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Abstract: In this paper we present a method for body motion analysis in dance using multiple Kinect sensors. The 

proposed method applies fusion to combine the skeletal tracking data of multiple sensors in order to solve 

occlusion and self-occlusion tracking problems and increase the robustness of skeletal tracking. The fused 

skeletal data is split into five different body parts (torso, left hand, right hand, left leg and right leg), which 

are then transformed to allow view invariant posture recognition. For each part, a posture vocabulary is 

generated by performing k-means clustering on a large set of unlabeled postures. Finally, body part postures 

are combined into body posture sequences and Hidden Conditional Random Fields (HCRF) classifier is 

used to recognize motion patterns (e.g. dance figures). For the evaluation of the proposed method, Tsamiko 

dancers are captured using multiple Kinect sensors and experimental results are presented to demonstrate 

the high recognition accuracy of the proposed method. 

1 INTRODUCTION 

Dance is an immaterial art as it relies on the motion of the performer’s body. Dance can convey different 

messages according to the context, and focus on aesthetics or artistic aspects (contemporary dance, ballet 

dance), the cultural and social aspects (folk dances, traditional dances), story telling (symbolic dances), 

spiritual meanings (whirling dervishes), etc. Especially traditional dances are strongly linked to local identity 
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and culture. The know-how of these dances survives at the local level through small groups of people who 

gather to learn, practice and preserve these traditional dances. Therefore, there is always a risk that certain 

elements of this form of intangible cultural heritage could die out or disappear if they are not safeguarded and 

transmitted to the next generation.   

ICT technologies can play an important role towards this direction. Specifically, the development of a 

system for the capturing, analysis and modelling of rare dance interactions could significantly contribute to this 

transfer of knowledge. However, the main challenge of this task lies in the accurate recognition of human body 

movements. Today, the major advantages over earlier systems include the ability to make more precise 

measurements with a wider array of sensing strategies, the increased availability of processing power to 

accomplish more sophisticated interpretations of data, and a greatly enhanced flexibility in the area of media 

rendering (Aylward, 2006). 

Depending on the degree of precision of the captured motion and the constraints posed, different sensing 

technologies are used. They can be broadly divided into three main categories: optical motion capture, inertial 

motion capture and markerless motion capture. Optical motion capture is the most accurate technique but it is 

also expensive and constraining. Inertial motion capture is less accurate and less stable. Finally, markerless 

motion capture based on real-time depth sensing systems, such as Microsoft Kinect, is relatively cheap and 

offer a balance in usability and cost compared to optical and inertial motion capture systems. To this end, this 

approach is considered as the most promising one and has attracted particular attention recently (Alexiadis et 

al., 2011). 

Existing approaches to human action and gesture recognition using markerless motion capture technologies 

can be coarsely grouped into two classes. The first uses 3D depth maps / silhouettes which form a continuous 

evolution of body pose in time. Action descriptors, which capture both spatial and temporal characteristics, are 

extracted from those sequences and conventional classifiers can be used for recognition. The other category of 

the methods extracts features from each silhouette and model the dynamics of the action explicitly. Bag of 

Words (BoW) are often employed as an intermediate representation with subsequent use of statistical models 

such as hidden Markov models (HMM), graphical models (GM) and conditional random fields (CRF) (Li et al., 

2010) (Wang et al., 2012) 



 

Another more recent approach is to use the skeletal data acquired from the depth maps (Shotton et al., 

2011). The subsequent use of skeletal data for action detection can be divided into two categories. The methods 

of the first category are based on 3D joints feature trajectories (Waithayanon and Aporntewan, 2011). Those 

features are either joint position, rotation data, or some transformation of the above. They are mainly based on 

various Dynamic Time Warping (DTW) variants, like multi-dimensional time warping (MD-DTW) (ten Holt et 

al., 2007). The recognition is based on the alignment of the movement trajectories compared to the ‘oracle’ 

move which is being detected. Another approach is to extract features from the whole skeleton (histograms) 

and to use statistical models as in the case of silhouette based methods (Xia et al., 2012). 

 In this paper, we present a method for dance capture, analysis and recognition using a multi-depth sensors 

set-up and a skeleton fusion technique to address occlusion problems and increase the robustness of the skeletal 

tracking. Subsequently, we propose the splitting of the skeleton into five different parts, and the automatic 

generation of a posture vocabulary (codebook) for each part. Finally, a Hidden State Conditional Random Field 

(HCRF) (Quattoni et al., 2004; Wang et al., 2006) is applied for the recognition of the dance figures (motion 

patterns). Experimental results with real Tsamiko dancer (Tsamiko is a traditional Greek dance) have shown 

the great potential of the proposed method. 

2 SYSTEM OVERVIEW 

The flowchart of the data acquisition and motion recognition process is presented in Figure 1. Several Kinect 

sensors placed around the subject are used to acquire skeletal animation data. Microsoft Kinect SDK (Kinect 

for Windows, 2013), has been used as a solution for skeletal tracking and acquisition. It provides 3D position 

and rotation data (relative to a reference coordinate system centred at the origin of the sensor) of 20 predefined 

skeletal joints of a human body. In addition a confidence level of the joint tracking (low/medium/high) is 

provided per joint. A skeletal fusion is proposed to combine the data coming from multiple sensors onto a 

single fused skeleton, which is then provided to the Motion Analysis Module. Specifically, the skeleton is split 

into five body parts (torso, left/right hand, left/right foot), which are then transformed to allow view invariant 

posture recognition. The next step is to recognize each body part posture appearing in a frame, based on a 

predefined vocabulary of postures, obtained from a set of training sequences. Finally, body part postures are 



 

combined into body posture sequences and an HCRF is used to recognize a motion pattern (e.g. a dance move) 

from a predefined set of motion patterns from which the HCRF was previously trained.  
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Figure 1: System overview 

 

2.1 Calibration 

In order to improve the robustness of skeleton tracking provided by the Microsoft Kinect SDK, to reduce 

occlusion and self-occlusion problems and to increase the area of coverage, multiple Kinect devices were used. 

Prior to fusion, skeletal data from all sensors have to be transformed to a common reference coordinate system. 

One sensor is selected as the reference sensor providing the reference frame. A calibration procedure is then 

required to estimate the transformations between the coordinate systems of each sensor and the reference 

sensor. The proposed calibration procedure does not require any checker boards or similar patterns. Instead, the 

only requirement is that a person needs to be visible from multiple sensors, whose FOV’s need to partially 

overlap. The skeleton joint positions are then fed into the Iterative Closest Point algorithm (Besl and McKay, 

1992) to estimate the rigid transformation (Rotation-Translation) that minimizes the distance between the 

transformed positions in the reference frame. This transformation is then used to register the skeletons acquired 



 

from each sensor in the reference coordinate system. The implementation of ICP algorithm found in the Point 

Cloud Library (PCL, http://pointclouds.org/), (Rusu, 2011) was used. 

Since the skeleton frame data are sparse, each containing at most 20 points, and the estimation of the joint 

positions can be erroneous, the calibration procedure is iterated until two convergence criteria are both met. 

The first criterion is that the number of joints tracked with high confidence on both devices needs to be higher 

that a threshold Tjoints. The higher this number is the better the expected accuracy of the calibration. The second 

criterion is that the fitness score of the ICP algorithm needs to be lower than a threshold TICP. These thresholds 

can be adjusted to accommodate various setups and recording conditions.  

2.2 Skeleton Fusion 

Once all sensors are calibrated, skeleton registration is performed, i.e. the representation of each skeleton is 

transformed to the reference coordinate system. This is accomplished by multiplying the skeleton joint 

positions obtained from each sensor by the corresponding RT matrix, estimated in the calibration process. 

Then, a skeletal fusion procedure is used to combine these registered skeletons into a single skeleton 

representation (Figure 2). 

Specifically, the following fusion strategy has been used on joint positional data, but could easily be 

extended on joint rotations as well. Initially, the sum of all joint confidence levels of each skeleton is computed 

and the skeleton with the highest total is selected. Since this is the skeleton with the most successfully tracked 

joints, it is expected to be the most accurate representation of the real person pose.  

 

 

Figure 2: Colour maps, depth maps and skeleton frames from 3 Kinect sensors and a fused skeleton result. 
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We use this skeleton as a base, and enrich it with data provided from the remaining skeletons. Specifically, 

the confidence of each joint of the base skeleton is examined.  If the confidence is medium or low, the joint 

position is corrected by taking into account the position of this joint in the remaining skeletons. If 

corresponding joints with high confidence are found in any of the remaining skeletons, their average position is 

used to replace the position value of the joint. Otherwise, the same procedure is applied for joints containing 

medium confidence values. Finally, if only low confidence values exist, the same procedure is applied using the 

available skeleton data for the joint. 

As a last step, a stabilization filtering step is applied in order to overcome problems due to rapid changes in 

joint position from frame to frame which may occur because of the use of joint position averaging in our fusion 

strategy. We use a time window of three frames, to keep the last three high-confidence positions for each joint. 

The centroid of these three previous positions is calculated and updated for each frame. If the Euclidean 

distance between a joint position and this centroid is higher than a certain threshold, then we replace the joint 

position with the value of the centroid, so as to avoid rapid changes in joint positions. We have used different 

thresholds for each joint since hands and feet are expected to move more rapidly. 

 

{

Skeleton 
Stream

View 
Invariance
Transform

Skeleton parts

Torso part

Left Hand part

Right Hand part

Left Foot part

SVM 1

SVM 2

SVM k

Right Foot part

.

.

.

Body posture

Left Hand posture

Right Hand posture

Left Foot posture

Right Foot posture

HCRF

{Posture words 
sequence

Detected 
motion 
pattern

 

Figure 3: Motion Analysis subsystem 

 



3 MOTION ANALYSIS 

The motion analysis subsystem (Figure 3) can use as input a skeleton animation stream, either provided from a 

single Kinect device, or from multiple Kinect devices, after using the skeleton fusion procedure described in 

Section 2.2. 

Initially, to achieve view invariance of motion recognition, the skeleton joint positions are translated 

relative to the root of the skeleton (Hip Center) and rotated around the y axis so that the skeleton is facing 

towards the y axis. Next, the skeleton is divided into five parts, shown in Figure 4 (torso, left hand, right hand, 

left foot, right foot). Each part has a root joint and children joints. For each skeleton part we generate a feature 

vector consisting of positions of each joint relative to the root of the part (also shown in Figure 4). Specifically, 

the root of the torso part is the Hip Center and the children joints are: Spine, Shoulder Center and Head. The 

root of the left hand part is the Shoulder Center and the children are: Left Shoulder, Left Elbow, Left Wrist and 

Left Hand. The root of the left foot part is the Hip Center and the children are: Left Hip, Left Knee, Left Ankle 

and Left Foot. The right hand and right foot parts consist of the symmetrical joints of their left counterparts. 

3.1 Posture codebook 

For each of the 5 skeleton parts described above, we construct a codebook of basic postures of a predefined size 

k. The identification of these basic postures is performed automatically by using k-means clustering of a large 

set of postures obtained from one or more recorded training sequences. Clustering essentially divides the 

‘posture space’ into k discrete posture subspaces. After building a posture codebook for each body part, we 

train a multiclass SVM classifier to classify each incoming feature vector as a specific posture from this posture 

codebook. Thus we obtain five posture classifiers, one per body part. 

 



 

 

Figure 4: Skeleton Parts 

3.2 Motion pattern recognition using a HCRF model 

For the motion detection step, we have selected the Hidden-state Conditional Random Fields (HCRF) classifier 

(Quattoni et al., 2004). A set of M basic motion patterns, i.e. sequences of frames of skeleton data describing a 

specific movement, is first identified. We then train an HCRF multi-class model for each of these basic motion 

patterns. Specifically, for the training phase, we use labelled sequences of the basic motion patterns. Each 

sequence consists of a sequence of labelled skeleton part posture vectors, i.e. vectors of five elements, each 

being the index of a basic posture from the codebook corresponding to the specific skeleton part. For the testing 

phase, a similar vector is initially estimated for each frame of the input skeleton data sequence and is then used 

as input to the HCRF classifier. Then, the identification of each motion pattern is based on the 

probability/likelihood of the model of the HCRF for each observation sequence. For the implementation of 

HCRF, the Hidden-state Conditional Random Fields Library v2 was used (http://sourceforge.net/projects/hcrf/). 

4 EXPERIMENTAL RESULTS 

To evaluate our methodology, a data recording session took place, in which several dancers were recorded 

performing the Tsamiko dance (Figure 5). 

Tsamiko is a popular traditional folk dance of Greece, done to music of ¾ meter. It is a masculine (mostly) 

circular dance with more smoothly steps danced by women. It is danced in an open circle where the first dancer 

performs variations while the others follow the basic steps. Tsamiko is danced in various areas of Greece such 

as: Peloponnese, Central Greece, Thessaly, W. Macedonia, with variations in kinesiological structure (10, 12, 
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8, 16 steps). The dance follows a strict and slow tempo with emphasis on the "attitude, style and grace" of the 

dancer. The steps are relatively easy but have to be precise and strictly on beat. Its variations consist of both 

smooth and leaping steps, which give the dance a triumphant air. The handle is hand elbows in position W. The 

dance is accompanied by various songs.  

 

 

Figure 5: Recording session 

 

For the evaluation of our methodology we recorded three male dancers, dancing the single step version of 

the Tsamiko dance (Figure 6). The main dance pattern in Tsamiko can be split in 3 basic dance moves, which 

were used as the basic motion patterns that we tried to detect. The recordings were manually annotated to mark 

the beginning and end of each move. Each dancer was recorded separately and was required to perform the 

basic moves of the dance several times. 

  



 

 

 

 

 

Figure 6: Tsamiko dance steps 

 

4.1 Sensors setup 

For the final recording we used three Kinect sensors placed in front of the dancer in an arc topology (one in 

front and two at the sides), as seen in Figure 7(b). One additional setup was tested, but was rejected for the final 

recording. We tried placing four Kinect sensors all around the dancer, at 90 degree angle between them, as seen 

in Figure 7(a). This setup allowed for approximately 2x2m active space for the dancer to move. The 

interference due to infrared emission from the sensors was minimal, but only the two frontal sensors provided 

useful skeletal data, since skeletal tracking of Microsoft SDK is designed to work on people facing towards the 

sensor. Since the dancers were moving on a small arc, they were always facing in the same direction. Thus, our 

final setup proved to be more effective since we had skeletal tracking data from three sensors. In addition, 

having a smaller angle between adjacent sensor FOVs allowed for increased precision of calibration. Adding 



 

more sensors proved to be problematic since interference caused by the emission of infrared pattern by each 

sensor increased significantly, which had a negative impact on skeletal tracking. 
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Figure 7: Sensor setups (a) Setup A (b) Setup B (final setup) 

4.2 Evaluation results 

The recorded data consisted of eight repetitions of basic Tsamiko dance pattern (three dance moves per 

repetition) executed by each of the three dancers. We split the recorded data into train and test sets by using 

half repetitions of the basic dance pattern of each dancer (12 repetitions per move) for training and the 

remaining for testing. Initially the posture codebook was created with a codebook of k=20 basic postures for 

each body part using the training motion sequences. Then, we trained an HCRF using the train sequences to be 

able to distinguish between the three basic Tsamiko dance moves. CRFs with a varying number of hidden states 

were trained as can be seen from Table 1, in which the dance move detection accuracies of the test set are 

presented, per dancer and overall. The best overall detection accuracy that was achieved is 93,9% using an 

HCRF with 11 hidden states. In Table 2, detection accuracies are presented for each dance move.  

Table 1: Recognition accuracies of Tsamiko dance moves per person and overall recognition accuracies for varying number 

of hidden states in the HCRF classifier. 

Hidden 

States 

5 8 11 12 15 20 

Dancer A 38,4 61,5 84,6 76,9 76,9 69,2 

Dancer B 90,9 90,9 100 100 90,9 72,7 

Dancer C 66,6 88,8 100 100 100 77,7 

Overall 63,6 78,7 93,9 90,9 87,8 72,7 



 

 

 

 

Table 2: Recognition accuracies of Tsamiko dance moves for varying number of hidden states in the HCRF classifier. 

Hidden 

States 

5 8 11 12 15 20 

Dance 

move 1 

83,3 66,6 91,6 100 83,8 100 

Dance 

move 2 

27,2 81,8 90,9 81,8 90,9 36,3 

Dance 

move 3 

80 90 100 90 90 80 

Overall 63,6 78,7 93,9 90,9 87,8 72,7 

5 CONCLUSIONS AND FUTURE WORK 

This paper presents a study on recognizing predefined dance motion patterns from skeletal animation data 

captured by multiple Kinect sensors. As can be seen from the experimental results, our method gave quite 

promising results providing high recognition accuracies of the three Tsamiko dance moves. In future work we 

aim to experiment on recognition of different styles of these dance moves and adding more complex dance 

patterns and variations. In addition we plan to extend our skeleton fusion algorithm on joint rotation data (both 

absolute and hierarchical) which will allow the construction of posture codebooks based on both position and 

rotation data. 
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