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ABSTRACT

Multi-party 3D Tele-Immersive (TI) environments, support-

ing realistic interaction among distant users, is the future of

tele-conferencing. Real-time, full-body 3D reconstruction, an

important task for TI applications, is addressed in this pa-

per. A volumetric method for the reconstruction of watertight

models of moving humans is presented, along with details

for appropriate texture-mapping to enhance the visual qual-

ity. The reconstruction uses the input frommultiple consumer

depth cameras and specifically Kinect sensors. The presented

results verify the effectiveness of the proposed methodolo-

gies, with respect to the visual quality and frame rates.

Index Terms— 3D reconstruction, texture mapping, real-

time, Microsoft Kinect, volumetric fusion

1. INTRODUCTION

Future communication systems will enable multiple geo-

graphically distributed users to share common experiences,

as if were in the same location. Such realistic inter-personal

communications can be supported by the realization of multi-

party 3D Tele-Immersive (TI) environments [1] (Fig. 1). In

this paper, we deal with the challenging task of full 3D recon-

struction of moving humans in real-time, an important task

for TI applications. Reconstruction is achieved by the fusion

of multiple RGB-Depth data, captured by multiple Microsoft

Kinect sensors.

Many accurate methods for full-geometry 3D reconstruc-

tion from multiple passive RGB cameras can be found in the

literature (e.g. [2]). Unfortunately, these are not applicable

in real-time applications, since they require a processing time

of several minutes per frame. Regarding methods that use ac-

tive direct-ranging sensors (e.g. [3]), most of them present

high accuracy but have not been used in real-time applica-

tions. Instead, they are applied off-line to combine range data

captured by a single sensor. On the other hand, most of the

relevant real-time TI-oriented approaches (e.g. [1, 4]), fuse
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partial 3D data only at the rendering stage, in order to syn-

thesize intermediate 2D views for user-given viewpoints. In

contrast, the proposed method produces a full-geometry 3D

textured mesh that can be rendered using standard computer

graphics. Several previous works on Kinect-based 3D recon-

struction can be found [5, 4, 6]. In KinectFusion [5], the prob-

lem of 3D indoor static scenes reconstruction is addressed

through the fast fusion of multiple depth scans from differ-

ent positions, captured by a single hand-held Kinect sensor.

The ReconstructMe system (http://reconstructme.

net/) share similar ideas to off-line generate models from

a single handheld Kinect. In [4], an efficient TelePresence-

oriented system with 6 Kinects is presented. However, it com-

bines the separate 3D meshes from each Kinect only at the

rendering stage to produce intermediate stereo views, rather

than producing a single 3D mesh model. In [6], we have pre-

sented a multi-Kinect system that can produce a single 3D

mesh of the upper human body in real-time. In contrast to

[6], the presented work fuses implicitly the information from

all Kinects to produce water-tight models. In addition, the

current paper presents ideas to improve the visual quality of

the textured 3D reconstructions.

2. CAPTURING SETUP AND CALIBRATION

The capturing system is comprised of K = 5 Kinect sen-

sors, connected on a single host PC, which features an Intel

i7 processor (3.2GHz) and 8GB RAM, as well as a CUDA-

enabled graphics card NVidia GTX 560. One sensor is placed

horizontally at a height of 1.30m, to capture the front upper
body. The remaining four sensors are placed vertically, at a

height of approximately 1.80m, with a small angle (approx-
imately 25o) towards the floor to capture the whole human

body. They are positioned on a circle of diameter 3.60m and

all pointing to the center of the working volume. Given this

spatial arrangement and the cameras’ FoV, an “active” circle

of diameter 2.40m is introduced, where the whole human

body is captured.

In order to fully calibrate a single Kinect, we used the

method of [7], which simultaneously estimates the depth and

the RGB camera intrinsic parameters (with radial distortions),

as well as the relative pose between them. Additionally, it



Fig. 1. An advanced user is reconstructed from multiple

Kinects (middle), a simple user from one Kinect (right) and

autonomous avatars are used to populate the world (left).

estimates a depth distortion model for the depth sensor.

With respect to the external calibration of multiple Kinects,

we developed a method that uses a custom-made calibration

object with three intersecting large planar surfaces and ex-

ploits the input from the depth sensors: i) The calibration

object is moved to various positions inside the working vol-

ume and captured simultaneously by all sensors; ii) For each

captured frame, the three planar surfaces are detected in the

depth images; iii) We initially perform a fast initial pairwise

coarse calibration based on the normal vectors of the detected

planes; iv) Then, refinement of the sensors’ pose estimate is

realized, by minimizing the mean squared distance of the re-

constructed points on the three planes with the corresponding

planes in a reference camera; v) Finally, a global, all-to-all

and for all frames ICP optimization procedure is followed.

If one has a good initial estimate for the camera poses (e.g.

when the camera positions have been slightly changed), one

can go directly to the last phase and without using the specific

calibration object. Instead, he/she can capture any object of

interest (e.g. a human) in a large number of static poses.

3. RECONSTRUCTION AND TEXTURE MAPPING

3.1. Preprocessing

• A weak 2D bilateral filter is applied to the depth maps to

reduce Kinect measurements noise.

• A binary silhouette map Sk(u) is generated from each

depth image k = 1 . . .K , by segmenting out the fore-

ground object of interest (captured human).We are in-

terested in removing existing objects in the scene (e.g.

floor, chairs) and reconstruct only the captured human.

Therefore, before the human enters the scene, a robust

“background” depth image is constructed by appropriately

accumulating multiple depth frames. Then, the foreground

object is segmented out by checking the absolute difference

of the current frame from the accumulated background,

considering a fixed threshold equal to 20mm.

• An associated confidence map is calculated: Ck(u) =
max{d(u)/d0, 1}, where d(u) is the Euclidean 2D dis-

tance of pixel u to the background pixels and d0 = 20

Table 1. Processing time/rate & number of GL Primitives

METHOD / PROCESSING NUMBER OF

ENHANCEMENT TIME/RATE VERT./FACES

Separate meshes 78ms / 13fps 228,581 / 445,447

Volumetric simple 110ms / 9.1fps 43,431 / 84,802
+Mesh smoothing 131ms / 7.6fps ”
+Weighted text. map. 134ms / 7.5fps ”
+Color matching 170ms / 5.9fps ”

pixels is a predefined parameter. This kind of map is

associated to the confidence of a depth measurement, ac-

counting for the fact that Kinect measurements near object

boundaries are noisy.
• A normal map, let Nk(u), is calculated by performing a

simple terrain Step Discontinuity Constraint Triangulation

(SDCT) [6] on the depth-image plane and assigning to each

vertex (pixel) the vector normal to the plane introduced by

the vertex and its connected neighbor vertices.
• The 3D bounding box of the foreground object is estimated

and discretized intoNX×NY ×NZ = 27×28×26 voxels.

3.2. Surface reconstruction

We aim at computing an appropriate volumetric function

V (X), which is negative (empty) outside the captured solid,
positive (occupied) inside the solid and (almost) zero near its

surface. All of the K depth camera observations contribute

in a weighted manner to V (X). Therefore, a cumulative

weight functionW (X) is also used. The employed approach
is similar to the volumetric Signed Distance Function (SDF)-

based one [3, 5], but takes into account the fact that opposite

sides of the solid objects are captured by opposite Kinects

and produces almost watertight models. A parameter µ is

used in the algorithm and selected equal to 30mm. Very

large values of µ results to interfering of surfaces on opposite

sides of the object, while small values of µ will not robustly

fuse the noisy depth data. In order to simplify the descrip-

tion of the algorithm, we use the ”voxel-state” flag values

EV and UOV to represent “Empty Voxels” and “Unknown-

Occupancy Voxels”, respectively. Additionally, the flag OSV

is used to characterize a voxel that projects Outside all the

Silhouette images Sk(u), k = 1 . . .K .
1. Initialization: Set V (X)← UOV andW (X)← 0, ∀X.
2. Volume calculation: For each depth camera k sequen-

tially, and for each voxel X in parallel CUDA threads:

• If V (X) = EV, leave it unchanged. Otherwise,
• Transform X to the camera’s coordinate system, to obtain

Xk = [Xk, Yk, Zk]
T and project to the image plane to get

the observed depth Dk(uk), uk = Π(Xk), where Π(Xk)
denotes the projection of Xk to the 2D depth image plane.

(a) If Xk projects outside the object’s silhouette and

V (X) = UOV, set V (X)← OSV. Otherwise,

(b) Based on the observed depth, get the actual 3D point

Xa

k. Calculate the SDF d1 = sgn(Za

k
−Z)·d(Xk,X

a

k),
where d(Xk,X

a

k
) is the distance between Xk and X

a

k
.



Fig. 2. i) Volumetric reconstruction after appropriate background subtraction (no enhancement); ii) Smoothed model with-

out texture; iii) After weighted texture mapping; iv) After color matching; v) 5 separate meshes, reconstructed with terrain

triangulation on the image plane [6].

(c) If d1 < −µ, set V (X)← EV. Otherwise,

(d) If d1 > µ, do nothing. Otherwise,

(e) Set:
V (X)←

W (X) · V (X) + wk(X) · d

W (X) + wk(X)

W (X)←W (X) + wk(X), (1)

where wk(X) is appropriate weight, discussed later.

3. Finalization: Replace the flag values with scalars:

V (X)← µ ∀X : V (X) = UOV

V (X)← −µ ∀X : V (X) = EV or OSV

The surface is reconstructed by the extraction of the zero-

level isosurface of V (X), using the marching cubes algorithm
[8]. The volumetric reconstruction part of this subsection,

was implemented using the CUDA processing architecture.

Appropriate weights: The selection of the weight wk(X)
have to be based on the “quality of the corresponding mea-

surement, i.e. the depth measurement on the pixel uk =
Π(Xk). Depth measurements near the object boundaries are
noisy and this information is contained in the confidence

maps Ck(u) (subsection 3.1). Additionally, the “quality of a
depth measurement strongly depends on the “viewing” angle

with which a Kinect captures the actual surface. Therefore,

wk(X) should additionally depend on the angle between

the surface’s normal vector at point X and the unit vector

X1

k
= −Xk/||Xk|| that connects Xk with the depth camera.

According to the above, the weights are calculated from:

wk(X) = max{X1

k • Nk(u), 0} · Ck(u) where u = Πk(Xk)
and “•” denotes the inner product, while the normals Nk(u)
have been calculated during preprocessing (subsection 3.1).

Post smoothing: A fast mesh smoothing operation is applied

to the reconstructed mesh, which calculates the average posi-

tion of each vertex with its connected neighbor vertices.

3.3. Texture mapping

There are vertices in the reconstructed model that are visible

in more than one RGB cameras. Therefore, colors from more

than one Kinect have to be combined in a weighted manner

to produce a single color per vertex. Notice that the weights

wk(X) themselves contain visibility information (wk(X) are
normally zero at those X that are invisible in the k-th cam-
era). Additionally, they are small near the object boundaries,

where inaccurate Depth-to-RGB camera registration (cali-

bration) might lead to color-mapping artifacts (e.g. color of

the background assigned on the reconstructed foreground ob-

ject). Therefore, we use the already calculated weightswk(X)
themselves in order to speed-up the color-mapping process.

An additional important fact that have to be taken into ac-

count is that volumetric-based 3D reconstruction methods

produce generally a relatively low number of number trian-

gles and vertices (depending on the voxels number), lower

than the number of pixels in the original 2D domain. There-

fore, a color-per-vertex approach will lead to color aliasing,

producing low visual quality. To deal with this, we employ

full texture mapping by projecting vertices onto the RGB im-

ages to find UV coordinates and assigning multiple textures

in each triangle with OpenGL multi-texture blending.

3.3.1. Color matching in multiple RGB cameras

The Kinect RGB sensor allows only automatic white-balance

and exposure control. This may yield color values that vary

between adjacent Kinect RGB views. We use an on-the-fly

technique that builds color matching/correction functions dur-

ing reconstruction (in a parallel working thread). Such a func-

tion aims at minimizing the color difference between pairs of

pixels in two cameras that capture (approximately) the same

3D points on diffuse surfaces. The approach is similar to the

one used in [4], with some significant differences however.

Obtaining pixel correspondences: Given the reconstructed

3D model, we project the 3D vertices onto the RGB image

planes to get color correspondences in adjacent RGB cam-

eras. In order to build robust color matching functions, we

accumulate color correspondences in multiple frames. Other-

wise, there may be too few correspondences, especially if the

captured surfaces have a limited range of colors.



Fig. 3. Example reconstructions, in various poses.

Fig. 4. Example reconstructions, in various poses.

Estimating color matching functions: We found in prac-

tice that an RGB-separately approach [4] may lead to color

artifacts when the range of colors in the foreground object

is limited (e.g. a specific color channel is missing). There-

fore, we preferred to work in the HSV color-space, which is

also closer to the human visual perception. Moreover, it is

expected that the Hue (H) component is not affected by the

exposure control. We also experimentally found that the Sat-

uration (S) component is only slightly affected and mainly the

V (Value) component is practically modified. Therefore, we

build a single color mapping function for the V component. A

linear model is used, found by robust regression on the data.

3.4. Reconstruction results

The improvement of visual quality by the proposed steps is

demonstrated in Fig. 2. A comparison with terrain triangula-

tion on the depth-image [6] is also given. Results with respect

to the processing time and the average number of generated

GL primitives are presented in Table 1. These were obtained

for a whole sequence of 500frames, with a representative

frame as in Fig. 2. With much fewer GL primitives the vi-

sual quality is superior and the real-time constraints are still

satisfied. Finally, textured results are also given in Figs 3, 4.

4. CONCLUSIONS

We presented a complete system for realistic 3D reconstruc-

tion of moving humans, which can used in real-time appli-

cations, such as 3D TI. The system is composed of multiple

Kinect sensors. A volumetric reconstruction method was de-

scribed, which when implemented in CUDA can run in real-

time. The reconstruction method, together with the presented

texturemappingmethodology, can produce quite accurate and

realistic results, even under the real-timeness constraints.
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