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A Comparative Study of Object-level Spatial
Context Techniques for Semantic Image Analysis

G. Th. Papadopoulos, C. Saathoff, H. J. Escalante, V. Mezaris, I. Kompatsiaris and M. G. Strintzis

Abstract—In this paper, three approaches to utilizing object-
level spatial contextual information for semantic image analysis
are presented and comparatively evaluated. Contextual informa-
tion is in the form of fuzzy directional relations between image
regions. All techniques, namely a Genetic Algorithm (GA), a
Binary Integer Programming (BIP) and an Energy-Based Model
(EBM), are applied in order to estimate an optimal semantic
image interpretation, after an initial set of region classification
results is computed using solely visual features. Aim of this paper
is the in-depth investigation of the advantages of each technique
and the gain of a better insight on the use of spatial context.
For this purpose, an appropriate evaluation framework, which
includes several different combinations of low-level features and
classification algorithms, has been developed. Extensive experi-
ments on six datasets of varying problem complexity have been
conducted for investigating the influence of typical factors (such
as the utilized visual features, the employed classifier, the number
of supported concepts, etc.) on the performance of each spatial
context technique, while a detailed analysis of the obtained results
is also given.

I. I NTRODUCTION

The extensive proliferation of multimedia capturing devices
with high storage capabilities in combination with the con-
tinuously growing network access availability have resulted
in the generation of literally vast image collections. The
latter are being exchanged among individuals or are made
available over the Internet. At the same time, common image
manipulation tasks, like indexing, search and retrieval in such
collections, often constitute an integral part of an individual’s
everyday activities at both personal or professional level.
As a consequence, new needs have emerged regarding the
development of advanced and user-friendly systems for the
efficient manipulation of the image content [1]. For tackling
these challenges, approaches that shift image processing to
a semantic level have been proposed and so far exhibited
promising results [2].

Among the approaches belonging to the latter category,
semantic image analysis techniques, i.e. techniques aiming at
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localizing and recognizing the actual objects that are depicted
in the image, have received particular attention. Their achieve-
ments and outcomes have been shown to significantly reinforce
other image manipulation tasks, since they can provide a
good foundation for boosting image classification [3], enabling
the realization of complex queries [4] or facilitating further
inference [5], to name a few. However, the efficiency of
semantic image analysis approaches based on image seg-
mentation and object recognition is significantly hindered by
the ambiguity that is inherent in the visual medium. This is
due to the fact that the localization and recognition of the
real-world objects in unconstrained environments constitutes
a challenging problem. For overcoming this limitation, among
other solutions, the use of contextual information has been
proposed [6].

Image context includes all possible information sources that
can contribute to the understanding of the image content,
complementarily to the use of the visual features. In the setting
of semantic analysis, contextual information comprises any
kind of relations between the semantic entities that can be
present in an image (e.g. spatial, co-occurrence, scene-type
information, etc.). Following the context acquisition proce-
dure, contextual information can be used for: a) refining the
image analysis results that have been computed based solely
on visual features, by serving as a set of constraints that
the former need to satisfy, and b) providing the appropriate
prior knowledge that is required for performing inference
and generating more detailed semantic descriptions. Out of
the available contextual information types, spatial context is
of increased importance in semantic image analysis. Spatial
context represents and models the spatial configuration of the
real-world objects and facilitates in discriminating between
objects that exhibit similar visual characteristics.

Spatial contextual information can be divided into global-
and local-level [7]. Global spatial context includes information
about the overall spatial layout of the image and facilitates
in identifying different scene configuration types. In [8], a
framework is developed for modeling the correlations between
the statistics of low-level features across the entire scene and
the objects that it contains. Verbeek et al. [9] introduce a
Conditional Random Field (CRF)-based scene labeling model
that incorporates both local features and features aggregated
over the whole image or large sections of it for performing
semantic region labeling. In [10], a context-based vision
system is proposed for place and object recognition, which
relies on the principle of initially categorizing the image and
subsequently using this information for providing contextual
priors for the object recognition procedure. On the other hand,
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local spatial context concerns relations derived from the area
that surrounds the object to be detected. The latter may include
interactions between objects [11], [12], patches [13], [14] or
pixels [15], [16], [17], [18]. In this work, spatial contextual
information at object-level is considered.

Although a series of different and well-performing ap-
proaches to spatial context exploitation have been proposed
[19], [20], [21], [22], the evaluation of each has been mostly
limited to very few datasets (usually one or two) or rather
specific application cases. On the other hand, a comprehensive
study examining under which circumstances the use of spatial
context is advantageous and how its resulting performance is
affected by typical factors such as the utilized visual features,
the employed classifier, the number of supported objects,
different datasets of varying complexity, the amount of data
used for spatial context acquisition or the number of regions
that are present in the image, has not been performed.

In this paper, a comparative evaluation of three spatial
context techniques for semantic image analysis is conducted
with several different combinations of low-level features and
classifiers on six datasets of varying problem complexity. Aim
of this study is the in-depth investigation of the advantages of
each spatial context approach and the gain of a better insight
on the use of spatial contextual information. To achieve this,
the three considered spatial context techniques, i.e. a Genetic
Algorithm (GA), a Binary Integer Programming (BIP) and an
Energy-Based Model (EBM), are selected so as to cover the
main categories of the approaches that have been proposed
in the literature. An appropriate evaluation framework, whose
general structure is illustrated in Fig. 1, has been developed
for realizing this study. Additionally, a novel quantitative
measure, called Spatial Context Factor (SCF), is introduced
for indicating the degree to which the spatial configuration
of a given object is well-defined. As can be seen in Fig. 1,
the examined image is initially segmented and two individual
sets of visual features, namely MPEG-7 descriptors and SIFT-
based features, are extracted for every resulting segment. In
parallel, for every pair of image regions a corresponding set
of fuzzy directional spatial relations are estimated. Then, each
set of low-level features is in turn provided as input to three
different classification algorithms, namely a Support Vector
Machine (SVM), a Random Forest (RF) and a LogitBoost
(LB). Each classifier aims at associating every region with a
predefined high-level semantic concept based solely on visual
information. The latter is used for denoting a real-world object
that can be present in the examined image. Subsequently,
the three aforementioned spatial context techniques, which
perform on top of the initial classification results and follow
different approaches for spatial context acquisition, are applied
in order to estimate an optimal region-concept assignment.
Extensive experiments have been conducted for investigating
the influence of a series of factors on the performance of
each spatial context technique, and a detailed analysis of the
obtained results is given.

The paper is organized as follows: Section II presents an
overview of the relevant literature and discusses the selection
of the considered techniques. Section III outlines the visual
information processing. The spatial relations extraction and

the context acquisition procedure are detailed in Section IV.
The selected spatial context exploitation techniques are de-
scribed in Section V. Experimental results from the performed
comparative evaluation as well as detailed analysis of them
are presented in Section VI and conclusions are drawn in
Section VII. The main symbols used in the remainder of the
manuscript are outlined in Table I.

II. OBJECT-LEVEL SPATIAL CONTEXT TECHNIQUES

Object-level spatial context approaches take into account
information about the spatial configuration of the objects, in
order to facilitate in their discrimination. These techniques
can be roughly categorized using two main criteria: i) the
complexity of the utilized contextual information and ii)
the methodology followed for enforcing the acquired spatial
constraints. With respect to the complexity of the spatial
information, the following categories of methods have been
proposed:

1a) methods examining adjacency characteristics: In
[23], [14], [24], [9], a series of methods that take into
account information about the adjacency between
image regions for assigning the appropriate semantic
concepts are proposed. Additionally, González-D́ıaz
et al. [25] present a generative model that consid-
ers the length of the common boundary between
pairs of regions. Examining the adjacency between
image regions results in reduced expressiveness of
the acquired contextual information, which in turn
limits the use of this category of methods in specific
application cases.

1b) approaches that make use of binary spatial relations:
The methods of [26], [20], [27], [11], [28] follow a
frequency counting approach for estimating spatial
constraints between object pairs. Desai et al. [21]
formulate the learning of a set of weights, which
encode valid spatial configurations of individual
object classes, as a convex optimization problem.
Additionally, a maximum-likelihood approximation
is followed for the acquisition of spatial contextual
information in [13]. Saathoff et al. [29] use support
and confidence as selection criteria for obtaining a
set of binary constraints.

1c) methods supporting the use of fuzzy relations: A sta-
tistical learning approach to spatial context exploita-
tion is described in [12], where fuzzy directional
relations are considered and the impact of every
acquired spatial constraint is adaptively adjusted. In
[30], a fuzzy spatial relation ontology is developed
for guiding image interpretation and facilitating the
recognition of the semantic concepts it contains.

Regarding the methodologies followed for enforcing the
acquired spatial constraints, these have been dominated by the
use of Machine Learning (ML) and probabilistic techniques.
The main categories that have been presented include:

2a) graphical modeling-based methods: A CRF-based
approach is presented in [20] that incorporates both
co-occurrence and spatial contextual information.
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Fig. 1. Developed evaluation framework.

TABLE I
LEGEND OF MAIN SYMBOLS

Symbol Description
sn, n ∈ [1, N ] createdimage regions after segmentation

vn visual feature vector extracted for regionsn

ck, k ∈ [1, K] definedsemantic concepts
hnk ≡ P (ck|vn) probability with which conceptck is assigned to regionsn, using only visual features

R = {rγ , γ ∈ [1, Γ]} setof supported directional relations
rγ(sn, sm) degree of satisfaction of relationrγ by the ordered region pair(sn, sm); this belongs to the continuous range[0, 1]

gnk assignmentof conceptck to regionsn, after spatial context exploitation
freq(ck) frequency of occurrence of conceptck

freq(ck, cl) co-occurrencefrequency of concept pair(ck, cl)

CRFsare also used in [13] for encoding the objects’
relative configuration and in [9] for incorporating
spatial adjacency information during the assignment
of high-level objects to local image patches. Car-
bonetto et al. propose a Markov Random Field
(MRF)-model that combines image feature vectors
with spatial relations for the task of object recog-
nition in [14], while Heesch et al. [28] introduce a
MRF with asymmetric Markov parameters to model
the spatial and topological relationships between
objects in structured scenes. Additionally, Bayesian
Networks (BNs) are employed in the works of [11]
and [19], for learning probabilistic spatial context
models and for combining spatial context with visual
and co-occurrence information, respectively. Torralba
et al. [31] introduce the so called Boosted Random
Fields (BRFs) for exploiting both local image data
and spatial contextual information. Moreover, Yuan
et al. [26] employ simple grid-structure graphical
models to characterize the spatial dependencies be-
tween the objects depicted in the image. A tree
graphical model is proposed to learn the spatial
configuration of the different object categories in
[22].

2b) statistical learning approaches: An extension of the
original Latent Dirichlet Allocation (LDA) tech-
nique, in order to incorporate spatial information, is
proposed in [32] for simultaneously segmenting and
classifying objects that are present in the examined
image. Similarly, extensions of the traditional prob-
abilistic Latent Semantic Analysis (pLSA) technique
are proposed in [33] and [25] for detecting differ-
ent object categories and their approximate spatial

layout, and for fusing local visual information with
the global geometric layout of a segmented image,
respectively. Additionally, a method termed Mutual
Boosting is presented in [34] for incorporating spatial
contextual information during object detection.

2c) methods that are based on optimization techniques
and methods for solving systems of linear equa-
tions: Papadopoulos et al. [12] make use of a ge-
netic algorithm for realizing image analysis as a
global optimization problem, taking into account
spatial contextual information. In [29], the problem
of spatial context exploitation is formalized follow-
ing a linear programming technique. Additionally,
a spectral theory-based method is proposed in [24]
for incorporating spatial information in the image
labeling process. In [35], semantic image analysis is
realized as an arc consistency checking problem with
bilevel constraints, using qualitative spatial relations.
Moreover, the exploitation of spatial contextual in-
formation between objects is formalized as a fuzzy
constraint satisfaction problem in [36].

It must be noted that more elaborate approaches, which com-
bine characteristics from more than one of the aforementioned
categories, have also been proposed. For example, the GA
method of [19] that is among the ones examined in this work
follows a statistical learning approach for spatial constraints
acquisition, while it makes use of a set of BNs for combining
the spatial with the visual and the objects’ co-occurrence
information.

A. Selection of Considered Techniques

The core objective of this work is to gain a better insight and
derive general observations regarding the use of object-level
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spatialcontextual information. For achieving this, three differ-
ent techniques are considered. These are a Genetic Algorithm
(GA), a Binary Integer Programming (BIP) and an Energy-
Based Model (EBM). Specifically, the GA realizes image
analysis as a global optimization problem [19]. This method
incorporates a set of BNs for probabilistically adjusting the
impact of the spatial, visual and concepts’ co-occurrence
information, while a statistical learning approach is followed
for estimating complex fuzzy spatial constraints. The BIP
also formalizes spatial context exploitation as an optimization
problem and, in particular, it follows a linear programming
methodology [29]. The latter technique makes use of binary
spatial constraints, which are computed using support and
confidence as selection criteria. The EBM represents the image
as a fully connected graphical model [37], which in its current
implementation is appropriately extended to include spatial
information. Then, it estimates the objects’ expected relative
position, by calculating a set of fuzzy spatial constraints. All
the aforementioned approaches make use of fuzzy directional
relations.

The spatial context techniques that are included in the
developed evaluation framework are selected so as to cover
the main categories of the approaches that have been proposed
in the literature. In particular, the EBM is representative of
category (2a) described above, i.e. methods that associate
every image region with a node in a graphical model that
represents the image and, subsequently, the semantic image
interpretation is estimated by performing inference in this
model. Additionally, the EBM constitutes also an instance
of category (1c), since it allows the use of fuzzy spatial
constraints between the supported objects. On the other hand,
the estimation and usage of a set of binary constraints classify
the BIP to category (1b), while the formulation of region
labeling as a linear programming problem is a typical case of
class (2c). Moreover, the GA is in principle a member of (2c)
and (1c), since it adopts a global optimization methodology
for incorporating spatial information in the analysis process
and supports the use of fuzzy spatial relations, respectively.
However, the GA is also a member of (2b), since it follows
a statistical learning approach for acquiring complex spatial
contextual information and also employs a set of BNs for
probabilistically adjusting the impact of the spatial versus the
visual and the co-occurrence information.

In Table II, some of the most representative spatial context
techniques of the literature are presented, where the type of
the contextual information and the constraints enforcement
procedure are given for every case. As can be seen, the
methods of [25] and [32] utilize adjacency characteristics
(i.e. the length of the regions’ common boundary and the
region adjacency property, respectively). This results in re-
duced expressiveness of the objects’ spatial configuration.
On the contrary, all selected spatial context techniques use
fuzzy directional relations. Additionally, both the pLSA and
LDA techniques, which are used by the methods of [25]
and [32] respectively, frequently present overfitting problems
and use approximations of the solution, especially when the
network complexity is increased (i.e. large number of regions
or objects). A series of techniques (i.e. the methods of [26],

[20], [28] and [11]) follow a simple frequency counting
approach of binary relations for spatial context acquisition.
Although the aforementioned methods provide a more detailed
representation of the objects’ topology than the approaches
of [25] and [32], the acquired spatial contextual information
remains significantly simpler than the fuzzy constraints that the
EBM and GA use. In parallel, a set of techniques rely on the
use of graphical models (i.e. the methods of [26], [20], [28],
[13] and [22]), where every image region is associated with
a node of a model and spatial context exploitation is realized
by performing inference in this model. The main drawback of
these graphical modeling-based methods is that they often lead
to intractable partition functions, especially when images with
many regions are involved. The EBM is a representative of
this category of techniques. However, EBMs are advantageous
compared to other undirected graphical models that are widely
used, like MRFs. This is mainly due to the fact that they
allow the relaxation of the strict probabilistic assumptions
and the avoidance of intractable partition functions [38].
Singhal et al. [11] make use of a series of BNs, which are
gradually constructed and solved in an iterative manner, for
approximating the final image interpretation. Nevertheless, the
proposed greedy inference propagation scheme was shown to
be significantly outperformed by the GA [12], which realizes
image analysis as a global optimization problem. Moreover,
the techniques of [13] and [22], apart from the limitations that
derive from the usage of graphical models discussed above,
utilize relatively simple spatial contextual information. More
specifically, the method of [13] learns a set of weights for the
employed binary spatial relations and the approach of [22]
uses the height and the vertical position of the objects, while
they both incorporate significant probabilistic assumptions for
enabling the learning process. On the other hand, the technique
of [21], beside the use of relatively simple spatial contextual
information, adopts a greedy search algorithm for finding the
optimal image interpretation. The latter characteristic consti-
tutes a limitation when the problem complexity increases (i.e. a
large number of objects or image regions is present), compared
to the GA and the BIP that follow a global optimization
approach. Furthermore, the BIP was experimentally shown
to outperform the method of [36], although using the same
methodology for acquiring the spatial constraints [29]. This is
mainly due to the need of a monotonically decreasing objective
function by the adopted fuzzy constraint satisfaction approach,
similarly to other common optimization methods. The BIP,
on the contrary, can use an arbitrary linear objective function,
since it constitutes a particular type of linear programs. At this
point, it must be highlighted that the selected GA technique
presents a significant advantage over all the other methods
presented already. This is that it incorporates a probabilistic
approach for efficiently adjusting the impact of the available
spatial, visual and co-occurrence information on the final
outcome for every possible pair of objects. Taking into account
all the aforementioned considerations, it is shown that the
three selected spatial context techniques present advantageous
characteristics, compared to other similar methods of the
literature; hence, they are suitable for deriving general remarks
on the use of spatial contextual information.
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TABLE II
REPRESENTATIVE SPATIAL CONTEXT TECHNIQUES OF THE LITERATURE

Method Context type Constraintsenforcement

[25] Lengthof the common boundary between the regions Extensionof the traditional pLSA
technique

[32] Region adjacency Latent topic model, extension of the
traditional LDA technique

[26] Frequency counting of binary relations Grid-structuregraphical models
(2D-HMM, MRF, CRF)

[20] Frequency matrices of pairwise relations CRF
[28] Frequency counting of pairwise relations between neighboring regions MRF with asymmetric parameters
[11] Frequency counting of binary relations Setof BNs solved iteratively

[13] ML approximation of weights in the CRF’s pairwise potentials
(binary relations, differences of the region centroids) Two-layer CRF

[22] Modelsedge potentials, by considering the object’s vertical location and height Tree graphical model

[21] Learningof weights for binary relations as a convex optimization problem Non-maximasuppression (NMS)
post-processing heuristic

[36] Binary spatial constraints, using support and confidence as selection criteria Fuzzyconstraint satisfaction problem

I II. V ISUAL ANALYSIS

A. Segmentation and Visual Feature Extraction

In order to perform the initial region-concept association,
the examined image has to be segmented to regions and
suitable low-level descriptions have to be extracted for ev-
ery resulting segment. In this work, a modified K-Means-
with-connectivity-constraint pixel classification algorithm has
been used for segmenting the image [39]. Output of this
segmentation algorithm is a segmentation mask, where the
created spatial regionssn, n ∈ [1, N ], are likely to represent
meaningful semantic objects.

Every generated image segmentsn is subsequently repre-
sented with the use of a visual feature vectorvn. Two different
methods for estimatingvn are considered. Regarding the first
one, the following MPEG-7 descriptors are extracted and
concatenated to form the region feature vector: Scalable Color,
Homogeneous Texture, Region Shape and Edge Histogram.
This results in a433-dimensional low-level feature vector. The
second method is based on the Scale-Invariant Feature Trans-
form (SIFT) [40]. In particular, a set of keypoints are initially
estimated for every regionsn, using a point-of-interest detector
as well as a pre-determined image grid, and a SIFT descriptor
vector (with128 elements) is extracted at each keypoint. Then,
following the ‘Bag-of-Words’ (BoW) methodology [41], a
‘vocabulary’ of300 visual words is constructed by performing
clustering in the128-dimensional feature space. Subsequently,
each region is represented by the histogram of the visual
words that it contains, i.e. the set of words that correspond
to the original SIFT descriptors extracted from it. The latter
histogram constitutes in this case the region feature vectorvn.
The aforementioned visual features are in turn utilized by the
classification algorithms, i.e. they constitute a common data
set, for performing the region-concept assignment.

B. Visual Classification

In this section, the initial region-concept association pro-
cedure, i.e. the assignment of high-level semantic concepts to
image regions based solely on visual information, is described.
In the developed evaluation framework, three individual clas-
sification algorithms are employed: Support Vector Machines
(SVMs), Random Forest (RF) and LogitBoost (LB). Every

classifier receives as input either one of the two region
feature vectorsvn described in Section III-A and estimates for
every defined conceptck, k ∈ [1, K], a posterior probability
hnk ≡ P (ck|vn). This probability denotes the degree with
which conceptck is assigned to regionsn.

SVMs have been widely used in semantic image analysis
tasks due to their reported generalization ability and their
suitability for handling high-dimensional data [42]. Under
the proposed approach, an individual SVM is introduced for
every defined semantic conceptck to detect the corresponding
instances, and is trained under the ‘one-against-all’approach.
Each SVM receives as input the region feature vectorvn and
estimates the posterior probabilityhnk as follows: hnk =

1
1+e−η·znk

, where znk is the distance of the particular input
feature vectorvn from the corresponding SVM’s separating
hyperplane andη is a slope parameter set experimentally.
This distance is positive in case of correct classification and
negative otherwise.

RFs [43] belong to the general category of ensemble clas-
sifiers, i.e. classifiers that build on the combination of the
outputs of multiple weak learners. In particular, the RFs’
functionality is based on the combination of multiple decision
tree classifiers, each of which is trained on different subsets
of training samples and/or different subsets of features. RFs
are considered to be robust to noisy data [43], while they are
particularly suitable for data of high dimensionality or when
a small number of training instances is present [44]. In this
work, an individual RF classifier is defined for every supported
conceptck, while the ‘one-against-all’approach is followed
for training. At the evaluation stage, the RF classifier estimates
the posterior probabilityhnk defined above, by averaging the
outputs of the generated weak classifiers.

Boosting methods constitute a family of classification tech-
niques that make decisions by combining the results of weak
learners [45], similarly to the ensemble classifiers described
above. The main advantage of these methods is that they have
been shown to be less susceptible to overfitting occurrences
than most learning algorithms. In the present analysis frame-
work, a particular boosting algorithm is selected, namely the
LB classifier, which makes use of a logit transform (log-
odds ratio) for converting the weighted sum of the weak
learners’ output to a probability [45]. Similarly to the SVM
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andthe RF classification schemes, an individual LB classifier
is constructed for every conceptck, while the ‘one-against-
all’ approach is again followed for training. The posterior
probability hnk is estimated this time by making use of the
aforementioned logit transform. Among the several different
options that are available for selecting the weak learners,
regression trees were used in this work.

IV. SPATIAL CONTEXT ACQUISITION

The first step in the application of any spatial context
technique is the definition of an appropriate set of spatial
relations. In the present analysis framework, fuzzy directional
spatial relations are used to denote the order of objects in
space. The set of supported directional relations, denoted by
R = {rγ , γ ∈ [1,Γ]}, comprises the following relations:
Above, Right, Below, Left, Below-Right, Below-Left, Above-
Right and Above-Left. These are estimated for every ordered
pair of image regions(sn, sm), n 6= m, in parallel to
visual feature extraction. Relationrγ estimated for the region
pair (sn, sm) is denoted byrγ(sn, sm) ∈ [0, 1]. A detailed
description of their extraction procedure can be found in [46].

After the spatial relations extraction, a learning process
is typically followed by each technique for spatial context
acquisition. For this purpose, a set of manually annotated
image content, denoted byD1

tr and for which the fuzzy
directional relations have been computed, is used. For every
possible ordered pair of concepts(ck, cl) a corresponding set
of relations, denoted byRck,cl , is formed. This set comprises
all relations rγ(sn, sm), n 6= m, that have been computed
for all region pairs inD1

tr, where conceptsck and cl have
been manually assigned to regionssn and sm, respectively.
Additionally, sets Rck,cl

γ ⊂ Rck,cl , γ ∈ [1, Γ], are also
created, with respect to every individual spatial relationrγ .
Subsequently, each of the selected spatial context techniques
applies its learning approach for spatial context acquisition.
In particular, the BIP estimates a binary constraint for every
concept pair(ck, cl) and every supported spatial relationrγ ,
which is denoted byTγ(ck, cl). The latter is defined equal to
1 if conceptsck andcl are ‘allowed’ to be connected through
relationrγ , whereas it is set equal to0 otherwise. Constraints
Tγ(ck, cl) are computed using support and confidence as
selection criteria, and making use of setsRck,cl

γ . On the other
hand, the EBM allows the use of fuzzy spatial constraints.
These are utilized to denote the concepts ‘expected’ spatial
arrangement and are calculated as follows:

rn,m = [r1(sn, sm), r2(sn, sm)...rΓ(sn, sm)]T

rkl = [rkl
1 , rkl

2 ...rkl
Γ ]T = E[rn,m], ∀(sn, sm) ∈ Rck,cl , (1)

where[.]T denotes the transpose of a matrix and an individual
mean vectorrkl is calculated for every ordered concept pair
(ck, cl). Moreover, the GA follows a more elaborate statistical
learning approach that takes into account, apart from the mean
values, the variance and the correlations between the spatial
relations. This is achieved by the calculation of the covariance
matrix cov(rkl) for every concept pair(ck, cl), according to

the following equation:

cov(rkl) = E[(rn,m− rkl)(rn,m− rkl)T ], ∀(sn, sm) ∈ Rck,cl

(2)
The estimation of the covariance matrixcov(rkl) results in a
more complete representation of the concepts’ spatial config-
uration than using the mean vectorrkl alone.

Having acquired the appropriate spatial constraints, each
technique aims at estimating an optimal region-concept as-
sociation, i.e. assigning a final conceptck to every regionsn,
taking into account both visual and spatial information. This
association of conceptck with regionsn is denotedgnk.

V. SPATIAL CONTEXT TECHNIQUES

A. Genetic Algorithm

GAs have been used in a wide variety of optimization
problems, where they have been shown to outperform other
traditional methods [47]. Under the proposed approach, a
GA is employed for deciding on the optimal semantic im-
age interpretation by treating image analysis as a global
optimization problem, taking into account spatial contextual
information. GAs constitute one of the most widely known
global optimization methods [48], in the sense that in most
cases they achieve to find the optimal solution (or a solution
very close to the global optimum). The GA, being in principle
a stochastic process, is not always guaranteed to converge
to the global maximum, as no other stochastic optimization
method is. However, through the tuning of the GA’s parameters
(like selecting a sufficiently large number of chromosomes in
every population, choosing an appropriate selection operator,
selecting a suitable crossover operator, adjusting the proba-
bilities of mutation and crossover, etc.) the employed GA is
adapted to the problem of spatial context exploitation and
it is shown experimentally that it is capable of reaching a
solution close to the optimal one (if not the global maximum).
It must be noted that GAs are generally more robust in finding
the globally optimal solution, compared to other common
local search algorithms that iteratively shift among possible
solutions and are thus more likely to converge to local maxima
(e.g. gradient descend methods, quasi-Newton method, etc.)
[48].

The developed GA employs an initial population of ran-
domly generated chromosomes. Every chromosome∆ rep-
resents a possible solution, i.e. each gene assigns one of
the defined conceptsck to an image regionsn; therefore
∆ = {gnk, n ∈ [1, N ]}. After the population initialization,
new generations are iteratively produced by the application
of evolutionary operators (selection, crossover and mutation)
until the optimal solution is reached. The GA makes use of
an appropriate fitness function for denoting the plausibility of
every possible image interpretation, which has the form:

f(∆) =

∑
n,m V (gnk, gml)
N(N − 1)

, (3)

whereV (gnk, gml) ∈ [0, 1] indicates the degree to which the
gnk, gml region to concept mappings are consistent with the
acquired contextual and other (e.g. visual) information and
N(N − 1) denotes the number of ordered region pairs that
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are present in the examined image and which contribute to
the summation in the numerator. Output of the GA is a final
region-concept association which corresponds to the solution
with the highest fitness value.

Regarding the acquisition of the appropriate spatial con-
straints, a statistical learning approach is followed. This in-
volves the estimation of the set of valuesrkl and cov(rkl)
(Section IV) for every possible concept pair(ck, cl), which
represents the respective spatial constraint denotedukl. For
evaluating the agreement of a given pair of region to con-
cept mappings (gnk,gml) with spatial constraintukl, the
following mahalanobis distance-based expression is used:
Yukl(gnk, gml) = 1

1+
√

pT
n,mcov−1(rkl)pn,m

, where pn,m =

(rn,m − rkl). Yukl(gnk, gml) ∈ [0, 1] denotes the degree
to which the pair of mappings (gnk,gml) is consistent with
the acquired spatial contextual information. Greater values of
Yukl(gnk, gml) indicate more plausible spatial arrangements.

1) Combination of Spatial, Visual and Co-occurrence In-
formation: The GA combines the available spatial with the
visual and the concepts’ co-occurrence information towards
the detection of the most plausible pair of concepts (ck, cl) for
each pair of regions. Concepts’ co-occurrence indicates how
often a given pair of concepts is observed. For performing
this, i.e. estimating the value ofV (gnk, gml) in Eq. (3), a
probabilistic approach is followed. In particular, a series of
K2 BNs are constructed, where an individual BN is introduced
for every possible ordered pair of concepts (ck, cl) to learn the
respective correlations. In the presented work, discrete space
BNs are employed [49]. For every BN the following random
variables are defined: a) variablesCAnk and CAml: CAnk

denotes the fact of assigning conceptck to regionsn; similarly
for CAml. b) variable SCkl

nm, which represents the value
of the spatial constraint verification factorYukl(gnk, gml). c)
variablesV Ank and V Aml: V Ank denotes the value of the
estimated posterior probabilityhnk; similarly for V Aml. For
variablesCAnk and CAml the set of values that they can
receive is chosen equal to{cank1, cank2} = {caml1, caml2} =
{True, False}. On the other hand, a discretization step is
applied to the valuesYukl(gnk, gml), hnk andhml for defining
the discrete values of random variablesSCkl

nm, V Ank and
V Aml, respectively. The aim of the selected discretization
procedure is to compute a close to uniform discrete distribution
for each of the aforementioned variables. The structure of
the BN defined for the concept pair (ck, cl) is denoted by
Gkl and is illustrated in Fig.2, where the direction of
the arcs defines explicitly the causal relationships among
the introduced random variables. From the developed BN
structureGkl, the joint probability distribution of the random
variables that it includes can be defined, according to the
Markov condition [49]. This probability distribution is denoted
by Pjoint(cank, caml, vank, vaml, sc

kl
nm), where cank, caml,

vank, vaml, sckl
nm are the values of the variablesCAnk,

CAml, V Ank, V Aml, SCkl
nm, respectively. It must be noted

that the BN requires a set of annotated image content, denoted
by D2

tr (similar to theD1
tr set described in Section IV), for

training purposes.
At the evaluation stage, the BN receives as input the visual

Fig. 2. Developed BN structureGkl for combining spatial, visual and co-
occurrence information.vank1...vankQ denote discrete values of variable
V Ank and Q represents the total number of discrete values; similarly for
V Aml andSCkl

nm.

analysis results (i.e. posterior probabilitieshnk and hml)
and the corresponding spatial constraint verification factor
Yukl(gnk, gml). Then, it estimates the posterior probability
P (cank = True, caml = True|vank, vaml, sc

kl
nm), by per-

forming inference. This probability constitutes a quantitative
indication of how plausible the pair of region to concept map-
pings (gnk, gml) is, based on spatial, visual and co-occurrence
information; the value ofV (gnk, gml) in Eq. (3) is set equal
to this probability. A detailed description of the overall spatial
context technique can be found in [19].

B. Binary Integer Programming

Linear programs are a well known methodology for solving
constraint satisfaction problems. BIPs are a specific type of
linear programs, which allow the definition of only binary in-
teger variables. Despite the complexity of BIPs being generally
NP-hard, for certain forms they can be solved in polynomial
time [50]. Under the proposed approach, the problem of spatial
context exploitation is formalized as a BIP. For this purpose,
a set of binary constraintsTγ(ck, cl) (described in Section
IV), which model the concepts’ allowed spatial arrangement,
need to be estimated. Then, the task of computing an optimal
region-concept association is expressed in the form of a BIP,
which can be solved efficiently and takes into account the
initial classification results as well as the acquired spatial
constraints.

For estimating the binary spatial constraintsTγ(ck, cl), the
set of spatial relations that can connect every conceptck with
any other conceptcl need to be determined. This is performed
using support and confidence as selection criteria. For this
purpose, additional sets of relations, apart from the setsRck,cl

γ

defined in Section IV, need to be generated from the image set
D1

tr. In particular, for every spatial relationrγ a corresponding
set of relationsRck

γ is formed. This set comprises the relations
rγ(sn, sm), n 6= m, that have been computed for all region
pairs in D1

tr, where conceptck has been manually assigned
to at least one of the regionssn or sm. Similarly, setR∗,cl

γ is
created, which contains all relationsrγ(sn, sm) between any
arbitrary regionsn and a regionsm associated with concept
cl. Then, the confidence value, denoted byconfγ(ck, cl), for
spatial relationrγ and concept pair(ck, cl) is calculated as

follows: confγ(ck, cl) = |Rck,cl
γ |

|R∗,cl
γ | , where |.| denotes the num-

ber of elements of a set. On the other hand, the corresponding
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supportvalue (supγ(ck, cl)) is estimated according to the fol-

lowing expression:supγ(ck, cl) = |Rck,cl
γ |
|Rck

γ | . Spatial constraint

Tγ(ck, cl) is considered valid, i.e.Tγ(ck, cl) is set equal to1, if
confγ(ck, cl) > thconf and supγ(ck, cl) > thsup; otherwise,
Tγ(ck, cl) is set equal to0. The values of the thresholdsthconf

and thsup are estimated following an optimization procedure,
where image setD2

tr (Section V-A1) serves as a validation set.
In order to represent the problem of concern, i.e. spatial

context exploitation, as a binary integer program, a set of linear
constraints for each spatial relation need to be defined [50]. In
particular, letOn be the set of all outgoing relations for region
sn, i.e. On = {rγ(sn, sm), ∀m 6= n}, andEn the respective
set of incoming relations, i.e.En = {rγ(sm, sn), ∀m 6= n}.
Then, for every supported spatial relationrγ a corresponding
binary integer variablebkl

nγm is defined, which represents the
region-concept mappingsgnk, gml with respect to relation
rγ(sn, sm). bkl

nγm = 1 denotes that the mappingsgnk, gml

are valid, while bkl
nγm = 0 that they are not. Since every

binary variablebkl
nγm represents the assignment of concept pair

(ck, cl) to the pair of regions(sn, sm) with respect to relation
rγ(sn, sm), and only a single concept can be eventually
assigned to every region, this restriction has to be added as
a set of linear constraints:

∑
ck

∑
cl

bkl
nγm = 1, ∀rγ(sn, sm).

These constraints ensure that there is only one pair of concepts
assigned to a pair of regions with respect to every spatial
relation. However, the aforementioned constraints do not as-
sure that a unique concept is associated with every region in
the final image interpretation, since a pair of binary variables
for two spatial relations involving the same region might
assign different concepts. In order to avoid that, additional
constraints that ‘link’ the introduced variables need to be
defined. This can be accomplished by linking pairs of relations.
For the case of the outgoing relations, this is performed as
follows: A reference relationrγ ∈ On is arbitrarily chosen
and subsequently constraints regarding allrζ ∈ On, ζ 6= γ,
are defined. Letrγ(sn, sm) andrζ(sn, sp) be the two relations
to be linked. Then, the following constraints are defined:∑

cl
bkl
nγm − ∑

cl
bkl
nζp = 0, ∀ck. The first sum receives the

value 1 if ck is assigned tosn with respect to relationrγ .
The second sum has to receive the same value, since both
are subtracted and the whole expression has to be equal to0.
Therefore, if one of the relations assignsck to sn, the other has
to do the same. Following the same approach, the incoming
relations, as well as the incoming with the outgoing ones,
can also be linked. Eventually, an objective function, which
denotes the plausibility of every possible image interpretation,
is defined:

F =
∑

rγ(sn,sm)

∑

k

∑

l

min(hnk, hml) · rγ(sn, sm) · Tγ(ck, cl) · bkl
nγm (4)

This function rewards concept assignments that satisfy the
acquired spatial context and exhibit high analysis values (i.e.
posterior probabilitieshnk and hml). The solution with the
highest value of the objective function constitutes the output

of the overall approach. A detailed description of this method
can be found in [29].

C. Energy-based Model

EBMs are structured prediction models that encode the
dependencies among the random variables that they include,
while they can estimate an overall energy value for every
possible combination of values of their random variables [38].
EBMs are defined in a way that more plausible sets of values
of their random variables lead to lower energy levels. Inference
aims at estimating the values of the defined random variables
that minimize the overall energy of the model. EBMs are ad-
vantageous compared to other undirected graphical models that
are widely used, like MRFs. This is mainly due to the fact that
they allow the relaxation of the strict probabilistic assumptions
and the avoidance of intractable partition functions that are
often encountered in MRFs [38].

In this work, an improved version of the approach proposed
in [37] is considered, which now incorporates information
about the spatial arrangement of the image regions. The
developed EBM reduces the region labeling problem to that
of minimizing an energy function, which takes into account
visual, spatial and co-occurrence information. In particular,
the EBM is represented with a graph, where each node corre-
sponds to a regionsn of the examined image. Dependencies
among regions are denoted by edges. Under the proposed
approach, all possible connections between the nodes of the
model are considered and its general structure is illustrated
in Fig. 3. Every node assigns one of the supported concepts
ck to every regionsn; this assignment is denotedgnk, as
described in Section IV. Additionally, the energy-function
of the EBM for a given image is defined according to the
following equations:

E = −(
∑

n

t1(gnk) +
∑
n,m

t2(gnk, gml))

t1(gnk) = β · hnk + δ · freq(ck)
t2(gnk, gml) = µ · freq(ck, cl) · hml + ν · φ(gnk, gml) (5)

Term t1(gnk) in the above equations denotes the degree
with which regionsn is associated with conceptck, taking
into account visual information (posterior probabilityhnk

defined in Section III-B) as well as the prior probability of
occurrence of conceptck, freq(ck). The latter is defined
as the percentage (relative frequency) of the overall regions
sn that are present in the images of setD1

tr (Section IV)
and constitute instances of conceptck. Parametersβ and δ
adjust the degree to whichhnk and freq(ck) should affect
the value oft1(gnk), respectively. On the other hand, term
t2(gnk, gml) indicates the consistency of thegnk, gml region
to concept mappings, based on spatial (φ(gnk, gml)) and co-
occurrence (freq(ck, cl)) information.freq(ck, cl) is defined
equal to the percentage (relative frequency) of the region pairs
(sn, sm) that are manually associated with the concepts (ck, cl)
in the images of setD1

tr. Additionally, factor φ(gnk, gml)
is estimated using a normalized Euclidean distance-based
formulation:φ(gnk, gml) = 1− ||rkl−rn,m||√

Γ
, where||.|| denotes

the norm of a vector and the mean vectorrkl, which denotes
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Fig. 3. Developed EBM for spatial context exploitation. Filled nodes denote
the region-concept assignment based only on visual information, while unfilled
ones represent the assignment after the EBM inference is performed.

the spatial constraint for concept pair(ck, cl), is calculated
according to Eq. (1). The impact of factorsfreq(ck, cl) and
φ(gnk, gml) on the estimation of termt2(gnk, gml) is adjusted
through parametersµ andν, respectively. It must be noted that
for selecting the optimal values for parametersβ, δ, µ andν, a
grid search strategy is followed, where image setD2

tr (Section
V-A1) serves as a validation set.

At the evaluation stage, the EBM receives as input the visual
analysis results (i.e. posterior probabilitieshnk), as well as
the spatial relationsrn,m that have been computed for every
possible region pair (sn, sm). Then, it assigns a particular
conceptck to every regionsn, ensuring that its overall energy
valueE (Eq. (5)) is minimized. In the current implementation,
the Iterated Conditioned Modes (ICM) algorithm [51], i.e.
an algorithm commonly used in EBM-based schemes, is
utilized for realizing inference. The latter was experimentally
shown to outperform other widely used methods like simulated
annealing and graph cuts.

D. Discussion

Having described the selected spatial context techniques, an
in-depth theoretical analysis and comparison about the core
idea behind each method is presented in this section. In par-
ticular, detailed comments are given regarding the following
key points in spatial context exploitation: a) the complexity of
the utilized spatial contextual information, b) the combination
of the spatial, visual and concepts’ co-occurrence information,
and c) the spatial constraints enforcement procedure.

Regarding the complexity of the utilized spatial contextual
information, the BIP technique estimates a set of binary
constraints (Tγ(ck, cl)), as described in Section V-B. These
constraints define whether any two concepts can be connected
through a given spatial relation or not. Inevitably, this choice
results into relatively coarse representation of the objects’ spa-
tial configuration, since no information is included regarding
the degree to which a spatial relation should be satisfied by
a particular pair of concepts. On the other hand, the EBM
incorporates a finer representation by estimating the concepts’
expected spatial arrangement (valuesrkl in Eq. (1)). Although
this enables the quantitative description of the objects’ usual
relative position and allows the use of fuzzy spatial constraints,
this representation still does not include information about
the variations that are observed in the spatial relations that

connect the concepts. Moving to a more detailed description
of the concepts’ spatial topology, the GA estimates, apart from
the valuesrkl, the variances and the correlations between the
spatial relations (covariance matrixcov(rkl) in Eq. (2)) for
every pair of concepts. In this way, the GA achieves a more
complete representation of the concepts’ spatial configuration
than the other techniques, since it encodes both the concepts’
expected relative position as well as the extent of the variation
from it.

For combining the spatial, the visual and the concepts’ co-
occurrence information, the selected spatial context techniques
follow different fusion strategies. In particular, the BIP makes
use of a product operator for combining the spatial with the
visual information, as described in Eq. (4). This approach
performs under the fundamental assumption that the visual
features and the spatial relations for any pair of regions
constitute statistically independent quantities, regardless of the
semantic concepts that are present in these regions. Addi-
tionally, the concepts’ co-occurrence information is taken into
account only implicitly and without gradation with respect to
the individual concepts, through the value of the binary spatial
constraintTγ(ck, cl). On the contrary, the EBM drops the
aforementioned statistical independence assumption and fol-
lows a weighted sum approach for performing the information
fusion. Specifically, the EBM estimates a set of global weight
factors (parametersβ, δ, µ and ν in Eq. (5)) for adjusting
the impact of the visual features against the concepts’ prior
probabilities and the co-occurrence information against the
spatial context. The main drawback of this methodology is that
the computed global weights are likely not to be appropriate
for all concepts. On the other hand, the GA follows a more
elaborate probabilistically-learning approach for efficiently
performing information fusion, separately for every possible
pair of concepts. In particular, the GA employs a set of BNs,
which enable it to identify concepts whose detection could
be boosted by the incorporation of the spatial information and
subsequently to adjust the impact of every information source.
This is carried out through the estimation of the probability
distribution Pjoint(cank, caml, vank, vaml, sc

kl
nm) for the BN

structure in Fig. 2.
The methodology followed for enforcing the acquired con-

straints also affects the efficiency of the spatial context ex-
ploitation procedure. In the present analysis framework, all
spatial context techniques make use of machine learning
methods for this purpose. In particular, the EBM performs
a mapping of every image region to an individual node
of a graphical model that represents the image. The main
disadvantage of these models is that the maximum a posteriori
(MAP) estimation is usually intractable, especially for models
that contain many nodes, and the final solution can only be
approximated. As a consequence, the inference algorithms
utilized by the graphical models are in general locally optimal;
hence, they can be easily misguided or substantially affected
by the presence of noise in the data. Additionally, the EBM
depends significantly on the concepts’ prior probabilities, due
to the initialization procedure of its nodes. On the other
hand, the GA is a global optimization method, as discussed
in Section V-A. As such, the GA is generally expected to
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be less likely to converge to local maxima than the EBM
and to be less affected by the presence of noise, especially
when the examined image contains a relatively large number
of regions. Moreover, the developed GA employs an initial
set of candidate solutions, which are randomly distributed
in the solution space and in this way render the method
less dependent on the concepts’ prior probabilities. Similarly
to the GA, the BIP is also a global optimization method.
Consequently, the BIP is also expected to be less affected by
the presence of a relatively increased number of regions in the
image than the EBM.

The experimental evaluation will show how the above algo-
rithmic differences affect the performance of spatial context
exploitation both in overall and for individual concepts.

VI. EXPERIMENTAL EVALUATION

A. Datasets

In the developed evaluation framework, six datasets denoted
D1-D6 of varying complexity are utilized. Each dataset was
divided to three sub-sets, namelyD1

tr, D2
tr andDte. The first

one,D1
tr, was used by the classification algorithms for training

and by the spatial context techniques for acquiring spatial
contextual information.D2

tr was utilized for optimizing the
parameters of the spatial context techniques, whileDte was
used for evaluation. The selected datasets are:

i) D1 comprises535 images depicting only coastal
scenes. An appropriate set of7 conceptsck, which
represent meaningful real-world objects that can be
present in images of the formed set, was defined.
Then, every image was manually annotated, i.e.
after the segmentation algorithm described in Section
III-A was applied, a single concept was associated
with every resulting image region.

ii) The SCEF1 dataset, which is denoted byD2 and
was introduced in [52];D2 (10 concepts) constitutes
a broader dataset thanD1, including images that
belong to different semantic categories.

iii) The LabelMe dataset [53], where the16 most dom-
inant concepts were considered (i.e. concepts with
at least approximately100 instances in the dataset).
It must be noted that for this dataset (D3) hand-
made image annotation at region-level (i.e. the num-
ber and the boundaries of the regions in the im-
age are also manually determined) was originally
available. In order to generate ground-truth image
annotations following the application of an automatic
segmentation algorithm, a procedure similar to the
‘figure-ground segmentation’ approach proposed in
[54] was followed. Specifically, every image was
initially segmented using the algorithm of [39]. Then,
every created image regionsn was assigned one of
the supported conceptsck if the percentage (%) of
its area corresponding to conceptck, based on the
provided hand-made image annotation, exceeded a
pre-defined threshold; otherwise,sn was considered

1http://mklab.iti.gr/project/scef

an ‘unknown’ region. The value of this threshold was
experimentally set equal to66%, while the respective
value in the work of [54] was equal to50%.

iv) D4 comprises648 images belonging to the personal
collection domain. An appropriate set of17 concepts
was defined for it and manual image annotation at
region-level was performed.

v) The PASCAL VOC20102 dataset (D5) for the seg-
mentation competition. The dataset (20concepts) for
this particular competition was selected, since hand-
made pixel-level image annotations were available
for it. In order to generate ground-truth image anno-
tations using an automatic segmentation algorithm, a
procedure similar to the case of theD4 dataset was
followed.

vi) Finally, the MSRC3 v2 dataset was also used. For
this dataset (D6) 21 semantic concepts are supported
and hand-made pixel-wise image annotations are
provided. To this end, a procedure similar to the cases
of the D4 andD5 datasets was performed again for
generating region-level image annotations using an
arbitrary segmentation algorithm.

The partitioning of every utilized dataset to the image sets
D1

tr, D2
tr andDte, as well as the supported concepts for each

dataset, are illustrated in Table III.
In order to examine the way that the supported concepts are

distributed among the images of each dataset, the concepts’ co-
occurrence frequencyfreq(ck, cl) (Section V-C) is calculated,
taking into account this time all images of the respective
dataset. The estimated values are depicted in Fig. 4. As can
be seen from this figure, most concept pairs inD1 exhibit
relatively high co-occurrence frequency. This is due to the
fact that the images ofD1 depict only coastal scenes. On
the other hand, many frequency valuesfreq(ck, cl) are close
or equal to zero inD2. This is caused by the fact that the
images ofD2 belong to different semantic categories; hence,
some concept pairs are likely not to co-exist. Moreover, it
can be seen that the co-occurrence matrices of Fig. 4 become
more sparse for datasetsD3-D6, as a result of the increased
number of concepts that are supported for each of them.
Especially for datasetsD3, D5 and D6, the concepts’ co-
occurrence frequencies are particularly low (and many of them
equal to zero). This is mainly due to each image of the
aforementioned datasets depicting very few different kinds
of objects (usually no more than two or three), and to only
specific concept pairs usually co-existing. Another important
characteristic that differentiates datasetsD3, D5 andD6 from
the remaining ones concerns the number of the regions that
are present in the image and do not correspond to any one
of the defined concepts, i.e. the image regions considered as
‘unknown’ above. The percentage of these regions to the total
number of segments is approximately equal to58%, 70% and
42% in D3, D5 and D6, respectively. This is caused by the
significantly large number of image pixels that were manually
determined as ‘void’ during the original hand-made annotation

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html
3http://research.microsoft.com/en-us/projects/objectclassrecognition/
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TABLE III
UTILIZED DATASETS

Numberof images
Dataset D1

tr D2
tr Dte Supportedconcepts

D1 131 132 272
c1: sand c2: sea c3: boat
c4: vegetation c5: rock c6: person
c7: sky

D2 230 230 462

c1: building c2: foliage c3: mountain
c4: person c5: road c6: sailing-boat
c7: sand c8: sea c9: sky
c10: snow

D3 1183 1183 1100

c1: building c2: sky c3: tree
c4: road c5: plant c6: window
c7: grass c8: sidewalk c9: water
c10: ground c11: car c12: mountain
c13: wall c14: door c15: sea
c16: person

D4 162 162 324

c1: building c2: roof c3: grass
c4: vegetation c5: dried-plant c6: ground
c7: person c8: sky c9: rock
c10: tree c11: trunk c12: sand
c13: sea c14: road c15: court
c16: gradin c17: board

D5 477 477 956

c1: aeroplane c2: bicycle c3: bird
c4: boat c5: bottle c6: bus
c7: car c8: cat c9: chair
c10: cow c11: dining-table c12: dog
c13: horse c14: motorbike c15: person
c16: potted-plant c17: sheep c18: sofa
c19: train c20: tv-monitor

D6 148 147 296

c1: building c2: grass c3: tree
c4: cow c5: sheep c6: sky
c7: aeroplane c8: water c9: face
c10: car c11: bicycle c12: flower
c13: sign c14: bird c15: book
c16: chair c17: road c18: cat
c19: dog c20: body c21: boat

of the images in these datasets. On the contrary, for datasets
D1, D2 andD4 the corresponding value is lower than10%.

B. Effect of Image Segmentation

The segmentation performance is an important parameter
in object-level context exploitation frameworks, while the
segmentation results cannot be perfect. However, in order to
ensure high quality of the computed segmentation masks and
to reduce the influence of the segmentation error, the employed
segmentation algorithm [39] was selected after conducting an
empirical evaluation with other common techniques of the
literature (e.g. normalized cuts [55], extensions [56], [57]
of the Recursive Shortest Spanning Tree (RSST) algorithm
[58], etc.). Additionally, the parameters of the algorithm of
[39] were selected separately for every utilized dataset after
experimentation, in order to accomplish high segmentation
accuracy.

Regarding the selection of the appropriate segmentation
level, an empirical evaluation with different sets of parameters
for the employed segmentation algorithm was also performed.
This resulted in various segmentations levels, ranging from
coarse segmentation masks to over-segmented images. When
very few segments were present in an image (e.g. up to
three or four), the efficiency of the selected spatial context
techniques was generally reduced. This was caused by the
presence of multiple objects in a single region and the ex-
amination of very few spatial constraints. Additionally, the
parameters that led to over-segmented images (e.g. more than
twenty regions per image on average) resulted in reduced
spatial context performance, too. This was mainly due to the

significantly increased problem complexity and the division
of a single object to multiple image segments in this case.
The latter observation is consistent with the one described in
[23], where the overall object recognition performance of the
proposed spatial context technique was reduced when using
over-segmented images. On the contrary, when: a) the total
number of the generated regions was not very small or too
big (e.g. around ten segments per image on average for most
of the utilized datasets), and b) the remaining parameters of
the employed segmentation algorithm were selected so as to
compute accurate object localization, all the selected spatial
context techniques were shown to introduce their highest
concept detection performance improvement. Therefore, since
segmentation efficiency affects all techniques in a similar way,
a detailed quantitative evaluation study regarding the influence
of image segmentation on the performance of the selected
spatial context techniques was not included in the developed
evaluation framework.

C. Analysis of Overall Concept Detection Results

In Table IV, quantitative performance measures from the
application of the spatial context techniques are presented in
terms of the overall concept classification accuracy for all pos-
sible combinations of low-level features and classification al-
gorithms and all utilized datasets. Additionally, the difference
in accuracy, which is calculated by subtracting the detection
accuracy accomplished based only on visual features from
the corresponding one obtained after using spatial context, is
also given. The latter is depicted in parentheses. Accuracy
is defined as the percentage of the image regions that are
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Fig. 4. Concepts’ co-occurrence frequency in the utilized datasets.

associated with the correct semantic concept. In Figs. 5-10,
the respective detailed concept detection results are also illus-
trated. It must be noted that for each regionsn, argmaxk(hnk)
is considered to indicate its concept assignment based solely
on visual features.

From the results presented in Table IV, it can be seen
that the application of all spatial context techniques leads to
a significant improvement in the overall concept classifica-
tion accuracy for most feature-classifier combinations in all
datasets. The highest performance improvement is achieved
by the BIP approach for the SIFT-SVM combination in
D4, where an increase of9, 25% is observed. Additionally,
the highest performance in absolute values is accomplished
by the combination of SIFT features, RF classifier and the
GA method for all datasets. The above results highlight the
effectiveness of spatial context exploitation in improving the
region-concept association results that have been generated
based solely on visual information.

Another important remark concerns the performance im-
provement introduced by the spatial context techniques with
respect to the initial concept classification results. In particular,
for a given classifier in a given dataset, the low-level features
resulting in better initial classification performance tend also
to lead to greater performance improvement. The highest such
difference is noticed for the BIP inD5, where for the MPEG-
7-SVM combination the introduced overall performance im-
provement is0, 17%, while for the SIFT-SVM combination
the respective improvement is equal to5, 51%. Examining
the above observation together with the results depicted in
Figs. 5-10, it can be seen that the aforementioned difference
in performance occurs when the initial classification results are
good for most supported concepts and not only for a relatively
small subset of them. Sound exception to this observation
is noticed inD1, where despite the significant difference in
performance between the MPEG-7- and the SIFT-based classi-
fication results, no corresponding increase in the performance
improvement introduced by the spatial context techniques is

observed. For example, for the SIFT-RF combination, where
the initial classification accuracy is equal to80, 60%, the
corresponding performance improvement accomplished by the
GA, BIP and EBM approaches is2, 55%, 0, 52% and0, 45%,
respectively. The latter improvements are lower than the cor-
responding ones attained for the MPEG-7-RF combination.
This suggests that when the initial classification accuracy
exceeds an upper bound, which is indicated by the conducted
experiments to be close to80% for D1, then the efficiency
of spatial context techniques in introducing a performance
improvement over these results is reduced. On the other hand,
when not exceeding this upper bound, it can be seen that
the highest initial classification performance (obtained for any
possible feature-classifier combination) also leads every spatial
context technique to its highest exhibited performance in all
datasets. The only exceptions to this observation are the BIP
in D4, D5 and EBM inD5.

Comparing the performance of the presented spatial context
techniques among the utilized datasets, it is shown that the
overall concept detection improvement that they achieve over
the initial classification results tends to increase when the
corresponding number of supported concepts decreases. In
particular, it can be seen from Table IV that for most cases the
performance improvement increases concerning a particular
technique and a given feature-classifier combination, when
moving from datasetD6 to D1. This is mainly due to the fol-
lowing reasons: a) Considering the datasets fromD6 to D1, the
number of concepts reduces, which results in a corresponding
reduction of the problem complexity. As a consequence, the
selected spatial context exploitation approaches become less
likely to be misguided when searching for the optimal image
interpretation, which in turn facilitates them in efficiently
discriminating between the defined concepts. b) Increase in
the total number of supported concepts renders more likely
many different concept pairs to present very similar spatial
arrangements. For example, the concept pairs road-building
and sand-sea inD2 share very similar spatial configurations,
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TABLE IV
OVERALL CONCEPT CLASSIFICATION ACCURACY

D1 dataset D2 dataset
Features Classifier Spatialcontext Classifier Spatialcontext

GA: 79,25% (7,71%) GA: 63,68% (6,48%)
SVM: 71,54% BIP: 76,85% (5,31%) SVM: 57,20% BIP: 59,39% (2,19%)

EBM: 73,48% (1,94%) EBM: 58,58% (1,38%)
GA: 76,03% (3,52%) GA: 63,38% (4,02%)

MPEG-7 RF: 72,51% BIP: 73,78% (1,27%) RF: 59,36% BIP: 59,29% (-0,07%)
EBM: 73,56% (1,05%) EBM: 60,51% (1,15%)
GA: 75,43% (3,89%) GA: 62,33% (4,32%)

LB: 71,54% BIP: 72,88% (1,34%) LB: 58,01% BIP: 59,76% (1,75%)
EBM: 72,66% (1,12%) EBM: 59,32% (1,31%)
GA: 83,00% (6,60%) GA: 70,74% (7,94%)

SVM: 76,40% BIP: 80,00% (3,60%) SVM: 62,80% BIP: 65,78% (2,98%)
EBM: 77,83% (1,43%) EBM: 65,57% (2,77%)
GA: 83,15% (2,55%) GA: 74,49% (7,73%)

SIFT RF: 80,60% BIP: 81,12% (0,52%) RF: 66,76% BIP: 70,07% (3,31%)
EBM: 81,05% (0,45%) EBM: 69,66% (2,90%)
GA: 82,55% (4,42%) GA: 73,58% (7,63%)

LB: 78,13% BIP: 80,15% (2,02%) LB: 65,95% BIP: 67,74% (1,79%)
EBM: 79,48% (1,35%) EBM: 68,28% (2,33%)

D3 dataset D4 dataset
Features Classifier Spatialcontext Classifier Spatialcontext

GA: 60,53% (8,80%) GA: 55,91% (5,10%)
SVM: 51,73% BIP: 52,23% (0,50%) SVM: 50,81% BIP: 53,39% (2,58%)

EBM: 53,07% (1,34%) EBM: 51,94% (1,13%)
GA: 60,51% (4,92%) GA: 54,78% (5,00%)

MPEG-7 RF: 55,61% BIP: 55,31% (-0,30%) RF: 49,78% BIP: 49,57% (-0,21%)
EBM: 56,17% (0,56%) EBM: 51,34% (1,56%)
GA: 53,37% (5,02%) GA: 52,37% (4,84%)

LB: 48,35% BIP: 47,93% (-0,42%) LB: 47,53% BIP: 50,11% (2,58%)
EBM: 49,73% (1,38%) EBM: 50,38% (2,85%)
GA: 65,83% (5,70%) GA: 64,89% (7,58%)

SVM: 60,13% BIP: 61,18% (1,05%) SVM: 57,31% BIP: 66,56% (9,25%)
EBM: 60,67% (0,54%) EBM: 58,76% (1,45%)
GA: 69,22% (4,48%) GA: 67,53% (8,50%)

SIFT RF: 64,74% BIP: 65,13% (0,39%) RF: 59,03% BIP: 60,97% (1,94%)
EBM: 65,26% (0,52%) EBM: 61,18% (2,15%)
GA: 59,03% (4,54%) GA: 64,89% (7,79%)

LB: 54,49% BIP: 55,08% (0,59%) LB: 57,10% BIP: 61,24% (4,14%)
EBM: 55,61% (1,12%) EBM: 60,54% (3,44%)

D5 dataset D6 dataset
Features Classifier Spatialcontext Classifier Spatialcontext

GA: 27,82% (9,22%) GA: 47,88% (5,89%)
SVM: 18,60% BIP: 18,77% (0,17%) SVM: 41,99% BIP: 41,31% (-0,68%)

EBM: 21,07% (2,47%) EBM: 43,24% (1,25%)
GA: 22,08% (4,27%) GA: 45,37% (5,51%)

MPEG-7 RF: 17,81% BIP: 18,26% (0,45%) RF: 39,86% BIP: 37,64% (-2,22%)
EBM: 18,85% (1,04%) EBM: 43,44% (3,58%)
GA: 13,71% (3,99%) GA: 41,41% (5,50%)

LB: 9,72% BIP: 6,32% (-3,40%) LB: 35,91% BIP: 34,07% (-1,84%)
EBM: 11,60% (1,88%) EBM: 38,13% (2,22%)
GA: 34,14% (5,65%) GA: 47,78% (5,21%)

SVM: 28,49% BIP: 34,00% (5,51%) SVM: 42,57% BIP: 45,46% (2,89%)
EBM: 30,57% (2,08%) EBM: 44,31% (1,74%)
GA: 35,49% (6,16%) GA: 48,46% (5,41%)

SIFT RF: 29,33% BIP: 31,24% (1,91%) RF: 43,05% BIP: 46,72% (3,67%)
EBM: 29,58% (0,25%) EBM: 47,01% (3,96%)
GA: 20,82% (6,07%) GA: 42,18% (5,60%)

LB: 14,75% BIP: 12,39% (-2,36%) LB: 36,58% BIP: 33,98% (-2,60%)
EBM: 16,35% (1,60%) EBM: 38,51% (1,93%)

sincethe first concept usually corresponds to an image region
that is bellow a segment that corresponds to the second concept
in each pair. It must be noted at this point that the performance
improvement obtained by each technique for most pairs of
features-classifier is significantly higher inD4 than the corre-
sponding ones achieved inD3, D5 andD6. This is observed
despite the fact that the total number of supported concepts in
all these datasets is comparable (i.e.16, 17, 20 and21 concepts
are defined inD3, D4, D5 and D6, respectively). The latter
is mostly caused by the following facts: a) Each image of
datasetsD3, D5 and D6 depicts very few different kinds of
objects and only particular concept pairs tend to co-exist, as
discussed in Section VI-A. As a result, if regions are associated
with an incorrect concept with a high posterior probabilityhnk

in images of these datasets, it is less likely to be eventually
assigned the correct concept through the exploitation of spatial
contextual information, compared to a similar case of images
belonging toD4. b) The percentage of ‘unknown’ regions in
images ofD3, D5 and D6 is approximately more than four
times the respective percentage inD4, as described in Section
VI-A. This type of regions contribute to the misleading of
the inference procedure of all techniques; hence, limiting the
effectiveness of spatial context inD3, D5 andD6.

From the results presented in Table IV, it can be seen that
the GA technique performs significantly better than the BIP
and the EBM ones for most feature-classifier combinations in
all datasets. The reason for this is twofold: a) The GA follows
a more sophisticated statistical learning-based procedure for
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acquiringcomplex fuzzy spatial constraints, compared to the
simpler fuzzy constraints estimated by the EBM and the set of
binary ones acquired by the BIP. b) The GA makes use of a
BN-based approach for probabilistically adjusting the impact
of the spatial, visual and concepts’ co-occurrence information
on the final outcome, separately for every pair of supported
concepts. On the contrary, the EBM estimates a set of global
weight factors and the BIP employs the product operator for
performing the same task. The above observations indicate that
acquiring complex spatial contextual information as well as
efficiently adjusting its weight against the other information
sources (e.g. visual, co-occurrence) can lead to a signifi-
cant increase in the region-concept association performance.
Moreover, these observations are also in accordance to the
theoretical analysis given in Section V-D.

D. Discussion on Individual Concept-level Results

Having discussed the overall performance of each spatial
context technique, their corresponding concept-level perfor-
mance is examined here. The detailed concept detection results
for all utilized datasets are given in Figs. 5-10, as described
in Section VI-C. From the presented results, it can be seen
that the selected spatial context techniques accomplish to
significantly increase the detection rates for most of the
supported concepts for any combination of low-level features
and classifiers in all datasets. This fact demonstrates again the
effectiveness of spatial context exploitation in improving the
region-concept association results that have been computed
based on visual features.

In order to evaluate the performance of every technique
for each concept individually, a gradation of the supported
concepts for each dataset is performed, with respect to how
well-defined their spatial configuration is. Although there is no
generally applicable formula for that purpose, the following
quantitative measure, called Spatial Context Factor (SCF), is
considered in this work:

SCF (ck) =
∑

l tr(cov(rkl)) +
∑

l tr(cov(r lk))
2K

, (6)

where tr(.) denotesthe trace of a matrix and the covari-
ance matricescov(rkl) and cov(r lk) are calculated according
to Eq. (2). Conceptck is considered to have well-defined
spatial context if the factorSCF (ck) receives relatively low
values, i.e. the spatial relations of conceptck with all other
conceptscl of the respective dataset do not present signif-
icant variations in their values. In Table V, the values of
the factorsSCF (ck), which are calculated for all supported
conceptsck in all utilized datasets, are presented in ascending
order. Additionally, the weighted average value of the factors
SCF (ck) is also given for each dataset. The latter consti-
tutes a global quantitative indicator of the degree to which
the supported concepts have well-defined spatial context for
every dataset and is calculated according to the following
expression:

∑
k freq(ck) · SCF (ck), where SCF (ck) and

freq(ck) (Section V-C) are calculated, taking into account all
images of the respective dataset. For example, concepts sand
and sky exhibit relatively low values of factorSCF (ck) (i.e.
they have more well-defined spatial context) inD1, namely

0, 3054 and 0, 3070, respectively. This is due to the fact
that sand instances in coastal scene types usually correspond
to regions at the bottom of an image and are connected
with relation below with most other concepts; similarly, sky
instances are mainly connected with relation above with most
other concepts. On the other hand, concept vegetation presents
the highestSCF (ck) value, which is equal to0, 5139. The
reason for this is that vegetation may correspond to image
regions with significantly different spatial configurations (e.g.
tree foliage, bushes, etc.); hence, significant variations can be
observed in their spatial relations with other concepts.

Examining the performance of the different spatial context
techniques separately for every supported concept, it can be
observed that the detection of some concepts is particularly
favored by the application of each technique, regardless of the
employed features-classifier combination. In particular, it is
shown that concepts with more well-defined spatial context,
according to the values of factorsSCF (ck) depicted in Table
V, exhibit the highest in percentage improvement over the
initial classification results when the GA approach is applied.
These concepts include: a) sand and person inD1, b) sand and
road in D2, c) ground and mountain inD3, d) court, board
and grass inD4, e) bus inD5, and f) car and aeroplane in
D6. This suggests that the more sophisticated statistical learn-
ing approach followed for obtaining the GA’s fuzzy spatial
constraintsukl, i.e. calculation ofrkl and cov(rkl) (Section
IV), is more suitable for modeling the spatial configuration
of these concepts. Additionally, the EBM approach, which
follows a simpler learning process than the GA for acquiring
fuzzy spatial contextual information (i.e. only therkl values
are calculated), tends also to favor concepts with more well-
defined spatial context, like concepts sky and road inD6.
On the other hand, the BIP technique, which makes use of
a set of binary spatial constraints (Tγ(ck, cl)), is shown to be
advantageous for localizing concepts with not so well-defined
spatial context, like sea, person and building inD2, D4 and
D6, respectively.

From the presented results, it can also be seen that signif-
icant performance improvement can be obtained for concepts
that exhibit low initial classification rate by the applica-
tion of the GA, like concepts: a) building, sailing-boat and
snow in D2, b) building in D4, and c) bicycle, flower and
chair inD6. Significant contribution towards this performance
improvement is induced by the probabilistic approach that
is followed by the GA for adjusting the impact that the
visual cues should have on the detection of every supported
concept. On the contrary, marginal changes or decrease in the
detection performance may be observed by the application
of all techniques for concepts whose initial classification rate
exceeds an upper bound similar to the one discussed in Section
VI-C (e.g. concept sky in most datasets).

E. Effect of the Number of Image Regions and the Amount of
Data Used for Context Acquisition

In this section, the performance of each technique is exam-
ined with respect to the number of regions that are present
in the examined image, and with respect to the amount of
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Fig. 5. Concept classification results in theD1 dataset.

the available image content that is used for spatial context
acquisition.

Regarding the first experiment, the images of test setsDte

for D1 to D6 are initially grouped with respect to the total
number of regions they contain. Subsequently, the concept de-
tection accuracy, as defined in Section VI-C, is calculated for
each group of images and for every possible feature-classifier
combination with respect to every spatial context technique.
Then, for each technique a weighted average classification
value is estimated for every corresponding group of images,
using the number of images in each group of every dataset
as weight. The obtained results are illustrated in Fig. 11(a) in
terms of the difference in concept detection accuracy, i.e. by
subtracting the average classification obtained based on visual
features from the corresponding one accomplished by each
spatial context technique. Additionally, the total number of
images of all datasets in each of the aforementioned groups
is given in Fig. 11(b). From the presented results, it can be
seen that for the GA, which performs better on average than
the other two methods in all datasets (as discussed in Section
VI-C), a gradual increase in its performance improvement is
observed, when the number of image regions increases. In par-
ticular, it is shown that when the number of regionsN is equal
to 2, the GA introduces a decrease of approximately−1, 58%
in the classification accuracy, compared to the initial classi-
fication results. On the other hand, significant performance
improvement is observed whenN ≥ 4, exhibiting a highest
value of approximately14, 46% for N = 27. The reason for

this is twofold: a) When very few regions are present in the
image (e.g.N = 2, 3), the final region-concept associations
are strongly dependent on the initial classification results, since
very few spatial constraints can be taken into account. On the
contrary, when more regions exist, spatial relations between
significantly more region pairs are considered before reaching
the final decision; hence, it is more likely for regions that
have been misclassified based on visual information to be
eventually associated with the correct concept. b) The GA is a
global optimization method (Section V-A); therefore, it is less
likely to converge to local maxima in the solution space and
it can efficiently utilize the increased number of the available
spatial constraints whenN receives high values. The BIP,
on the other hand, presents its highest average performance
improvement when the number of regions is significantly
high (i.e. N ≥ 10), since it is also a global optimization
method (Section V-B). However, the reason that it fails to
introduce performance improvements comparable to those of
the GA is mainly the limitation of the binary spatial constraints
Tγ(ck, cl) (Section IV) that the BIP makes use of to model
the concepts’ spatial arrangement, as discussed in Section
VI-C. On the contrary, the EBM exhibits a relatively constant
performance improvement with small variations around the
value of1, 50% for any N . This is mainly caused by: a) the
EBM, as being a graphical model-based approach, depends
heavily on the concepts’ prior probabilities, and b) the ICM
algorithm (Section V-C), which is used by the developed EBM
for performing inference, is a local search method; hence, it
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Fig. 6. Concept classification results in theD2 dataset.

can not exploit efficiently the large number of constraints that
are available in images with many regions, as opposed to the
GA that follows a global optimization methodology. The above
observations suggest that the adoption of a global optimiza-
tion approach, while using more complex spatial contextual
information, can lead to significant performance improvements
over the initial classification results, when not very few regions
exist in the examined image. These observation also justify the
theoretical analysis given in Section V-D.

The performance of the spatial context techniques is also
evaluated when the amount of the available image content
(i.e. the number of images used) that is utilized for spatial
context acquisition is reduced. For this purpose, the image set
D1

tr, which is used for spatial constraints learning (Section
IV), is reduced to a correspondinǵD1

tr one of half size,
by randomly discarding half of its images. Then, the spatial
context acquisition process of each technique is repeated, using
D́1

tr instead ofD1
tr, and new region-concept association results

are computed after the application of the GA, BIP and EBM
techniques, as described in Section V. It must be noted that
the initial classification results were maintained for ensuring
a fair comparison. In Fig. 12, the obtained region-concept
association results are given in terms of the difference in
overall concept detection accuracy. The latter is calculated by
subtracting the detection accuracy accomplished when using
D1

tr for spatial context acquisition from the corresponding
one obtained wheńD1

tr is utilized. Additionally, the relation
between the performance of the spatial context techniques

and the initial classification based only on visual features
is also illustrated (asterisks in Fig. 12). This is computed
by subtracting the detection accuracy achieved when using
D1

tr for spatial context acquisition from the detection accu-
racy obtained prior to the application of any spatial context
technique. Bars higher than the respective asterisk in Fig. 12
indicate that the corresponding technique improves the initial
classification results, after the reduction in the amount of
image content used for spatial constraints learning. From the
presented results, it can be seen that reducing the size of the
set D1

tr to half results in small changes (i.e. changes< 1%)
in the performance of the GA for all possible feature-classifier
combinations in all datasets. Additionally, its exhibited overall
classification accuracy remains in all cases significantly higher
than the baseline visual classification (i.e. the asterisks in Fig.
12). These observations indicate that the statistical learning
approach followed by the GA for spatial constraints acquisition
remains almost unaffected by the reduction in the amount of
the available training data, despite the relatively more complex
and sophisticated procedure that is followed, compared to the
other two methods. The EBM follows the GA in the extent of
the deviations in performance that it exhibits, with the highest
reduction (−3,19%) being observed inD6. This is mainly
due to the fact that the EBM supports the usage of fuzzy
spatial constraints (similarly to the GA), following a simpler
learning approach though, as described above. On the other
hand, the BIP technique is shown to be affected the most by
the reduction in the size of the available image content used
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Fig. 7. Concept classification results in theD3 dataset.

for spatial context acquisition. From the presented results, it
can be seen that the highest reductions in performance are
observed inD4 and D6, i.e. datasets with large number of
supported concepts. In particular, a decrease in the overall
performance equal to−6, 62% and −5, 12% is measured
for the SIFT-LB combination inD4 and D6, respectively.
These observations indicate that the set of binary spatial
constraints used by the BIP, i.e. spatial relations that are either
acceptable or not between two concepts, are more susceptible
to reductions in the amount of training data, compared to the
fuzzy constraints of the other two techniques.

F. Time Efficiency

In this section, the time efficiency of the selected spatial
context techniques is investigated. In Table VI, the measured
execution times of all techniques for both training and evalua-
tion stages are given for all utilized datasets. The experiments4

were conducted using a PC with Intel Quad Core processor at
2, 4GHz and a total of3GB RAM.

From the results given in Table VI, it can be seen that the
GA presents in general the highest execution times during
the training stage and the BIP the lowest ones. The former
is mainly due to the increased computational complexity of:
a) the statistical learning approach that is followed by the
GA for acquiring complex fuzzy spatial constraints, and b)

4Although the three spatial context techniques were executed with different
PC configurations, appropriate time normalization based on hardware perfor-
mance has been applied.

the training procedure of the employed BNs for information
fusion. On the contrary, the BIP appears to be the fastest
method during training, since it adopts a significantly more
simple approach for estimating a set of binary constraints.
Regarding the time performance during the evaluation stage,
it can be seen that the BIP is the slowest approach. This
denotes that the deterministic methodology followed by the
BIP for the constraints enforcement procedure is less efficient
than the evolutionary approach of the GA and the local-search
method of the EBM. Significant contribution to the latter have
the binary constraints that the BIP technique makes use of,
which have reduced expressiveness and which can hinder the
efficient search of the optimal solution. On the other hand,
the EBM is shown to perform the fastest. This is mainly
due to the fact that the EBM uses a local search algorithm
during its inference procedure, i.e. it does not follow a global
optimization approach like the BIP and the GA techniques. It
must be noted that the time efficiency of the GA, i.e. the most
well-performing technique, depends heavily on the desirable
level of the solution quality. The latter is mainly affected by the
number of the chromosomes in the respective GA’s population.
In the current evaluation framework, more emphasis was given
on reaching increased concept detection results than estimating
an optimal trade-off between time efficiency and recognition
performance for the GA technique (i.e. significant time im-
provements can be achieved with relatively low decrease in
the concepts’ recognition rates).

Regarding the time performance of each method among the
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Fig. 8. Concept classification results in theD4 dataset.

different datasets, it can be observed that the GA efficiency
during the evaluation stage generally decreases as the number
of images and the number of concepts increases. On the
other hand, the BIP tends to present more intense and less
consistent changes in time performance. Despite the inevitable
randomness in the actual problem complexity in each dataset,
this is mainly due to the significant variations in the number of
the valid binary constraints that are learned for every dataset
and which are likely to lead to significant time performance
alterations. Additionally, it is shown that the time efficiency
of the EBM mainly depends on the number of images in each
dataset and it is not significantly affected by the number of the
supported concepts. The latter is due to the local search strat-
egy that it follows, which aims at estimating an approximation
of the optimal solution when the problem complexity increases
significantly. It must be highlighted though that the execution
times between the datasets are not directly comparable, since
the distributions of the total number of regions per image are
different in every utilized dataset.

VII. C ONCLUSIONS

In this paper, three approaches to spatial context exploitation
that make use of fuzzy directional relations were presented
and comparatively evaluated. The selected techniques include
a GA, a BIP and an EBM, and each of them is applied after an
initial set of region classification results based solely on visual
features is computed. Extensive experiments on six datasets
of varying complexity demonstrated the influence of a series

of factors on their region-concept association performance.
The main outcomes of this work regarding the exploitation
of spatial context in semantic image analysis are summarized
as follows:

• Spatial context is efficient in improving the initial (i.e.
based solely on visual features) region-concept associa-
tion results; exhibiting an overall increase of up to9, 25%
in the current evaluation framework.

• The highest on average performance is achieved when
complex spatial constraints are acquired and their weight
against the visual and co-occurrence information is effi-
ciently adjusted (this is better accomplished by the BN-
based approach followed by the GA, rather than the
global weights of the EBM or the product operator of
the BIP).

• The overall concept detection improvement over the
initial classification results tends to increase when the
number of supported concepts decreases.

• For a given classifier, the visual features that result in
better initial classification performance also tend to lead
to greater performance improvement when applying a
spatial context technique.

• When the initial classification accuracy exceeds an upper
bound (either overall, or at concept-level), the efficiency
of spatial context in introducing a performance improve-
ment over these results is reduced.

• For a given dataset, the highest initial classification per-
formance leads also to the highest performance after the
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Fig. 9. Concept classification results in theD5 dataset.

application of spatial context techniques.
• Fuzzy spatial constraints are less likely to result in

performance decreases when the amount of training data
is reduced, compared to binary constraints.

Additionally, the major differences in performance among the
selected spatial context techniques, with respect to a series
of individual factors, are given in Table VII. Future work
includes the investigation of additional contextual information
sources, like scene-type related information, and their combi-
nation with spatial context for achieving further performance
improvement.
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Fig. 10. Concept classification results in theD6 dataset.
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TABLE V
ESTIMATED SCF (ck) FACTORS

Dataset Concepts Average

D1

sand(c1): 0,3054 sky (c7): 0,3070 sea(c2): 0,4271
boat (c3): 0,4505 person(c6): 0,4509 rock (c5): 0,4909
vegetation(c4): 0,5139

0,3978

D2

sand(c7): 0,2831 sky (c9): 0,3192 mountain(c3): 0,4026
sea(c8): 0,4150 road(c5): 0,4261 sailing-boat(c6): 0,4586
person(c4): 0,4767 building (c1): 0,5029 snow(c10): 0,5070
foliage (c2): 0,5188

0,4255

D3

sea(c15): 0,2492 water(c9): 0,2880 sky (c2): 0,3570
ground(c10): 0,3571 grass(c7): 0,4006 mountain(c12): 0,4022
road (c4): 0,4089 sidewalk(c8): 0,4394 wall (c13): 0,4485
building (c1): 0,4543 plant (c5): 0,4622 door (c14): 0,4778
tree (c3): 0,4923 person(c16): 0,5092 car (c11): 0,5113
window (c6): 0,5234

0,4409

D4

sand(c12): 0,3081 road(c14): 0,3319 court (c15): 0,3454
sky (c8): 0,3743 board(c17): 0,3749 roof (c2): 0,3825
sea(c13): 0,3853 ground(c6): 0,3922 rock (c9): 0,4059
grass(c3): 0,4060 gradin(c16): 0,4187 building (c1): 0,4638
dried-plant(c5): 0,4669 vegetation(c4): 0,4825 trunk (c11): 0,4906
person(c7): 0,5063 tree(c10): 0,5378

0,4334

D5

car (c7): 0,3946 sheep(c17): 0,4040 cat (c8): 0,4290
boat (c4): 0,4365 dog (c12): 0,4572 aeroplane(c1): 0,4580
bus (c6): 0,4658 dining-table(c11): 0,4668 motorbike(c14): 0,4816
horse(c13): 0,4858 bicycle (c2): 0,4865 potted-plant(c16): 0,5002
bottle (c5): 0,5011 tv-monitor (c20): 0,5118 sofa(c18): 0,5343
bird (c3): 0,5383 train (c19): 0,5496 cow (c10): 0,5537
chair (c9): 0,5556 person(c15): 0,5650

0,4951

D6

sky (c6): 0,2087 boat(c21): 0,2482 sheep(c5): 0,2675
water (c8): 0,2747 cow (c4): 0,3224 car (c10): 0,3266
road (c17): 0,3525 aeroplane(c7): 0,3639 body (c20): 0,3644
dog (c19): 0,3737 cat (c18): 0,3742 grass(c2): 0,3776
bird (c14): 0,3858 face(c9): 0,3936 building (c1): 0,4022
book (c15): 0,4030 tree(c3): 0,4218 chair (c16): 0,4245
flower (c12): 0,4576 sign (c13): 0,4707 bicycle (c11): 0,4912

0,3645

TABLE VI
TIME EFFICIENCY OF THE SELECTED SPATIAL CONTEXT TECHNIQUES IN MINUTES(TRAINING|EVALUATION )

Datasets
Techniques D1 D2 D3 D4 D5 D6

GA 0,36|3,48 0,60|26,53 3,80|126,90 1,09|120,30 4,60|248,19 3,02|131,85
BIP 0,01|6,02 0,04|78,40 0,18|70,96 0,04|371,45 0,28|525,16 0,02|154,17

EBM 0,78|27,32 0,79|46,38 1,31|88,62 0,78|40,50 1,16|73,67 0,63|21,57
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Fig. 12. Concept classification accuracy when using training set of reduced size (CB1: MPEG-7-SVM, CB2: MPEG-7-RF, CB3: MPEG-7-LB, CB4: SIFT-
SVM, CB5: SIFT-RF, CB6: SIFT-LB). The asterisks represent the difference of the initial classification performance based only on visual features from the
one accomplished when usingD1

tr for spatial context acquisition (i.e. bars higher than the respective asterisk indicate that the corresponding spatial context
technique improves the results of the initial visual-based classification, after the reduction in the amount of image content used for spatial context acquisition).

TABLE VII
DIFFERENCES IN PERFORMANCE AMONG THE SPATIAL CONTEXT TECHNIQUES

Factors Spatialcontext techniques
Considered GA BIP EBM

Concepts
favored

Conceptswith more
well-defined spatial

context and concepts
with low initial

classification rate

Conceptswith less
well-defined spatial

context

Conceptswith more
well-defined spatial

context

Numberof
image
regions

Increasein performance
improvement, when the

number of regions
increases
(N ≥ 4)

Performanceimprovement
only when the number

of regions is
significantly high

(N ≥ 10)

Relatively constant
performance improvement

regardless of the
number of regions

Reduction
in amount
of training

data

Small changes
in performance

(changes< 1%)

Significantperformance
reduction in datasets
with many concepts

can be observed
(up to−6, 62%)

Performancereduction
in datasets with
many concepts

can be observed
(up to−3, 19%)
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