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ABSTRACT

In this paper a method suitable for partial matching between
3D objects is presented. The 3D objects are firstly segmented
into meaningful parts extending a method which is based on
the medial surface of the objects. Then, geometric features
are extracted for each part based on the Spherical Trace Trans-
form. The extracted features are combined and their covari-
ance matrix is computed as a descriptor of each part. The con-
tribution of the proposed approach is that a meaningful seg-
mentation of 3D objects based on medial surface is achieved
and that partial matching is performed on meaningful parts,
in a rotation, translation and scaling invariant manner. The
experimental results performed, proved that the proposed ap-
proach achieves accurate partial matching in terms of distinct
meaningful parts as well as satisfactory overall accuracy.

Index Terms— 3-D processing, 3-D feature extraction,
3-D segmentation

1. INTRODUCTION

Three dimensional (3D) shape matching has evolved to a very
promising research area during the last years and many ap-
proaches have been proposed aiming at the retrieval of geo-
metrically similar objects. A new challenge in this research
area is the partial matching, which is a very important prereq-
uisite in search and retrieval of 3D objects which are con-
tained in 3D scenes. In general, 3D objects found in 3D
scenes do not contain full shape information. Many of them
are partially occluded by other scene objects. In order to per-
form a 3D shape retrieval for these objects, partial matching
methods are of particular interest.

Only recently, few researchers have investigated approaches
for partial shape matching based on feature correspondences.
The general idea behind the proposed methods is to compute
local geometrical descriptors for every object. Then, a cost
function is utilized to define the optimal matches, by minimiz-
ing the distances between corresponding local features. More
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specifically, in [1], for every object, a set of salient points is
defined and local shape descriptors, centered on the salient
points, are computed. Then, the non-rigid Thin-Plate-Spline
(TPS) registration is used to identify the potentially homolo-
gous subparts as sets of matching salient point pairs. In [2],
the proposed partial matching approach is based on salient
geometric features. Every object is represented as a perfect
triangular mesh and salient geometric features are extracted
and stored using the geometric hashing approach. The num-
ber of the salient geometric features is kept small by applying
an effective mesh simplification algorithm and by describing
every saliency with the best approximated quadratic surface.
In [3], partial matching is performed using a priority-driven
search approach. Every object is described by a set of lo-
cal 3D geometrical features. The method attempts to match
any subset of the query’s local features with any subset of
any object in the database, using a priority queue, containing
the potential sets of feature correspondences (partial matches)
sorted by a cost function accounting both feature dissimilarity
and geometric deformation.

All the aforementioned methods aim to find similarities
between small parts extracted from the objects’ surfaces which
do not have any particular meaningful interpretation. In or-
der to perform 3D object recognition contained in 3D scenes,
where the goal is the identification of the scene objects, a par-
tial matching method is required where “more” meaningful
parts will be identified. Moreover, the approaches presented
so far are not always efficient especially when the mesh res-
olution is low (i.e. when the 3D objects have small level-of-
detail), or when noise is present.

In this paper, a novel partial matching method is presented,
for matching large and meaningful parts of 3D objects. The
proposed approach is as follows: Firstly, the object is seg-
mented into meaningful parts and then, every part is described
using a modification of Spherical Trace Transform (STT).
The STT is computed many times for every part and the co-
variance matrix of the features constitutes the descriptorof
the part. The parts are compared in pairs utilizing a suitable
metric.

The rest of the paper is organized as follows: In Section 2



the proposed approach is described. More specifically, the 3D
segmentation approach is presented in subsection 2.1 and in
subsection 2.2 the descriptor extraction method is analyzed,
while the matching process is discussed in subsection 2.3.
The experimental results are presented in Section 3 and the
conclusions are drawn in Section 4.

2. THE PROPOSED APPROACH

In this paper, the 3D object is segmented using a 3D seg-
mentation method based on the medial surface in the sense
of creating “meaningful” segments. In general, a meaning-
ful segment represents a component that can be perceptually
distinguished from the remaining object [4]. Then, every seg-
ment is described by a covariance matrix, computed on the
Spherical Trace Transform’s [5] feature vectors.

2.1. 3D Segmentation

In this section, a procedure for efficient extraction ofmean-
ingful segments from 3D objects is described. Firstly, the me-
dial surface of the 3D object, which is represented as a binary
volumetric function [5], is extracted based on the Hamilton-
Jacobbi skeletonization algorithm presented in [6]. If the3D
object is represented as a polygon mesh, a voxelization pro-
cess is prefaced [5]. Then, according to the notation used in
[7], the medial surface is segmented. This results in an initial
segmentation of the medial surface of the object (Figure 1a).

Secondly, a segment-readjustment technique is proposed
in this paper, in order to remove noisy surface parts. More
specifically, the segments whose size is considerably small,
when compared to the overall medial surface size, are elimi-
nated. Then, all the adjacent line segments that are connected
with degree− 2 nodes are merged into one segment. The de-
gree of a node is the number of edges incident to that node.
Finally, a segment which lies between two branch nodes and
its size is considerably small, when compared to the overall
size, is eliminated. This procedure leads to a more meaningful
medial surface segmentation (Figure 1b).

Finally, a statistical-based approach is also proposed so
as to segment the 3D object, by assigning every boundary
voxel to a medial surface segment. The steps for achieving
the latter are the following: Firstly, every surface voxel is as-
signed to the closest segment, in terms of Euclidean distance.
This results in unacceptable segmentation in terms of mean-
ingful parts (Figure 1c). Then, a correction step follows based
on the assumption that the surface of a segment is uniformly
distributed around the medial surface. By doing so, the Eu-
clidean distance is appropriately weighted with a factor based
on the standard deviation of the distances of the surface vox-
els from the medial surface; thus, the surface voxels are re-
assigned to the closest medial surface segments, based on the
weighted Euclidean distance (Figure 1d).

(a) Initial Segments
(b) Segments after

Re-adjustment

(c) Initial Segmented
Object

(d) The Final Segmented
Object

Fig. 1. 3D Segmentation of the object.

2.2. Descriptor Extraction of the Segmented Parts

Every part of the 3D object is described with a rotation, scal-
ing and translation invariant descriptor, which is the covari-
ance matrix of the Spherical Trace Transform (STT) [5], ap-
propriately modified in order to be computed at every object’s
part.

More specifically, every part of the object is processed
separately and independently from the other parts as follows:

• A sphere with radiusr with center on every voxel’s cen-
ter is considered.

• The Spherical Trace Transform is computed for every
sphere and a matrixF = [f1 . . . fN ] is created, wherefi
is the STT-based feature vector of thei − th voxel and
N is the number of the voxels of the considered part
enhanced with the distance of the voxel from the mass
center of the part. The process followed is analyzed in
[5]. More specifically, for every sphere of the part:

- R sample points of the sphere are considered, based



Fig. 2. Using Spherical Trace

on the icosahedral tessellation.

- For every sample point of the sphere, the tangent
plane is computed and the intersection of the plane
with the part is extracted (Figure 2).

- Every intersection can be treated as an image and
appropriate features can be computed. For the
needs of this paper, 4 Krawtchouk and 4 Zernike
moments have been computed [5].

- The Spherical Fourier Transform is applied sepa-
rately on each feature of all tangent planes of the
same sphere so as to form the feature vectorfi [5]

• The covariance matrix of the features vectorsfi is com-
puted as follows:

C = F̄
T × F̄ (1)

whereF̄ = (F − f̄ × [1 . . . 1]) andf̄ is the mean offi

The covariance matrixC fully describes the object in a
translation, rotation and scale invariant manner. The rota-
tion invariance is achieved by utilizing the STT, which is a
native rotation invariant method. Scale invariance is accom-
plished by computing the covariance matrix of the STT-based
extracted features. Translation invariance is achieved byus-
ing relative coordinates, centered at the mass center of the
part. It has to be mentioned that the covariance matrix is a
square and symmetrical matrixM × M whereM =size(fi),
which is constant and invariant to the number of the part’s
voxels.

The advantage of using covariance matrices as a descrip-
tor for every 3D part are:

• The computed descriptors are compact. The required
number of descriptors isM(M+1)

2 , whereM depends
on the selected number of STT’s features.

• With the selection of the appropriate metric, fully rota-
tion, translation and scaling invariance can be achieved.

2.3. Matching Method

The matching is performed by comparing the parts in pairs
and then sorting the results. The computed distance is based
on the generalized eigenvalues of the covariance matrices of
the two parts.

Let us assume thatCi andCj are two covariance matrices
describing two partsPi andPj , respectively, not necessarily
of the same object. The distance between these parts is com-
puted as follows [8]:

d (Pi, Pj) =

M∑

k=1

ln2(λk) (2)

whereλk is thek − th generalized eigenvalue of matricesCi

andCj . The generalized eigenvalues are the solutions of the
equation:

Cix = λCjx (3)

3. EXPERIMENTAL RESULTS

The proposed approach was tested using using a subset of the
ITI Database [5] consisted of 90 objects.

The method was evaluated for its accuracy to retrieve sim-
ilar parts. In all cases, the algorithm retrieved the most geo-
metrically similar parts of all objects. In Figure 3, an example
of the performance of the proposed approach is depicted. The
first column contains the query part while the rest are the first
four retrieved parts. The query and the retrieved parts are col-
ored, while the rest of the object is gray.

An interesting result is shown in the last row of Figure 3,
where even if the query part was a human leg, the forth re-
trieved part belongs to an animal’s leg. Although these items
are semantically irrelevant, they are geometrically similar.

Fig. 3. Retrieved Results.



Moreover, the method has been examined for global 3D
search and retrieval application as follows: The query 3D
object is segmented and then all meaningful parts querying
the database. Then, the global similarity metric is computed
based on the similarities of every pair. More specifically, sup-
pose thatO1 andO2 are two 3D objects segmented intoN and
M parts respectfully (P 1

i , i = [1 . . . N ], P 2
i , i = [1 . . . M ]).

Without loss of generality, it is assumed thatM < N . Then
the distancesd(P 1

i , P 2
j ) for all (i, j) are calculated. Accord-

ing to the computed part distances, every part of the object
O1 is associated to a part ofO2 and formM pairsd(P 1

i , P 2
j ).

The global similarity metric is then computed as:

D(O1, O2) =
1 + 0.1(N − M)

M

M∑

i=1

d(pairi) (4)

The results are depicted in Figure 4 in terms of Precision-
Recall diagrams [5] and are compared with the Spherical Har-
monics Descriptor (SHD) presented in [9].

Precision-Recall Diagrams are commonly used to evalu-
ate the performance of search and retrieval tools. Precision is
the ratio of the number of the correct retrieved results withthe
number of the total retrieved results, while recall is the ratio
of the number of correct retrieved results with the number of
the total correct objects stored in the database [5]. The pro-
posed method slightly outperforms the Spherical Harmonics
Descriptor, however the main goal of the proposed approach
is to achieve partial matching.

Fig. 4. Precision vs Recall

4. CONCLUSIONS

In this paper a novel approach for 3D object partial matching
applications, was proposed. In this approach, the aim was the
matching of rather meaningful parts instead of small surface
parts, which is more important for practical applications.The
medial surface of the 3D object was extracted and segmented.
Based on the medial surface segments, the object was seg-
mented into meaningful parts. Every part was described by

the covariance matrix of Spherical Trace Transform descrip-
tors computed on every part’s voxel. The matching is per-
formed in pairs utilizing a dissimilarity metric based on the
generalized eigenvalues of the covariance matrices. The ex-
perimental results proved that the proposed algorithm can ac-
curately retrieve similar parts. The main benefits of the pre-
sented approach are: Firstly, it performs native scale and ro-
tation translation invariant 3D part comparison, which arees-
sential for part matching in 3D scenes. Secondly, the aim
of the presented approach is on retrieving similarmeaningful
parts rather than small surface patches. Finally, the proposed
approach can also used effectively for global 3D object re-
trieval.
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