drones can become too small to be detected or distinguished from other flying objects.
At the cost of higher processing times, image tiling [53] is a strategy that has shown great
performances for detecting small objects. As shown in Figure 19, the image tiling strategy
consists of dividing the input image into multiple patches/tiles. For more robustness and
redundancy, an overlap can be added between tiles. It can especially help in cases where
drones are at the border of a tile.
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Batch creation

Figure 19. Image tiling strategy used at test time. The image is divided into multiple tiles of a certain size. These tiles
are then concatenated to form a batch, which is given in input to the detection network. Predictions from each tiles are
aggregated by adding offsets corresponding to their location in the original image. In their implementation, overlaps
between tiles are added for better robustness.

During training, Alexis team simulated image tiling with random cropping. In 80%
of the cases, a crop location is sampled that contained at least one drone (as shown in
Figure 20). Otherwise, the crop location is completely random. This strategy helps in
showing more positive examples of drones while also showing background examples.

Figure 20. Random cropping of an image patch/tile during training. In most cases (80% of the time),
the crop location is sampled to contain at least one drone. The rectangle in the image shows the area
covered by the possible crop locations for this drone.

During training, data augmentation techniques such as affine transformations, flips,
blurring, noise, brightness and several other augmentations from the Albumentations
package [54] were employed. Also, Alexis team used style augmentation [55], which
is based on style transfer and has been shown to improve robustness to domain shifts.
An example of an image for which style augmentation has been applied to is shown in
Figure 21b.

(a) Synthetic image. (b) Style augmentation.

Figure 21. Examples of different augmentations. In (a), this is a synthetic image generated with
Alexis team pipeline and (b) is an image on which style augmentation [55] has been applied.
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6.3. Experimental Evaluation

In this section, the performance of the approach is evaluated and experiments are
reported to show the impact of some hyperparameters such as the tile size and data
selection and augmentation strategies, which can have a significant impact. The AP was
used, which is the standard metric for object detection, for the evaluation.

In the following experiments, two different data sampling strategies to better measure
the generalization performance of their approach were used. The first data sampling
strategy used is the standard way of splitting data: all images were sampled into training
(85% of the images), validation (5%) and test (10%) sets. This strategy was named “known
sequences”, since images were sampled without taking the video sequence of the Drone vs.
Bird dataset into account (meaning that images in the test set could come from the same
sequence as images of the training set). For the second strategy, which is called “unknown
sequences”, contain exclusively 12 selected sequences for the test set and the images from
the remaining sequences were selected for training and validation. This is a more realistic
way of measuring the generalization performance of the approach by decreasing the odds
of overfitting the test sequences.

Alexis team first evaluated the impact of tile resolution on a seen and unseen sequence.
Results of this experiment are reported in Table 1. From the results, a tile resolution
of 480 pixels seems to be a good compromise in terms of detection performances and
processing time. The performance was evaluated on a PC equipped with an Intel Core
i7-7820X CPU, a Samsung 970 EVO PLUS SSD and a NVIDIA GeForce RTX 2080 Ti GPU.

Table 1. Impact of tile resolution on detection performances and processing time per image evaluated
on images from a seen and an unseen sequence.

Metrics/Tile Size (px) 320 480 640

Known sequence AP (%) 91.3 92.9 89.1
Unknown sequence AP (%) 56.1 57.8 44.3

Processing time per image (ms) 195 169 125

Subsequently, the impact of employing synthetic data and style augmentation during
training was evaluated. The results in Table 2 are reported for a test set filled with images
from an unseen sequence. In the first case, the performance of the approach when trained
only with images from the Drone vs. Bird (DvB) Challenge was evaluated. The impact of
adding the synthetic dataset and style augmentation was then evaluated. One can see that
for that data split, both strategies helped this approach to generalize better to images of the
unseen sequence.

Table 2. Performance of different training strategies evaluated on images from an unknown sequence.
The performance is reported when training only with images from the Drone vs. Bird (DvB) Challenge
and when the synthetic dataset and style augmentation are added.

Training AP (%)

DvB 52.2
DvB + synthetic 55.6

DvB + synthetic + style augmentation 57.8

Finally, the average performance for 5 different data splits for both seen and unseen
sequences are reported in Table 3. For the experiments, a tile size of 480 pixels and an
overlap of 100 pixels between each tile were used.
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Table 3. Results (AP) of Alexis team approach when testing on known and unknown sequences
sampled from the 2020 Drone vs. Birds Challenge. The mean and standard deviation for 5 different
data splits (1 run per data split) was reported.

Sequence AP (%)

Known 93.55 ± 0.6
Unknown 66.0 ± 13.5

6.4. Discussion

In their approach, Alexis team proposed to use YOLOv3 and use an image tiling
strategy to better detect small drones. To get a better generalization to different domain-
s/settings, they additionally used synthetic images and data augmentation techniques
such as style augmentation.

However, even with these strategies, due to the low background diversity in the
dataset likely caused by physical constraints, there is a high likelihood that some parts of
the dataset were overfitted. Results in Table 3 show the gap in performance when testing
on sequences that were not seen during training. It might be something of interest to
investigate in future iterations of the challenge.

Alexis team also noted that since their network is trained only to detect a single class
(drones), their detector is biased towards detecting drones and can struggle to distinguish
them from other similar-looking flying objects (especially if they are really small). Potential
solutions to reduce that bias would be to either train for more object classes (acquire more
images containing objects such as birds, planes, helicopters, etc. and annotate them) or use
multiple frames to acquire information about their flying patterns. For this project, they
have attempted to train with more negative examples (without annotating them). They
were able to decrease the number of false detections using this strategy. However, it also
significantly decreased the number of good detections, which resulted in worse overall
performance of the detector.

Finally, for the challenge, Alexis team submitted two different versions of their ap-
proach. The first one was trained with a combination of the Drone vs. Bird training dataset
and their synthetic images and the second one did not use the synthetic images. While
training with synthetic images improved results by 3% in own evaluation (Table 2), it
resulted in only a 0.2% improvement in the official challenge. A possible explanation can be
that the challenge was easier for their approach than the unseen data split they evaluated
on, therefore limiting the impact of the synthetic images.

7. Performance Comparison

This section discusses the results using the final challenge test set, in order to compare
the approaches from the different teams. The Drone vs. Bird Detection Challenge 2020
allowed up to three submissions for each participating team. Submission results for the
top three teams are given in Table 4. The evaluation relies on the popular AP metric for
object detection. Detections are counted as correct, when its intersection over union (IoU)
with a ground truth box is above 0.5. The final resulting scores are averaged across all 14
sequences of the test set.

Table 4. Comparison of detection results of the Drone vs. Bird Detection Challenge 2020. Each team
was allowed up to three submissions.

Submission Alexis [%] Eagledrone [%] Gradiant [%]

Run 1 79.8 66.8 80.0
Run 2 79.4 7 72.9
Run 3 7 7 75.2
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Team Gradiant obtained the best overall performance of 80% with Cascade R-CNN [42]
applied on 720 pixels crops using a sliding windows approach. In run 1, they personalized
the anchors and trained on additional datasets. In run 2, they trained with the standard
anchors while still training with additional data and in run 3, they used their personalized
anchors, but only trained with the data from this challenge. Team Alexis finished in second
place. They used YOLOv3 [39] applied on image crops of 480 pixels. In run 1, they used
additional synthetic data during training whereas in run 2, they only used the training data
of the challenge. Team Eagledrone finished in 3rd place by using Faster-RCNN [28]. Due
to limitations, they only trained their model on a subset of 3000 images.

Tables 5 and 6 list the resulting scores of each teams’ best submission in more detail for
each of the test sequences separately. In addition, precision-recall curves given in Figure 22
are used to visualize the resulting scores of each teams’ best submission for each of the
test sequences.

Table 5. Detailed comparison best run for each team in the Drone vs. Bird Detection Challenge 2020. The first column
denotes static or moving camera. The evaluation metric used for this dataset is AP. The evaluation is given for every
sequence of the test set. The overall averaged result is given at the bottom.

Sequence Static Alexis [%] Eagledrone [%] Gradiant [%]

GOPR5843_004 X 94.3 74.1 97.7
GOPR5845_002 X 98.1 94.7 98.7
GOPR5847_001 X 69.6 62.2 65.7
dji_matrice_210_midrange_cruise X 99.8 97.1 99.9
dji_mavick_mountain_cross 7 87.2 80.2 77.3
dji_phantom_mountain X 78.2 52.3 63.1
dji_phantom_close X 99.3 99.4 98.8
two_parrot_2 X 93.7 95.0 93.5
parrot_disco_long_session_2_1m 7 28.9 37.3 42.3
2019_08_19_C0001_27_46_solo_1m X 88.6 51.1 90.0
2019_08_19_C0001_57_00_inspire_1m X 87.9 81.0 91.2
2019_09_02_C0002_11_18_solo X 89.1 92.2 94.6
2019_10_16_C0003_52_30_mavic 7 15.8 36.3 54.8
2019_11_14_C0001_11_23_inspire_1m X 49.3 59.9 38.9
Overall 79.8 66.8 80.0

Table 5 clearly shows that there is a range in difficulty among the given test sequences.
Some sequences (e.g., dji_matrice_210_midrange_cruise) can be solved almost perfectly,
due to a relatively large and clearly visible drone in the sequence. Other sequences,
however, are much more difficult to handle for all approaches. This is particularly the case
for the latter two sequences that are either recorded by a moving camera or at twilight.
But also sequences that contain segments with very distant drones (e.g., GOPR5847_001)
can be challenging to the evaluated methods. Furthermore, the results show that the
submitted approaches actually perform somewhat complementary. On several sequences
the performances vary among the three approaches yet each approach achieves the best
overall score on some of the sequences. A combination of the design aspects of the three
methods thus looks to be a promising direction for future work.

Further insight into the resulting scores can be gained from Table 6, which compares
the number of present ground truth objects to the number of submitted detections, resulting
recall and implicitly the number of false detections. It can be observed that the Eagledrone
team generated much fewer detections, resulting in fewer false positives but also negatively
impacting the overall recall and resulting AP. Conversely, the other two teams’ results
exhibit very large numbers of detections, and thus many false positives, for some of the
test sequences. Naturally, such large numbers of detections result in better recall. The fact
that also AP is comparatively good indicates that many of these false positive detections
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are of a very low confidence score and thus do not affect AP very strongly and could be
filtered out in practical application.

Table 6. Comparison of detection results in terms of number of submitted detections (#Det) and resulting recall.

Sequence #GT Alexis Eagledrone Gradiant
#Det Recall #Det Recall #Det Recall

GOPR5843_004 438 1381 97.5 368 77.2 447 98.2
GOPR5845_002 544 1330 99.4 577 96.7 836 99.8
GOPR5847_001 318 443 70.4 217 62.3 427 66.0
dji_matrice_210_midrange_cruise 1469 1853 99.9 1498 98.5 1499 99.9
dji_mavick_mountain_cross 1551 3528 91.1 1453 83.0 2223 81.8
dji_phantom_mountain 1663 2668 84.0 1245 56.2 1774 69.5
dji_phantom_close 1193 1307 99.6 1195 99.6 1188 98.9
two_parrot_2 2789 2951 96.0 2990 96.2 2783 95.1
parrot_disco_long_session_2_1m 789 2585 43.3 1479 55.1 2151 68.7
2019_08_19_C0001_27_46_solo_1m 926 10,625 92.9 727 59.7 10,394 92.9
2019_08_19_C0001_57_00_inspire_1m 1219 8178 90.4 1052 81.9 6338 93.1
2019_09_02_C0002_11_18_solo 626 8152 89.1 676 94.4 4284 95.4
2019_10_16_C0003_52_30_mavic 733 57,005 40.2 478 44.1 1188 68.8
2019_11_14_C0001_11_23_inspire_1m 368 16,928 68.2 1156 64.9 21,898 56.8
Overall 14,626 118,934 87.4 15,102 72.9 57,430 87.2

GOPR5843_004
GOPR5845_002
GOPR5847_001
dji_matrice_210_midrange_cruise
dji_mavick_mountain_cross
dji_phantom_mountain
dji_phantom_close
two_parrot_2
parrot_disco_long_session_2_1m
2019_08_19_C0001_27_46_solo_1m
2019_08_19_C0001_57_00_inspire_1m
2019_09_02_C0002_11_18_solo
2019_10_16_C0003_52_30_mavic
2019_11_14_C0001_11_23_inspire_1m

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec

is
io

n

Team Gradiant

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec

is
io

n

Team Alexis

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec

is
io

n

Team EagleDrone

Figure 22. Comparison of the detection results in terms of precision-recall curves.

Figures 23 and 24 show qualitative detection results of each teams’ best submission. All
methods achieve good detection results for different drone types and a large range of drone



Sensors 2021, 21, 2824 23 of 27

sizes in different environments (see Figure 23). Negative detection results given in Figure 24
indicate remaining challenges such as small drones in front of structured backgrounds,
small disturbing objects and drones in front of unseen structured backgrounds.

Figure 23. Images crops showing qualitative detection results and the corresponding GT (green). Note that the detec-
tion results from Team Alexis (red), Team Eagledrone (blue) and Team Gradient (yellow) are enlarged to simplify the
visualization. All methods achieve good detection results for different drone types and a large range of drone sizes in
different environments.

Figure 24. Images crops showing qualitative detection results and the corresponding GT (green). Note that the detection
results from Team Alexis (red), Team Eagledrone (blue) and Team Gradient (yellow) are enlarged to simplify the visualization.
Remaining challenges are mainly small drones in front of structured backgrounds, small disturbing objects and drones in
front of unseen structured backgrounds.

8. Conclusions

This work presented the results of the 2020 Drone vs. Birds detection challenge. The
three best performing approaches were described and compared. The methods differ in
key design aspects and the results show that complementary strengths are exhibited for
each of the approaches. One should observe that the key challenges lie in the handling
of moving cameras and detection of distant drones. Thus, in future editions the training
and testing data will be expanded along these characteristics. A promising methodological
direction for future work will be to investigate the combination of design aspects from the
three approaches in order to evaluate and exploit their complementary nature.

It is worth noticing that the developed algorithms do not explicitly take birds into
account at the design stage in a supervised manner, since data are not annotated for birds.
Consequently, in test sequences where several birds appear (in particular, in one scene an
entire flock is present) false alarms generally increase for all methods, as birds are small as
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in case of distant UAVs. Annotation of video sequences also for birds is clearly an highly
time-consuming task hence is not scalable when in scenarios where many birds are found.
One of the tasks to be addressed is thus how to include bird targets in the training dataset,
also considering that the appearance of distant fixed-wing UAVs is very similar to birds.
Further research is needed on this topic, and will be considered in the future editions of the
Drone vs. Bird Detection Challenge.

Another aspect that deserves investigation is the understanding and interpretation of
the ultimate reasons why each algorithm has different performance on different sequences.
Future editions of the challenge may evaluate additional aspects such as computational
complexity (and real-time), use of additional datasets, ability to generalize to completely
different backgrounds, etc., as a means to grasp understanding of the many different trade-
offs at play among the numerous possible approaches and methodological combinations.
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