ON 3D PARTIAL MATCHING OF MEANINGFUL PARTS
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ABSTRACT specifically, in [1], for every object, a set of salient pgiig

defined and local shape descriptors, centered on the salient
ints, are computed. Then, the non-rigid Thin-Plate+&pli
PS) registration is used to identify the potentially hdoao

In this paper a method suitable for partial matching betwee
3D objects is presented. The 3D objects are firstly segment
Into meqnlngful parts extend|_ng a method which 'S based o ous subparts as sets of matching salient point pairs. |n [2]
the medial surface of the objects. Then, geometric featur

: e proposed partial matching approach is based on salient
are extracted for each part based on the S pherical Tra}ce—Tra eometric features. Every object is represented as a perfec
form. The extracted features are combined and their covar[

riangular mesh and salient geometric features are egftact

ance matrix is computed as a descriptor of each part. The o 4 stored using the geometric hashing approach. The num-
tribution of the proposed approach is that a meaningful seg;

. : . . . r of the salient geometric features is kept small by apglyi
mentation of .?’D ObJeCt.S baSEd on medial surfacg IS achleveéﬁ effective mesh simplification algorithm and by descigbin
gnd that partlal matchmg IS performeq on'meamngful partsevery saliency with the best approximated quadratic sarfac
in a rotation, translation and scaling invariant mannere Th In [3], partial matching is performed using a priority-civ
experimental results performed, proved that the propoped a {

h achi i tial matching in t i search approach. Every object is described by a set of lo-
proach achieves accurate partial matching in terms o ! cal 3D geometrical features. The method attempts to match
meaningful parts as well as satisfactory overall accuracy.

any subset of the query’s local features with any subset of
Index Terms— 3-D processing, 3-D feature extraction, any object in the database, using a priority queue, comgini

3-D segmentation the potential sets of feature correspondences (partiahea)

sorted by a cost function accounting both feature dissitjila

1 INTRODUCTION and geometric deformation.

All the aforementioned methods aim to find similarities

Three dimensional (3D) shape matching has evolved to a vef§etween small parts extracted from the objects’ surfacéshwh
promising research area during the last years and many a0 not have any particular meaningful interpretation. In or
proaches have been proposed aiming at the retrieval of geger to perform 3D object recognition contained in 3D scenes,
metrically similar objects. A new challenge in this reséarc Where the goal is the identification of the scene objectsr-a pa
area is the partial matching, which is a very important grere tial matching method is required where “more” meaningful
uisite in search and retrieval of 3D objects which are conparts will be identified. Moreover, the approaches presente
tained in 3D scenes. In general, 3D objects found in 3050 far are not always efficient especially when the mesh res-
scenes do not contain full shape information. Many of thenflution is low (i.e. when the 3D objects have small level-of-
are partially occluded by other scene objects. In order to pedetail), or when noise is present.
form a 3D shape retrieval for these objects, partial magchin  |n this paper, a novel partial matching method is presented,
methods are of particular interest. for matching large and meaningful parts of 3D objects. The
Only recently, few researchers have investigated appesacproposed approach is as follows: Firstly, the object is seg-
for partial shape matching based on feature correspongencenented into meaningful parts and then, every part is desgrib
The general idea behind the proposed methods is to compuiging a modification of Spherical Trace Transform (STT).
local geometrical descriptors for every object. Then, & cosThe STT is computed many times for every part and the co-
function is utilized to define the optimal matches, by mirgmi  variance matrix of the features constitutes the descriptor
ing the distances between corresponding local featurese Mothe part. The parts are compared in pairs utilizing a siétabl
metric.

This work was supported by VICTORY and CATER EC IST projects ) ) ]
and by PENED and altaB23D Greek projects. The rest of the paper is organized as follows: In Section 2



the proposed approach is described. More specifically,Bhe 3 '™
segmentation approach is presented in subsection 2.1 and i '

subsection 2.2 the descriptor extraction method is andlyze " A"»T,
while the matching process is discussed in subsection 2.3. 4 {
The experimental results are presented in Section 3 and the :{ :/
conclusions are drawn in Section 4. ¢ J

2. THE PROPOSED APPROACH
In this paper, the 3D object is segmented using a 3D seg-
mentation method based on the medial surface in the sense (b) Segments after
of creating “meaningful” segments. In general, a meaning- . an

(a) Initial Segments Re-adjustment

ful segment represents a component that can be perceptually
distinguished from the remaining object [4]. Then, every-se L
ment is described by a covariance matrix, computed on the I v
Spherical Trace Transform’s [5] feature vectors. 1= .

2.1. 3D Segmentation

In this section, a procedure for efficient extractionnagan-
ingful segments from 3D objects is described. Firstly, the me-
dial surface of the 3D object, which is represented as a pinar
volumetric function [5], is extracted based on the Hamilton
Jacobbi skeletonization algorithm presented in [6]. If 3ie
object is represented as a polygon mesh, a voxelization pro-
cess is prefaced [5]. Then, according to the notation used in

[7], the medial surface is segmented. This results in ailnit (c) Initial Segmented  (d) The Final Segmented

segmentation of the medial surface of the object (Figure 1a) Object Object
Secondly, a segment-readjustment technique is proposed

in this paper, in order to remove noisy surface parts. More Fig. 1. 3D Segmentation of the object.

specifically, the segments whose size is considerably small
when compared to the overall medial surface size, are elimi- _ )
nated. Then, all the adjacent line segments that are caethect?-2- Descriptor Extraction of the Segmented Parts

with degree — 2 nodes are merged into one segment. The degyery part of the 3D object is described with a rotation, scal
gree of a node is the number of edges incident to that nodgng and translation invariant descriptor, which is the gova
Finally, a segment which lies between two branch nodes anghce matrix of the Spherical Trace Transform (STT) [5], ap-
its size is considerably small, when compared to the overalyropriately modified in order to be computed at every obgect’
size, is eliminated. This procedure leads to a more meamingf 5y,

medial surface segmentation (Figure 1Db). More specifically, every part of the object is processed

Finally, a statistical-based approach is also proposed sgeparately and independently from the other parts as fsllow
as to segment the 3D object, by assigning every boundary

voxel to a medial surface segment. The steps for achieving
the latter are the following: Firstly, every surface voxehis-
signed to the closest segment, in terms of Euclidean distanc

This results in unacceptable segmentation in terms of mean- o The Spherical Trace Transform is computed for every

o A sphere with radius with center on every voxel’'s cen-
ter is considered.

ingful parts (Figure 1c). Then, a correction step followsdzh sphere and a matrik = [f; ... fy] is created, wherg
on the assumption that the surface of a segment is uniformly is the STT-based feature vector of the +h voxel and
distributed around the medial surface. By doing so, the Eu- N is the number of the voxels of the considered part
clidean distance is appropriately weighted with a facteeloa enhanced with the distance of the voxel from the mass

on the standard deviation of the distances of the surface vox center of the part. The process followed is analyzed in
els from the medial surface; thus, the surface voxels are re-  [5] More specifically, for every sphere of the part:
assigned to the closest medial surface segments, based on th

weighted Euclidean distance (Figure 1d). - R sample points of the sphere are considered, based



2.3. Matching Method

The matching is performed by comparing the parts in pairs
and then sorting the results. The computed distance is based
‘ on the generalized eigenvalues of the covariance matrices o

the two parts.

Let us assume th&t; andC; are two covariance matrices
describing two part$; and P;, respectively, not necessarily
of the same object. The distance between these parts is com-
puted as follows [8]:

Fig. 2. Using Spherical Trace
g g=p d(P;, P;) Zln k) 2)
on the icosahedral tessellation. where)\,, is thek — th generalized eigenvalue ¢ :}

- For every sample point of the sphere, the tangengngglon-rhe generalized eigenvalues are the _rlhl‘ o
plane is computed and the intersection of the plane q Cox — \C. . .l‘. N
with the part is extracted (Figure 2). X = AMGX _ 'y

- Every intersection can be treated as an image and 3. EXPERIMENTAL RESULTS : _-_ -
appropriate features can be computed. For the - " L
needs of this paper, 4 Krawtchouk and 4 ZemikeThe proposed approach was tested using usir = , -
moments have been computed [5]. ITI Database [5] consisted of 90 objects.

- The Spherical Fourier Transform is applied sepa-
rately on each feature of all tangent planes of the
same sphere so as to form the feature vegtfH]

]

(

. . ) 1

e The covariance matrix of the features vectfris com- i

puted as follows: (
C=F'xF (1)

whereF = (F — f x [1...1]) andf is the mean of;

The covariance matrixC fully describes the object in a
translation, rotation and scale invariant manner. The-rota
tion invariance is achieved by utilizing the STT, which is a
native rotation invariant method. Scale invariance is aeco
plished by computing the covariance matrix of the STT-basec
extracted features. Translation invariance is achievedsay
ing relative coordinates, centered at the mass center of th
part. It has to be mentioned that the covariance matrix is ¢
square and symmetrical matrid x M whereM =sizgf;),
which is constant and invariant to the number of the part's
voxels.

The advantage of using covariance matrices as a descrij
tor for every 3D part are:

e The computed descriptors are compact. The required S
number of descriptors |§“‘/1—+1 where M depends
on the selected number of STTs features.

e With the selection of the appropriate metric, fully rota-
tion, translation and scaling invariance can be achieved. Fig. 3. Retrieved Results.



Moreover, the method has been examined for global 3@he covariance matrix of Spherical Trace Transform descrip
search and retrieval application as follows: The query 3D0ors computed on every part's voxel. The matching is per-
object is segmented and then all meaningful parts queryinfprmed in pairs utilizing a dissimilarity metric based oreth
the database. Then, the global similarity metric is congbute generalized eigenvalues of the covariance matrices. The ex
based on the similarities of every pair. More specificallyp-s  perimental results proved that the proposed algorithm can a
pose that); andO, are two 3D objects segmented intband  curately retrieve similar parts. The main benefits of the pre
M parts respectfullyR!,i = [1...N], P2,i = [1L...M]). sented approach are: Firstly, it performs native scale and r
Without loss of generality, it is assumed thdt < N. Then tation translation invariant 3D part comparison, whichese
the distanced(P},Pf) for all (¢, 7) are calculated. Accord- sential for part matching in 3D scenes. Secondly, the aim
ing to the computed part distances, every part of the objedaif the presented approach is on retrieving simiheaningful
O, is associated to a part 6, and formM pairsd(P;, Pf). parts rather than small surface patches. Finally, the @m@gho

The global similarity metric is then computed as: approach can also used effectively for global 3D object re-
trieval.
1+01(N-M)

M
D(04,0,) = > d(pair;)  (4)
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