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ABSTRACT
In this work, we explore the potential of exploiting activity-

related global features in order to improve the performance of

an existing human Time-Varying Mesh (TVM) compression

scheme. The TVM compression scheme used, employs two

kinds of frames, namely Intra(I)-Fames and Enhanced Pre-

dicted(EP) Frames. In this scheme, I-Frames are used as a ref-

erence to encode EP-Frames. The paper introduces a strategy

for selecting the most appropriate I-Frame that will serve as

a reference frame for the encoding of EP-Frames, exploiting

activity-related characteristics. Two different strategies are

presented, using a skeleton-matching criterion and a periodic-

ity measurement metric based on human skeleton. Evaluation

is conducted on two sequences of the MPEG-3DGC database

[1]. Results show that the concept is sound, but they also re-

veal the sensitivity of the proposed methods to the skeleton

quality, thus the need for more robust skeleton tracking tech-

niques.

Index Terms— time-varying mesh, compression, skele-

ton matching, periodicity estimation

1. INTRODUCTION

Real-time transmission of full 3D realistic representations of

moving humans is a challenging issue, due to the vast amount

of information they entail. Although technology allows for in-

creasingly large bandwidths, still, transmitting 3D meshes in

real-time necessitates robust compression algorithms. When

those meshes originate from sensing real environments, such

as when using a low-cost depth camera like Microsoft Kinect,

they constitute Time Varying Meshes (TVMs) with variable

geometry, as well as connectivity across frames. In most re-

search works, motion features are usually taken into account

on a local, frame-based level, thus ignoring the global charac-

ter of human expressivity. The proposed work examines the

role of activity-related features in human TVM compression.

More specifically, the role of key-frame extraction with sub-

sequent pose-dependent I-frame matching, along with that of
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a qualitative expressivity feature (here, periodicity) are exam-

ined.

The most notable work in TVM compression can be rep-

resented by [2], [3] and [4]. In [2], Han et al. extend the con-

cept of Block Matching, known from traditional 2D Video, in

3D Space for motion compensation. In [3], the same authors

used coarse and fine levels of quantization to compress TVMs

and were able to note an improvement. Finally, in [4] Ya-

masaki et al, proposed a patch-based compression of TVMs

showing a further improvement over the previous attempts.

Methods using human motion qualitative features as

context-related knowledge for compression constitute an area

not yet widely explored by the research community. When

considering 2D video, robust extraction of human activity-

related features leading to effective compression involves a

series of steps (detection, temporal and spatial segmentation,

tracking), prone to error and noise accumulation. In a typical

example of such work [5], a face tracker is employed for

the creation of a basis sequence consisting of face-centered

images, with incoming frames compressed through mapping

on this sequence.

With the advent of depth sensors, however, robust, three-

dimensional data processing provides mechanisms for easy

human silhouette segmentation and further use in tele im-

mersive environments [6]. Activity-related knowledge and

compression can be achieved through a single modality (point

cloud), while novel compression schemes can take advantage

of human silhouette segmentation. Chen et al. [7] propose an

activity-aware 3D mesh compression architecture, using Mi-

crosoft Kinect depth sensors. However, activity is retrieved

with the help of hand-held sensors, which inform the pro-

ducer regarding a tolerable number of frames to be discarded.

In the hereby proposed scheme, Microsoft Kinect depth sen-

sor is used for 3D data acquisition and activity recognition.

The potentiality of extracting activity-related, global features

is examined on two use-cases (skiing and jogging) with highly

expressive characteristics. The aim of the paper is to explore

the potential of exploiting those activity-related global fea-

tures in order to improve the performance of human TVM

compression.



Fig. 1. Encoding of EP-Frames

2. TVM ENCODER ARCHITECTURE

In this section an overview of the TVM encoder architecture,

that this work was based on, is given. Similar to many video

coders, the hereby TVM encoding scheme considers two

kinds of frames, Intra(I)-Frames and Enhanced Predicted(EP)

frames. The encoding of I-Frames is made using an existing

state-of-the-art static mesh coder, like [8] and are decoded in-

dependently of any previous frames. I-Frames are generated

at fixed, predefined intervals. On the other hand, EP-Frames

are encoded with respect to some previously encoded I-Frame

that is used as a reference. In Fig 1, the encoding process of

EP-Frames is depicted. In order to encode EP-Frames, the

proposed encoder makes use of the human skeleton, obtained

using recent advances in skeleton tracking technology, like

[9]. An automated skinning process is used to assign mesh

vertices to skeleton bones for both the input mesh as well as

the reference mesh obtained from a previous I-Frame. Then,

per bone ICP (Iterative Closest Points) is utilized to align the

reference mesh to the input mesh and thus minimizing the

geometry (vertex positions) prediction errors. The geometry

prediction residuals are then quantized (using the Entropy-

Constrained Vector Quantization method) and entropy coded

(using an Arithmetic Coder), along with the mesh connectiv-

ity information.

In this work, we aim to introduce a strategy in selecting

the most appropriate I-Frame that will serve as a reference

frame for the encoding of EP-Frames. The potential of us-

ing activity-related information to develop this strategy is ex-

plored.

3. SELECTION OF REFERENCE I-FRAME

The most straightforward approach to encode an EP-Frame, is

to use the last encoded I-Frame of the sequence as a reference.

However, in a periodic human motion scenario, it is possible

that a previous I-Frame matches better with the current frame,

depending on the periodicity of the motion.

Therefore, based on the above facts, a buffer in the codec

is used to hold the last NI I-Frames in memory. The encoder

has to decide which of these is more appropriate to be used

as a reference, with the potential to minimize the prediction

residuals. We experimented with two different approaches

for detecting the most appropriate reference I-Frame, a skele-

ton matching-based and a periodicity detection based, as de-

scribed below.

3.1. Based on a skeleton matching score

In this approach, the encoder searches for the best I-Frame

based on the skeleton ”similarity” (skeleton similarity was

chosen here, as an alternative to slow comparisons among

bulky 3D meshes) between the current frame t and the can-

didate I-Frames. Therefore, we define a skeleton matching

score, as follows.

Skeleton matching score: Let cIp ∈ [0, 1] denote the tracking

confidence of the bone’s root joint position for the candidate

reference I-Frame and ctp the corresponding tracking confi-

dence for frame t. The orientation tracking confidences are

similarly denoted as cIo and cto, respectively. Then, the confi-

dences for the I-t pair are defined as:

cp = cIp c
t
p, co = cIo c

t
o. (1)

Let also dp denote the distance (measured in mm) between the

I-Frame bone’s center and the t-frame bone’s center. Simi-

larly, do denotes the “angular” distance (measured in degrees)

between the bone’s orientations in the two frames.

Now, we introduce a position-based (per-bone) dissimilar-

ity metric, which takes into account both the position distance

dp(i) (i indexes the bones), as well as the position tracking

confidences:

Dp(i) = (1−Wc)dp(i) +Wc

[
cp(i)dp(i) +

(
1− cp(i)

)
Kp

]
,

(2)

where Kp is a penalty constant to be applied when skeleton

confidence is low, while Wc ∈ [0, 1] is a weight to balance

our trust to the skeleton confidence output of skeleton track-

ing. Notice that for Wc = 0, only the measured distance

dp(i) is taken into account in the dissimilarity metric. On the

other hand, for Wc = 1 the dissimilarity metric depends on

the tracking confidence: when tracking is confident (cp = 1)

the dissimilarity metric becomes again equal to the measured

distance dp(i). On the other hand, unconfident tracking re-

sults into assigning a dissimilarity value equal to the penalty

constant Kp.

An orientation-based (per-bone) dissimilarity metric is

also introduced:

Do(i) = (1−Wc)do(i) +Wc

[
co(i)do(i) +

(
1− co(i)

)
Ko

]
,

(3)



where Ko is penalty constant similar to Kp. The correspond-

ing whole-skeleton position-based metrics are defined as:

Dp =
1

BKp

∑
i

Dp(i), Do =
1

BKo

∑
i

Do(i), (4)

with B denoting the number of bones in the skeletons. Fi-

nally, the skeleton matching score is given by:

S = Wp max ((1−Dp), 0) +Wo max ((1−Do), 0), (5)

where the two weights Wp and Wo sum up to unity. The de-

fined matching score lies in the interval [0, 1].

At this point it is important to note that there can be two

different strategies to apply the presented approach on skele-

ton matching. The first one, is to use the final skeleton match-

ing score in order to select one I-Frame as a reference for

the EP-Frame at t. The second, is to apply a per bone match

score in order to select multiple I-Frames, one for each bone.

Then, when encoding an EP-Frame, the mesh at t is encoded

with respect to multiple I-Frames, one for each bone. Simi-

lar to the above discussion, the per-bone score is defined as:

S(i) = Wp max ((1−Dp(i)), 0)+Wo max ((1−Do(i)), 0),

where Dp(i) =
1
Kp

Dp(i) and Do(i) =
1
Ko

Do(i).

3.2. Based on periodicity

Additionally to the last NI I-Frames, the encoder keeps in a

memory buffer the skeleton information for the last N frames.

Let p(i; t) denote the center of the i-th bone, in the time

sample t (with respect to t = 0 in the buffer). Then, the

L2-norm r(i; t) = ||p(i; t)||2 (distance from the global co-

ordinates center) is considered, in order to opine about the

periodicity of the bone’s motion in the last N frames. This

is achieved by taking the Discrete Fourier Transform (DFT)

of r(i; t). Let this be denoted as R(i; k), where k stands for

the k-th frequency-sample. Finding km = argmax{|R(i; k)|},

provides the dominant period of the bone’s motion. Given that

the samples of DFT are N , the period is given by T̂ = N/km.

Notice that we ignore the mean value (DC component) of

r(i; t) (k = 0 in R(i; k)) and thus the method is invariant to

the selected global world center. Additionally, it is rotation

invariant, since we use the L2-norm of the bone’s position.

Finally, it is scale-invariant, since the position km of the max-

imum DFT modulus is independent to any scaling of r(i; t).

In case the estimated period is T̂ , then the selected ref-

erence I-frame is the one closest to N − T̂ . It should be

highlighted that if the energy is concentrated in very low fre-

quency components (k ∈ [0, N/30]), this means that the mo-

tion is not periodic (the period is very large) and, therefore,

the last I-frame is selected as reference. Moreover, this strat-

egy works on a per-bone basis, conceptually similar to the

discussion in 3.1, by selecting multiple reference I-Frames

when encoding an EP-Frame, one for each bone.

Fig. 2. Periodicity Metric in “Jogging” sequence for the el-

bow bone.

Fig. 3. Fourier Transform of the Periodicity Metric in “Jog-

ging” sequence for the elbow bone.

4. EXPERIMENTAL RESULTS

In this section we provide experimental results of the pre-

sented algorithms. The two sequences used for evaluation are

human TVMs (publicly available at http://vcl.iti.
gr/reconstruction) that are considered part of the of-

ficial MPEG-3DGC database [1]. The two TVM sequences,

namely “Skiing3-PoissonLow” and “Jogging1-PoissonLow”

(“Skiing” and “Jogging” for short), were captured using

our multi-sensor Microsoft Kinect setup [6] and were re-

constructed using the Poisson method [10]. The “Skiing”

sequence consists of 189 frames with 50000 vertices per

frame on average, while the “Jogging” sequence consists of

230 frames of the same average vertex count per frame. The

skeleton tracking algorithm used during the evaluation was

PrimeSense’s NITE [11].

4.1. Evaluating the Periodicity Metric

In Fig. 2 the metric to estimate the periodicity of the right el-

bow (hand) bone is depicted when considering the “Jogging”

activity. As expected, in a jogging scenario, both hands do a



Fig. 4. Bit-rate vs Distortion for “Skiing” sequence

periodic movement, which can easily be captured by the pro-

posed metric, as both Fig. 2 and Fig. 3 show.

4.2. Distortion Metric

Before evaluating all the presented methods in rate-distortion

terms, we define the distortion metric that is going to be used.

Let the original TVM sequence be denoted as SM and the

compressed one as ˆSM. Let also N be the total number of

frames and Kt denote the number of mesh vertices in frame

t. Then, the Root Mean Squared (RMS) Distance of ˆSM from

SM is given from:

drms(SM, ˆSM) :=

√√√√ 1∑N−1
t=0 Kt

N−1∑
t=0

Kt−1∑
k=0

||vk
t −H(vk

t )||22 ,

(6)

where vk
t denotes the k-th vertex of the original mesh in frame

t and H(vk
t ) stands for its nearest vertex in the corresponding

compressed mesh. The Root Mean Squared (RMS) Distance

of SM from ˆSM, let drms( ˆSM, SM), is defined equivalently.

Then, the distortion introduced by compression is expressed

by the metric:

RMSE := max(drms(SM, ˆSM), drms( ˆSM, SM)). (7)

4.3. Results

During the experimental results, for the skeleton matching ap-

proach as well as for the periodicity estimation approach, a

frame buffer of 30 I-Frames was used. Moreover, for peri-

odicity estimation, a running window of 60 frames was em-

ployed. I-Frames where generated every 5-th frame. The

rest of the parameters were chosen as follows: Kp = 80,

Ko = 10, Wp = 0.9, Wo = 0.1, Wc = 0.05. In Fig.4 the re-

sults of the presented methods are depicted for “Skiing”. We

Fig. 5. Bit-rate vs Distortion for “Jogging” sequence

notice a similar performance when encoding always with re-

spect to the last encoded I-Frame or when using both of the

skeleton matching methods (per bone, or as a whole). On the

other hand, periodicity fails terribly. These results, despite

being unexpected, can be very well explained when consid-

ering the underlying skeleton quality for this sequence. The

skeleton quality for the “Skiing” sequence, when judged vi-

sually, can be easily classified as bad. In contrast, in “Jog-

ging” sequence (Fig. 5), where the skeleton quality is sig-

nificantly better but still not perfect, more interesting results

are obtained. The skeleton-matching approach in a per bone

basis along with skeleton matching as a whole show a perfor-

mance advantage over the rest of the methods. Contrariwise,

using periodicity estimation or encoding with respect to the

last I-Frame have a similar worse performance. The results

in the “Jogging” sequence, better reflect our intuition for the

expected outcome.

5. CONCLUSIONS

In this paper, a strategy for selecting the most appropriate I-

Frame that will serve as a reference frame for the encoding of

EP-Frames in TVM compression, exploiting activity-related

characteristics, was introduced. Two different strategies were

presented, using a skeleton-matching criterion and a period-

icity measurement metric based on skeleton data. Evaluation

results show that the concept is sound, but also they reveal the

sensitivity of the proposed methods to the skeleton quality,

thus the need for more robust skeleton tracking techniques.

Future research could also explore different strategies to gen-

erate I-Frames depending on the activity scenario. Dynami-

cally generating I-Frames and EP-Frames in continuous pre-

defined intervals and thus, potentially further exploiting the

activity characteristics, will constitute a future direction.
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