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Temporal video segmentation to scenes using
high-level audiovisual features

Panagiotis Sidiropoulos, Vasileios Mezaris, Ioannis Kompatsiaris, Hugo Meinedo, Miguel Bugalho and
Isabel Trancoso

Abstract—In this work a novel approach to video temporal
decomposition into semantic units, termed scenes, is presented.
In contrast to previous temporal segmentation approaches that
employ mostly low-level visual or audiovisual features, we in-
troduce a technique that jointly exploits low-level and high-level
features automatically extracted from the visual and the auditory
channel. This technique is built upon the well-known method
of the Scene Transition Graph (STG), first by introducing a
new STG approximation that features reduced computational
cost, and then by extending the unimodal STG-based temporal
segmentation technique to a method for multimodal scene seg-
mentation. The latter exploits, among others, the results of a large
number of TRECVID-type trained visual concept detectors and
audio event detectors, and is based on a probabilistic merging
process that combines multiple individual STGs while at the
same time diminishing the need for selecting and fine-tuning
several STG construction parameters. The proposed approach
is evaluated on three test datasets, comprising TRECVID docu-
mentary films, movies, and news-related videos, respectively. The
experimental results demonstrate the improved performance of
the proposed approach in comparison to other unimodal and
multimodal techniques of the relevant literature and highlight the
contribution of high-level audiovisual features towards improved
video segmentation to scenes.

I. INTRODUCTION

Video decomposition into temporal units is an essential
pre-processing task for a wide range of video manipulation
applications, such as video indexing, non-linear browsing,
classification etc. Video decomposition techniques aim to
partition a video sequence into segments, such as shots and
scenes, according to semantic or structural criteria. Shots are
elementary structural segments that are defined as sequences
of images taken without interruption by a single camera [1].
On the other hand, scenes are longer temporal segments that
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are usually defined as Logical Story Units (LSU): higher-level
temporal segments, each covering either a single event (e.g.
a dialog) or several related events taking place in parallel
[2]. The close relation between video scenes and the real-
life events depicted in the video make scene detection a key
enabling technology for advanced applications such as event-
based video indexing; the latter has been gaining significant
attention, as part of recent efforts towards experience- and
event-based multimedia manipulation [3]. Fig. 1(a) illustrates
the relations between different temporal segments of a video.

Video segmentation to shots and scenes are two differ-
ent problems that are characterized by considerably differ-
ent degrees of difficulty. State-of-the-art shot segmentation
techniques, detecting the presence of video editing effects
such as cuts and fades with the use of low-level visual
features, have been shown in large-scale experiments (e.g.
TRECVID) to reach an accuracy that is close to perfect;
this accuracy is deemed by the relevant community to be
sufficient for any practical application [4]. On the other hand,
scene segmentation is still an open research problem, with
most approaches of the literature failing to take into account
the semantics of the content in performing a task that by
definition is based on semantic criteria: different consecutive
parts of the video are assigned to the same scene, according
to the literature, simply because they present similar low-level
audiovisual properties, whereas it is much more than such low-
level properties that make humans recognize (and request to
consume, in applications such as retrieval) different scenes in
a video.

In this work a novel approach to video temporal decomposi-
tion into scenes is presented. This builds upon the well-known
technique of the Scene Transition Graph (STG) [5], which it
extends, and additionally exploits recent advances in sematic
video analysis tasks in order to overcome the limitations
of existing scene segmentation approaches. Initially, a new
STG approximation that features reduced computational cost
is introduced. This is important for ensuring the efficiency of a
subsequent processing stage, which mandates the construction
of multiple STGs. Then, a Generalized STG-based (GSTG)
technique is proposed for multimodal scene segmentation. This
is based on firstly constructing multiple STGs that separately
exploit different audiovisual features for segmentation, using
a new algorithm for the extension of STG to non-visual input,
and secondly on using a probabilistic merging process to
combine their results while at the same time diminishing the
need for selecting and fine-tuning several STG construction
parameters. In contrast to previous temporal segmentation
approaches that employ mostly low-level visual or audiovisual
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Fig. 1. (a) Video stream decomposition to frames, shots and scenes. (b) An
overview of the proposed approach for video segmentation to scenes.

features, the proposed technique jointly exploits low-level and
high-level features automatically extracted from the visual and
the auditory channel. The latter include model vectors that are
made of visual concepts and audio events, previously unused in
scene segmentation tasks. By taking into account several low-
level and high-level features coming from multiple modalities
and at the same time diminishing the need for heuristic
parameter selection, the proposed approach becomes easily
applicable to different video genres and delivers significantly
more accurate results than previous methods, working only
with low-level features. A broad overview of the proposed
approach is given in Fig. 1(b).

The rest of the paper is organized as follows: the state-of-
the-art in video segmentation to scenes is reviewed in section
II. The proposed fast STG approximation is introduced in
section III. The Generalized STG-based technique is devel-
oped in section IV, followed in section V by a presentation
of the low- and high-level audiovisual features used as part
of GSTG in this work. In section VI results from experiments
and comparisons on three different datasets are reported, and
conclusions are drawn in section VII.

II. RELATED WORK

Many works on video segmentation to scenes have appeared
in the last few years. A common characteristic of almost all
of them is the assumption that each shot can belong to just
one scene, thus scene boundaries are a subset of the video’s
shot boundaries. As a result, video temporal decomposition
into scenes is typically based on some form of shot grouping;
shots are identified using any one of the highly reliable shot
segmentation approaches of the literature.

A. Scene segmentation techniques

The techniques of the relevant literature can be broadly
classified into two classes, on the basis of the features that
they use for representing the shots in the process of grouping
them: unimodal techniques, which typically rely on visual
information alone, and multimodal ones, typically combining
visual and audio cues.

Unimodal techniques represent each shot with the use of
low-level visual features. Global color features (e.g. HSV
histograms) of selected keyframes are the most frequently used
ones, although the use of color features of spatial regions
of keyframes has also been proposed [6]. Color features are
sometimes used in combination with motion [7] or struc-
tural information (e.g. shot length in [8]). The extraction
of color and texture features directly from the compressed
video stream, without selecting specific keyframes, has also
been proposed [9]. Based on such shot representations, several
algorithms have been used for grouping the shots into scenes.
In [2], the keyframes of each shot are merged in one large
variable-size image, called the shot image, and the similarity
between blocks of different shots images is evaluated for the
purpose of establishing links between shots. In [6], the simi-
larity of shots is evaluated with the use of features extracted
from selected regions of the keyframes, and editing rules from
the film industry are also considered. Graph-based approaches
have also received significant attention. In [5], pairwise color
histogram similarities between keyframes are used for building
a Scene Transition Graph. In [7], a weighted undirected graph,
with the weights expressing visual similarity and temporal
proximity, is constructed and iteratively segmented into sub-
graphs using normalized cuts [10]; another approach using
normalized cuts is proposed in [11]. In [9] a similar temporal
graph is constructed and an algorithm based on detecting short-
est paths in it is used for determining the scene boundaries. In
[8] a statistical approach, based on selecting an initial set of
arbitrary scene boundaries and updating them using a Markov
Chain Monte Carlo (MCMC) technique, is presented. Finally,
in [12] shot grouping is conducted by spectral clustering,
without taking into account temporal proximity; the clustering
outcome is used for assigning labels to the shots, and a
sequence alignment algorithm is applied on the generated label
sequences for identifying the scene boundaries.

Although such unimodal techniques are usually sufficient
for clustering together shots characterized by pronounced
visual similarities (e.g. Fig. 2(a)), the same doesn’t stand
true when the semantic relation between shots is indicated
only by other means, e.g. by audio (Fig. 2(b)). To address
this shortcoming, the combined use of visual and audio cues
has been proposed. Audio features typically used to this end
include low-level ones such as short-time energy and zero-
crossing rate, as well as intermediate-level results from the
processing of the audio signal, such as audio segmentation,
speech detection and background conditions classification. In
[13], an initial scene segmentation is performed using visual
features alone, and adjacent scenes are further merged on the
basis of low-level audio feature similarity. In [14] the video
is decomposed to visual shots and audio segments; audio and
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visual segment boundaries are aligned to generate a set of
candidate scene boundaries, which are accepted or discarded
by further examining the audio changes. Similar in principle
approaches, based on aligning the boundaries of visual and
audio segments, are presented in [15], [16]. In [17], scene
changes are detected by evaluating the audio dissimilarity
of adjacent shots only; a similar process is adopted in [18],
where however the notions of visual and audio attention are
used for guiding the shot similarity evaluation. In [19], low-
level color and audio features, together with face detection
results, are used for computing a table of distances between
the shots of a video that is exploited for clustering, while a
weighted combination of audio- and visual-similarity measures
is used in [20]. In [21] a fuzzy k-means algorithm is introduced
to segment the auditory channel into audio segments; scene
breaks are identified when a visual shot boundary exists
within an empirical time interval before or after an audio
segment boundary. Learning-based methods are presented in
[22], [23], [24]; [22] proposes a statistical framework, which
learns from a training set the probability of different shot
features taking specific values on a scene boundary, and detects
scene boundaries at local maxima of the likelihood ratio curve.
In [23] and [24], audiovisual features are used as input to
Support Vector Machine (SVM) classifiers, which are trained
to differentiate between two classes: scene-boundary and non-
scene-boundary.

Common deficiency of the reviewed techniques is that they
rely mostly on low-level audiovisual features. Although these
are to some extent useful in evaluating the similarity of shots
for the purpose of grouping them, there is a gap between
the similarities that can be revealed by examining just low-
level properties of the audiovisual signal and the semantic
coherence that is desired of a scene. Another deficiency is
that the combination of audio and visual information, which
is evidently advantageous for scene segmentation, is typically
performed either in a simplistic manner (e.g. simple temporal
alignment of audiovisual segment boundaries) or with the use
of learning-based techniques. The latter usually require large
genre-specific manually-segmented training sets.

(a) (b)

Fig. 2. Six keyframes of shots that belong to the same scene and (a) are
characterized by pronounced visual similarities, (b) do not present significant
visual similarities, but a relation between them is indicated by non-visual
means (audio).

B. Overview of the Scene Transition Graph

In this section, a more detailed overview of the Scene
Transition Graph (STG) is given, since STG serves as the basis
of the proposed approach. The STG is a technique introduced
in [5]. It is an elegant unimodal technique, exploiting the visual

similarity between keyframes of video shots to construct a
connected graph; the cut-edges of this graph constitute the set
of scene boundaries.

The STG construction starts with the generation of a seg-
mentation S of the video B to non-overlapping visual shots,

S = {xi}N
i=1 where xi = {fk}ei

k=bi
, bi < bi+1∀i,

x1 ∪ x2 ∪ ... ∪ xN = B, (1)

where fk is the k-th frame of the video, and bi, ei are the
indices of the first and last frame of shot xi, respectively. Two
video shots are considered similar if they contain at least one
pair of similar frames according to similarity measure D(., .),

D(xi, xj) = min
m,n

(
D′(fm, fn)

)

where bi ≤ m ≤ ei and bj ≤ n ≤ ej (2)

In this equation D′(fm, fn) is a measure of the similarity
of frames fm, fn; typically, low-level features such as color
histograms and distance measures such as L1 distance or
histogram intersection are used. Although the similarity of all
frames of both shots needs to be evaluated according to this
criterion, a set of selected key-frames is often used instead,
for reducing computational complexity.

The visual similarity values D(xi, xj) between each pair
of shots xi, xj in the video, providing that xi, xj are less
than an empirical time threshold τ apart, are calculated and
used for grouping shots that are similar (i.e. shots for which
D(., .) < Dt) into the same cluster. This clustering criterion
requires each shot to be similar to every other shot in the
same cluster. The order according to which the clustering
proceeds is specified by D(xi, xj): at any time, the most
similar pair of shots is examined before all less similar ones.
From the clusters and the temporal ordering of the shots, a
scene transition graph is constructed, where nodes represent
the shot clusters and a directed edge is drawn from a node
to another if there is a shot represented by the first node
that immediately precedes any shot represented by the second
node. Finally, the “cut-edges” of the graph are identified. A
cut-edge is defined as an edge which, if removed, results in two
disconnected graphs. The collection of all cut edges constitutes
the set of scene boundaries.

Among the advantages of the STG approach is that the
evaluation of shot similarity is not limited to pairs of adjacent
shots (thus, scenes characterized by repetitive patterns, such as
dialogs, can be detected correctly), in contrast to several other
unimodal or multimodal techniques. Among its disadvantages,
though, is that it exploits only low-level visual features;
it provides no support for combining heterogeneous feature
sets; and similarly to most literature approaches it requires
the heuristic setting of certain parameters (STG construction
parameters Dt and τ ).

III. FAST STG APPROXIMATION

The STG, as well as any other literature work reviewed
above, performs shot grouping into scenes by examining
whether a link exists between two shots; different criteria
are used in each work for identifying potential pairs of
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shots (e.g., all shots lying within a temporal window) and
for evaluating the presence or not of such links (e.g. the
shots’ HSV histogram similarity lying below a threshold). In
this section, we use properties related to shot linking, such
as shot linking transitivity and the fact that scenes are by
definition convex sets of shots, to present an approximation
to STG-based scene segmentation. This approximation limits
the number of shot pairs whose possible linking needs to be
evaluated and simplifies or renders obsolete other processing
steps associated with the STG, thus allowing the faster detec-
tion of scene boundaries. The proposed approximation is not
guaranteed to produce the exact same results as the original
STG; nevertheless, the experiments in section VI show that
the performance differences are very small.

A. Definitions

Following the definition of the scene as a Logical Story
Unit [2], any scene segmentation process can be viewed as
a clustering of shots into non-overlapping convex sets. Let
us remind that in a totally ordered space, a set of points is
convex if for every pair of points that belong to it, all points
in between (according to the total order <o of the space) also
belong to it. The shots of a video can be seen as defining a
totally ordered one-dimensional space according to time, and
scenes are indeed non-overlapping convex sets in this space:
if two shots xi, xj belong to a single scene, then every shot
xm, xi <o xm <o xj also belongs to the same scene. The
implication of this is that, having established a definitive link
between shots xi, xj , it is redundant to look for links between
any shots xm, xn if xi ≤o xm <o xn ≤o xj , because of the
convexity of the set that the link between shots xi, xj defines.

Considering the transitivity of shot linking, strictly speak-
ing, shot linking is not a transitive relation. This can be
seen with an example: assuming shots xi <o xm <o xj ,
D(., .) being a shot similarity measure (e.g. HSV histogram
difference) and D(., .) ≤ a being the shot linking criterion,
D(xi, xm) ≤ a and D(xm, xj) ≤ a do not necessarily
mean that D(xi, xj) ≤ a also holds. However, viewing scene
segmentation as the clustering of shots into non-overlapping
convex sets, D(xi, xm) ≤ a and D(xm, xj) ≤ a means that
xi, xm, xj all belong to the same scene, and this is equivalent
to establishing a shot link for the pair (xi, xj). For this, we
will treat shot linking as a transitive relation in the sequel.

Based on the above considerations and assuming that a set L
comprising K linked pairs of shots, (xs1 , xe1), ..., (xsK

, xeK
),

has been identified for a video B according to some linking
criteria, we proceed with the following definitions:

Definition 1: A link between shots xi and xj is called a
trivial link if there exists a (xsk

, xek
) ∈ L such that xsk

≤o xi

and xek
≥o xj .

Definition 2: Three shots xi, xm, xj are said to define a
trivial double link if both (xi, xm) and (xm, xj) belong to
L.

Definition 3: The set L is named primary if both no trivial
links and no trivial double links exist in it.

Examples of a trivial link and a trivial double link are
shown in Fig. 3. By introducing an algorithm that directly

produces a primary set of links, i.e. avoids examining the
existence of links that, given those already identified, would
be trivial, we can reduce the computational cost associated
with the detection of scene boundaries.

B. Shot linking by primary set estimation

Given the input video B that contains shots x1, x2, ...xN ,
as defined in section II-B, a primary set of shot links can be
directly estimated according to Algorithm 1.

Algorithm 1 Primary set estimation

1: Initially, all pairs of shots (xi, xj), xi <o xj and i, j ∈
[1, N ], are marked as valid pairs; any pair that is examined
in subsequent steps, and is not identified as linked, is
automatically marked as an invalid pair. d is set to N −1
and i is set to 1.

2: d′, d′′ are set to zero.
3: If (xi, xi+d) is a valid pair, the presence of a link between

these two shots is examined. If it’s an invalid pair or no
link is found: if i+d < N , this step is repeated after setting
i = i + 1, otherwise is repeated after setting d = d − 1
and i = 1. This continues until a shot link is found or d
becomes zero.

4: If pair (xi, xi+d) has been identified as linked, then
starting from d′ = d and descending by step of 1 all valid
pairs (xi+d, xi+d+d′) are examined sequentially for shot
links, until a shot link is found or d′ becomes zero.

5: If pair (xi+d, xi+d+d′) has been identified as linked, then
starting from d′′ = d and descending by step of 1 all valid
pairs (xi+d+d′ , xi+d+d′+d′′) are examined sequentially for
shot links, until a shot link is found or d′′ becomes zero.

6: If pair (xi+d+d′ , xi+d+d′+d′′) has been identified as
linked, d′ is set equal to d′ + d′′ and step 5 is repeated
(without checking again if the condition of step 5 is
satisfied); the algorithm oscillates between steps 5 and 6
until no further link can be found by these two steps.

7: If d �= 0, (xi, xi+d+d′+d′′) is added to the shot pairs
that belong to the primary set of links; all pairs of shots
(x, y), xi ≤o x, y ≤o xi+d+d′+d′′ are marked as invalid
pairs; i is set equal to i+ d′ + d′′ + 1 (see Fig. 3(c)) and
the algorithm returns to step 2. If d = 0, the algorithm
terminates.

It is evident that following this algorithm, no pair of shots is
examined for the presence of a shot link more than once; also,
as soon as a shot link is found (step 3), shot pairs potentially
defining related trivial links are immediately excluded from
further consideration. Related double trivial links are then
looked for (steps 4-6) and, if found, are eliminated, further
increasing the number of shot pairs that are excluded from
subsequent processing. The resulting primary set of links L
essentially defines a scene transition graph, with the convex
sets of shots defined by the links in L serving as the nodes
of the graph. With respect to the maximum allowed temporal
distance τ of linked shots, which is a parameter of the original
STG, this can be integrated in Algorithm 1 simply by limiting
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time
xi

xi+d xi+d+d'+d''

xi+d+d'+d''+1

xi+d'+d''+1
time

xi xm xj
time

xsk xi xj xek
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Fig. 3. Examples of trivial link, trivial double link, and illustration of a specific step of Alg. 1: a) If (xsk , xek ) ∈ L, the link between shots xi and xj is a trivial
link; b) If (xi, xm) ∈ L and (xm, xj) ∈ L, shots xi, xm, xj define a trivial double link; c) After Alg. 1 finds and adds (xi, xi+d+d′+d′′ ) to the primary set
of links L, as a result of finding in steps 2-6 a sequence of potential trivial double links (xi, xi+d, xi+d+d′ ), (xi+d, xi+d+d′ , xi+d+d′+d′′ ), etc., index i in
step 7 is set equal to i+d′ +d′′ +1. In this way, Alg. 1 then continues (going back to step 2) with examining whether pair (xi+d′+d′′+1, xi+d+d′+d′′+1)
is linked.

accordingly the number of shot pairs that are marked as valid
pairs in the first step of it.

Set L is parsed for detecting the scene boundaries as
follows: All shot pairs that belong to it are ordered in tabular
form, as shown in Fig. 4(a). Then, starting from the top left
cell,

1) If the current cell (Fig. 4(a)) belongs to the left column,
we just move to the one of the two neighboring cells
(Fig. 4(b)) that corresponds to the shot that appears
before the other one in B (according to the total order
<o; e.g. in Fig. 4(b) we will move to the xe1 cell if
xe1 <o xs2, otherwise we will move to the xs2 cell).

2) If the current cell belongs to the right column (Fig. 4(c)),
we move to the cell on the left column that is one row
below the current one (Fig. 4(d)) and shots xi of B that
lie in between the two cells considered in this step (i.e.,
in the example of Fig. 4(c), shots for which e1 ≤ i < s2)
are added to the scene boundary list.

When the bottom-right cell is reached, the scene boundary
list contains the last shot of each scene, i.e. the scene bound-
aries.
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Fig. 4. Primary set of link L in tabular form, and example of browsing it
so as to fill-in the list of scene boundaries.

C. Computational Complexity Analysis

The main processing steps of the STG method for detecting
scene boundaries and the corresponding steps of the proposed
approximation of it are summarized in Table I. This table
indicates that the proposed approximation is expected to
deliver significant gains in computational complexity, since in
it each main step of the STG is either simplified or becomes
obsolete.

Specifically, with respect to the calculation of visual similar-
ity values D(., .), the algorithm of the previous section refrains
from checking a number of shot pairs for possible links after
establishing a non-trivial link for shot pair (xsk

, xek
). Assum-

ing μk shots lie between shots xsk
and xek

, this means that

shot similarity measure D(., .) does not need to be computed
for (μk+2)(μk+1)

2 −1 pairs of shots. For all K primary links in
L, the number of shot pairs for which D(., .) is not computed
rises to

∑K
k=1(

(μk+2)(μk+1)
2 −1), out of the N(N−1)

2 possible
pairs of shots in B (assuming that τ → ∞). Consequently, the
proportional computational complexity gain G from the use of
the algorithm of section III-B is: G =

∑ K
k=1(μk)2+3

∑ K
k=1 μk

N(N−1) .
This quantity is minimized when μk = μ, ∀k ∈ [1,K], thus
a lower bound for gain G is given by: Gmin = μ(μ+3)K

N(N−1) .

Assuming, for example, that out of N(N−1)
2 possible pairs of

shots in B, non-trivial links are established for 5% of them
(i.e. K = 0.05N(N−1)

2 ) and μ = 4, the lower bound for
gain G is 70%. This gain persists when additional limitations
to the number of examined shot pairs are introduced (e.g.
by τ 
 ∞), providing that the non-trivial links continue
to represent a reasonable portion of all the shot pairs that
would otherwise be examined. Experiments indicate that 70%
is indeed a typical value for G; this alone represents a speed-
up by a factor of 3.

Considering the clustering of the shots, this step becomes
obsolete in the proposed algorithm, whereas in the STG
method this step involves, among others, the sorting of values
D(., .) that have been calculated for each possible pair of
shots. The latter process alone has average computational cost
proportional to Λ log Λ, where Λ denotes the number of shot
pairs (when τ → ∞, Λ = N(N−1)

2 ). Finally, the parsing
of the table of primary links, which is the last main step
of the proposed algorithm, has very low computational cost
(proportional to K, K being the number of primary links in L).
Although a direct theoretic comparison with the computational
cost of algorithms for graph parsing is difficult, due to the
different parameters affecting the latter (i.e. the number of
nodes and edges of the graph, rather than K), the proposed
parsing algorithm is intuitively expected to contribute to the
overall speed-up of scene boundary detection.

IV. GENERALIZED SCENE TRANSITION GRAPH METHOD

(GSTG)

The STG method for scene segmentation, regardless of
whether the original algorithm of [5] or the fast approximation
of section III are used, is a method exploiting only low-level
visual information for both the initial decomposition of the
video stream to elementary video segments (shots) and for the
similarity-based linking of them. In this section we introduce
i) a unimodal extension of STG to non-visual input, and ii)
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TABLE I
MAIN PROCESSING STEPS OF STG AND OF THE PROPOSED FAST APPROXIMATION OF IT

STG Fast STG approximation
Calculates visual similarity D(., .) for every pair of shots that do not
exceed a specified temporal distance (τ ).

Uses shot linking properties to further limit the number of shot pairs for
which D(., .) needs to be calculated.

Clusters the shots (section II-B); this requires sorting the shot pairs
according to D(., .), and comparing the distances between all involved
shot pairs for merging two clusters.

This processing step becomes obsolete; the primary links detected at the
previous step directly define the shot clusters.

Parses the resulting graph (STG) to identify cut-edges. Parses a much simpler structure (a table, as in Fig. 4).

a method for combining unimodal STGs towards multimodal
scene segmentation. Preliminary versions of these techniques
have been introduced by the authors in [25], [26].

A. Unimodal extension of STG to non-visual input

Non-visual features, e.g. low-level audio features, speaker
diarization results, audio events etc., can be used for providing
two kinds of information in relation to the goal of video
segmentation to scenes: i) information about the similarity
of two elementary video segments (e.g. shots), so as to
allow for deciding whether the two segments are linked on
not, and ii) binary information about the potential of a shot
boundary to also be a scene boundary (i.e. allowed / non-
allowed). The first possibility comes from using the non-
visual features together with an appropriate similarity measure,
analogously to the use of measure D(., .) for low-level visual
features in previous sections. The second possibility arises
from the fact that the extraction of non-visual features from the
audiovisual stream is typically accompanied by the definition
of an appropriate decomposition of the stream to elementary
segments. This decomposition in general does not coincide
with the decomposition of the video to shots, and cannot
be used by the STG in place of the latter, since this would
lead to possible violation of the basic assumption that scene
boundaries are a subset of the video’s shot boundaries. It
can however be used in combination with the decomposition
to shots for limiting the number of shot boundaries that are
treated as potential scene boundaries, with the help of simple
semantic criteria.

For example, when performing speaker diarization for the
purpose of describing each elementary video segment by a
speaker ID, a speaker segmentation of the audio stream is
defined. The resulting speaker IDs can be mapped to the
video shots, so that each shot is described by the histogram of
speakers heard in it, and a suitable similarity distance can be
defined for these shot feature vectors. The speaker segmenta-
tion of the audio stream can however provide additional binary
information about the potential of a shot boundary to also be
a scene boundary: the absence of a speaker change across a
shot boundary, for example, could be used as evidence that the
two corresponding adjacent shots belong to the same scene.

In order to exploit such decomposition-based information
when dealing with non-visual input, a few additional steps
are introduced to the STG construction algorithm. Denoting
S the decomposition of video into shots and S′ the non-
visual decomposition of the audiovisual stream to elementary
segments, we proceed according to Algorithm 2.

Algorithm 2 Unimodal extension of STG to non-visual input

1: Adjacent segments of S′ are merged according to similar-
ity criteria set O, leading to segmentation S′

1.
2: The assumption that each segment of S′

1 can belong to
just one scene is adopted. Based on this, adjacent shots
of S are merged by eliminating shot boundaries that do
not correspond to segment boundaries in S′

1, resulting in
segmentation S1. Evidently, if S′

1 and S coincide (e.g.
when considering visual features), this processing step has
no effect and S1 also coincides with S.

3: Each segment of S1 is described using appropriate features
(e.g. in the case of speaker diarization results, by mapping
speaker IDs to the segments of S1, so that each segment
is described by the histogram of speakers heard in it).

4: STG-based scene segmentation is performed (by means of
either the algorithm of section III or that of [5]), using
segmentation S1 instead of S as a starting point and
replacing D(., .) with a similarity measure appropriate for
the considered features.

In this extended algorithm, similarity criteria set O is used
for correcting any over-segmentation errors in S′, e.g. by
merging two adjacent speaker segments of S′ in case they
are both assigned to the same speaker. Thus, the criteria in
O are qualitative rather than quantitative and do not involve
any distance measures or thresholds. For the second step,
a temporal tolerance parameter is used when evaluating the
correspondence of shot boundaries in S and segment bound-
aries in S′

1, to prevent minor misalignments from triggering
the elimination of shot boundaries. Following this algorithm,
various different STGs can be constructed for a single video,
each based on different visual or non-visual features.

B. Combination of unimodal STGs for scene segmentation

Despite the definition of the STG extension of section
IV-A, which in place of the typically employed low-level
visual features can use different ones, the problem of com-
bining multiple heterogeneous features remains. At the same
time, it has been experimentally found that regardless of the
considered features, the estimated scene boundaries depend
significantly on the value of parameters that are inherent to
the STG construction process, namely the temporal distance τ
and the similarity threshold Dt. In order to combine multiple
heterogeneous features for scene segmentation and simulta-
neously reduce the dependence of the proposed approach on
parameters, we propose a probabilistic technique that involves
the independent creation of multiple STGs of each type, where
a “type” means here an STG that uses a specific set of features
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Fig. 5. Block diagram illustrating the Generalized Scene Transition Graph
Method (GSTG), for the different types of features / STGs used in this work.
The audiovisual stream is decomposed into shots and audio segments, and
different visual and audio features are extracted. The features and the initial
segmentation results are used to generate 4 different types of STGs, whose
results are subsequently merged according to a probabilistic merging process
in order to estimate the final scene boundaries.

(e.g. just low-level visual ones). Specifically, following the
creation of multiple (P; P � 1) STGs of type y, using
a different set of randomly selected parameter values (τ ,
Dt) for each of them, the scene boundaries according to
each STG (cut-edges) are extracted. Then, for every pair of
adjacent shots xi and xi+1, the number py

i of STGs that
have identified the boundary between these shots as a scene
boundary divided by the total number of generated STGs of
this type is calculated and used as a measure of our confidence
on this shot boundary also being a scene boundary, based on
the features that STG type y employs. The same procedure is
followed for all different types of STGs, i.e. for all different
features. Subsequently, these confidence values are linearly
combined to result in a cumulative confidence value pi,

pi =
∑

y

wy · py
i . (3)

where wy are global parameters that control the relative
weight of each type of STGs, i.e. of each type of features
(
∑
wy = 1). Finally, all shot boundaries (xi, xi+1) for which

pi exceeds a threshold,

Γ = {(xi, xi+1)|pi > T} (4)

form the set Γ of scene boundaries estimated by the proposed
approach. The advantage of this probabilistic approach is that
multiple features are combined and at the same time the need
for experimentally setting STG construction parameters τ ,
Dt is alleviated. Additionally, instead of introducing some
feature combination weights in D(., .), which would turn
these into difficult to optimize STG construction parameters,
weights wy that combine the results of already constructed
STG are introduced; these weights are easy to optimize using
Least Squares Estimation. An illustration of the resulting
Generalized Scene Transition Graph Method (GSTG), using
the four different sets of features introduced in section V, is
given in Fig. 5.

V. AUDIOVISUAL FEATURES FOR GSTG

In this work, four different sets of features are combined
and evaluated as part of the GSTG method. Some of them
have been previously used for video segmentation to scenes,
while others are novel ones, at least with respect to their use in
such a task. Overall, the employed feature sets are i) typically
used low-level visual features (HSV histograms), ii) model
vectors constructed from the responses of a number of visual
concept detectors, iii) typically used audio features (back-
ground conditions classification results, speaker histogram),
and iv) model vectors constructed from the responses of a
number of audio event detectors. For the above four feature
sets, index y (Eq. (3)), which denotes the type of constructed
STGs according to the features used for their construction,
takes values V , V C, A and AE, respectively.

A. Typical visual features

The HSV histograms of a few keyframes of each shot, or
very similar representations, have been extensively used in the
relevant literature (e.g. [5]) and are also used in this work,
together with the L1 distance as a shot similarity measure
D(., .).

B. Visual concept-based model vectors

Model vectors are constructed from the responses of trained
visual concept detectors and are used in this work as high-level
visual features. Model vectors were originally proposed for the
task of image and video retrieval [27][28].

The visual concepts used in this work are the 101 concepts
defined on the TRECVID 2005 dataset (made of Broadcast
News videos) as part of the Mediamill challenge [29]. These
concepts range from relatively abstract ones (e.g. “outdoor”)
to very specific ones, such as names of individuals that were
frequently in the news at that time (e.g “B. Clinton”). Using
them and the training portion of the annotated TRECVID
2005 dataset, a concept detector is trained for each concept
separately. This detector combines a set of MPEG-7 features
(color structure, color layout, edge histogram, homogeneous
texture and scalable color) [30] with a Bag-of-Words (BoW)
feature vector with the use of SVM classifiers. More details on
the implementation of the concept detectors and the utilized
visual concepts can be found in [31].

The application of Jv different trained visual concept de-
tectors on a key-frame f of a shot results in Jv Degree of
Confidence (DoC) values, which can be expressed as a vector
φ(f),

φ(f) = [φ1(f), φ2(f), ..., φJv
(f)] (5)

This vector essentially represents key-frame f in the semantic
space defined by the Jv concepts. Subsequently, in order to
take into account the results of concept detection in more
than one keyframes per shot and also alleviate qualitative
differences between different detectors, the shot representation
vector φ(x) is defined as:

φ(x) = [φ1(x), φ2(x), ..., φJv
(x)], φγ(x) =

maxf∈x{φγ(f)}
maxf∈B{φγ(f)}

(6)
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The denominator in the second part of Eq. 6 denotes the max-
imum value of the γ-th concept detector across all keyframes
of the examined video.

The definition of a shot similarity measure using the model
vectors is based on the requirement that not only the difference
of values φγ(x) between two shots, but also the absolute
values φγ(xi) and φγ(xj) themselves, should affect shot
similarity. The rationale behind this is that, for the γ-th
detector, two shots receiving similarly high confidence values
is a strong indication of their semantic similarity (i.e. they
are both likely to depict the γ-th concept). On the contrary,
the same shots receiving similarly low confidence values is an
indication neither in favor nor against their semantic similarity;
it merely suggests that the γ-th concept (out of a large number
Jv of concepts) is not depicted in either of the two shots.
The commonly used L1 or other Minkowski distances do not
satisfy the above requirement, since they depend only on the
difference of the values. Instead of it, a variation of the Chi-
test distance is employed in this work, defined as:

D(φ(xi), φ(xj)) =

√√√√
Jv∑

γ=1

(φγ(xi) − φγ(xj))2

φγ(xi) + φγ(xj)
(7)

It should be noted that the TRECVID 2005 dataset, on
which the visual concept detectors were trained, is a concept-
annotated dataset extensively used for concept detector train-
ing and evaluation, and it is completely unrelated to the two
test datasets used for experimentation in section VI.

C. Typical audio features

Audio features typically employed for video segmentation to
scenes include low-level features (e.g. short-time energy, zero-
crossing rate) and somewhat higher-level ones (e.g. the results
of audio segmentation, background conditions classification,
speaker clustering etc.).

In this work, we extract audio features by performing
audio segmentation, classification according to background
conditions, and speaker diarization [32], [33]. Background
classification considers three classes: noise, silence and music.
Speaker diarization identifies speaker homogeneous segments
in the audio stream and further assigns a speaker identity to
each, after clustering them. The result of this process is the
partitioning of the audiovisual stream into audio segments,
each of which carries a background class label and, in case it
also includes speech, a speaker ID as well.

For exploiting these features, criteria set O (section IV-A)
is defined as two adjacent audio segments sharing the same
background conditions and speaker ID labels; the feature
used for describing each segment of segmentation S1 (an
intermediate result of the algorithm of section IV-A) is a
speaker identity distribution, defined as:

H(x) = [H1(x),H2(x), ... HΘ(x)] (8)

where x denotes in this equation a temporal segment of
segmentation S1 rather than an original shot in S, and Θ is
the total number of speakers in the video as per the speaker
diarization results. Hθ(x) is defined as the fraction of time that

speaker θ is active in video segment x over the total duration
of the same segment. Similarly to the HSV histograms, the L1
distance is used as a segment similarity measure D(., .).

D. Audio event-based model vectors

Audio events are the audio equivalent to visual concepts.
An audio event is defined as a semantically elementary piece
of information that can be found in the audio stream, such
as telephone ringing, dog barking, music, child voice, traffic
noise etc. Audio events are detected with the use of trained
audio event detectors that rely on machine learning, as outlined
below:

• Classification using SVMs as described in [34] for 61
audio events, e.g. Dog-Barking, Siren, Applause, Explo-
sion.

• Classification using Multi-layer Perceptrons or Gaussian
Mixture Models as described in [35] for 14 audio events,
e.g. male speaking, speech with noise background, music.

The complete list of considered audio events is given in Table
II.

Similarly to how the results of visual concept detectors are
used in this work, the responses of the audio event detectors
(confidence values for the presence of a specific audio event
in a given audio segment) are used to build audio event-based
model vectors,

ψ(x) = [ψ1(x), ψ2(x), ..., ψJa
(x)] (9)

where x denotes again a temporal segment of segmentation
S1, produced using the same criteria O as in the previous
subsection (section V-C). For the reasons discussed in section
V-B, the variation of the Chi-test distance introduced in Eq. 7
is also used here for comparing audio segments according
to their audio event-based model vectors. Finally, it should
be noted that, similarly to the visual concept detectors, the
audio event detectors were trained on an annotated audio event
corpus ([34], [35]) completely unrelated to the two test datasets
used for experimentation.

VI. EXPERIMENTAL RESULTS

A. Datasets and evaluation measures

For experimentation, two datasets were used in all experi-
ments, while a third one was additionally used in a few exper-
iments for showing the applicability of the proposed approach
to a certain type of news videos. The first dataset is made of 15
documentary films (513 minutes in total) from the collection
of the Netherlands Institute for Sound & Vision1, also used as
part of the TRECVID dataset in the last few years. The second
one is made of six movies (643 minutes in total). Application
of the shot segmentation algorithms of [36], [37] (for abrupt
and gradual transition detection, respectively) to these datasets
resulted in 3459 and 6665 shots; manual grouping of them to
scenes resulted in 525 and 357 ground truth scenes. For each
of these two datasets, one additional video of the same genre
(one documentary, one movie) was processed in the same way

1http://instituut.beeldengeluid.nl/
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TABLE II
LIST OF AUDIO EVENTS

Airplane Engine Jet Wolf/Coyote/Dog Howling Car Animal Hiss Morse Code Typing Male Voice
Baby Whining or Crying Telephone Ringing Digital Bear Bell Electric Frog Saw Manual Rattlesnake

Bell Mechanic Non Vocal Music Big Cat Crowd Applause Music Thunder Insect Buzz
Bite Chew Eat Noise Background Bus Buzzer Speech Pig Horse Walking

Airplane Engine Propeller Voice With Background Noise Cat Meowing Donkey Vocal Music Helicopter Train
Child Voice Telephone Ringing Bell Cow Child Laughing Paper Saw Electric Hammering

Clean Background Telephone Band Birds Wind Sheep Gun Shot Heavy Water
Digital Beep Voice With Background Music Dog Barking Dolphin Siren People Talking Glass

Chicken Clucking Walk/Run/Climb Stairs (Soft) Female Voice Drink Whistle Fireworks Traffic
Elephant or Trumpet Walk/Run/Climb Stairs (Hard) Electricity Explosion Motorcycle Insect Chirp Fire
Door Open or Close Gun Shot Light Horn Vehicle Music Background Moose or Elk or Deer

(shot segmentation, manual grouping of the shots to scenes)
and was used for automatically adjusting the parameters of
the algorithm (weights wy and threshold T in Eqs. (3)-(4),
as well as optimal number of employed visual concept and
audio event detectors) in the relevant reported experiments.
The third, smaller, dataset was generated with the purpose
of simulating unedited news video content; this was done by
concatenating several news-related videos from YouTube into
three hour-long videos. The number of automatically detected
shots and manually-identified ground truth scenes in the latter
dataset was 1763 and 57, respectively.

For evaluating the results of the scene segmentation ex-
periments, the Coverage (C), Overflow (O) and F-Score
(F ) measures were employed. Coverage and Overflow were
proposed in [38] for scene segmentation evaluation; Coverage
measures to what extent frames belonging to the same scene
are correctly grouped together, while Overflow evaluates the
quantity of frames that, although not belonging to the same
scene, are erroneously grouped together. The optimal values
for Coverage and Overflow are 100% and 0% respectively.
The F-Score is defined in this work as the harmonic mean of
C and 1−O, to combine Coverage and Overflow in a single
measure, F = 2C(1−O)

C+(1−O) , were 1 − O is used in this formula
instead of O to account for 0 being the optimal value of the
latter, instead of 1.

B. Experimental upper bounds of performance

A first series of experiments was carried out with the
GSTG method, using those GSTG parameter values that
were determined by exhaustive search as being the ones that
maximize the F-Score attained for each test dataset. This was
done for experimentally estimating an upper bound for the
performance of GSTG when different audiovisual features or
combinations of them are used. It is reminded that parameters
of the GSTG method are the weights wy and threshold T in
Eqs. (3)-(4); the number of employed visual concept and audio
event detectors, assuming that we consider the possibility of
using just a subset of those defined in section V, is also
treated as a parameter in this series of experiments. In this
and all subsequent series of experiments, in any case where
the use of keyframes was required, three keyframes per shot
were used. The number P of STGs of each type that were
constructed using randomly selected parameters τ and Dt was
set to 1000, with the randomly selected values of τ being in the
range [0, 5000] (measured in frames) and of Dt in the range

[0, 0.2] or [0, 0.4], depending on the type of STGs. Random
selection was implemented with the use of simple random
number generators.

The results of GSTG are shown in Table III. The first
column (“Index y”) indicates the types of STGs that contribute
to GSTG in each experiment. The Coverage, Overflow and F-
Score columns report the results of GSTG when the algorithm
of [5] is used for individual STG construction, while the F-
Score values in parentheses correspond to the case where
the fast approximation of section III is used instead, as part
of GSTG. In the first experiment, for example, y ∈ {V }
indicates that only the typical visual features of section V-A
are employed; thus, the resulting method essentially resembles
the original STG method of [5], integrating however the proba-
bilistic technique introduced in section IV-B that alleviates the
need for experimentally setting STG construction parameters
τ , Dt. In subsequent experiments of this series, STGs con-
structed with the use of visual concept-based model vectors
(V C), typical audio features (A) and audio event-based model
vectors (AE), as well as combinations of them, contribute to
GSTG. It can be seen from this table that, among individual
features (first four rows of the table), the use of the typical
visual features results in the highest F-Score. Considering
the cases where two or more types of STGs contribute to
GSTG, however, its is clear that the {V, V C} combination
performs better than {V } and the {A,AE} combination
performs better than {A}. Further combining visual and audio
features (y ∈ {V, V C,A} and y ∈ {V, V C,A,AE}) leads
to additional gains; the F-Score attained by the GSTG when
all audiovisual features of section V are employed is about
10 points higher that that of y ∈ {V }. The conclusion
here is that, providing that good GSTG parameter values
can be determined, the GSTG can effectively use any single
one of the considered audiovisual features towards improved
performance, and the observed performance improvements are
significant in both examined datasets. Furthermore, the use
of the fast approximation of section III instead of [5], as
part of GSTG, results in only small F-Score degradation (in
most cases, F-Score differences of < 1%) in return for major
computational efficiency gains (section VI-F). These F-Score
differences translate to an increase of the number of true scene
boundaries that are not detected by less than 1%.
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TABLE III
GSTG PERFORMANCE, USING GSTG PARAMETER VALUES THAT WERE DETERMINED BY EXHAUSTIVE SEARCH AS BEING THE ONES THAT MAXIMIZE

THE F-SCORE ATTAINED FOR EACH TEST DATASET.

Documentary Dataset Movie Dataset
Index y (types of STGs in GSTG)

{V }
{V C}
{A}
{AE}

{V, V C}
{A, AE}

{V, V C, A}
{V, V C, A, AE}

Coverage(%) Overflow(%) F-Score(%)
78.33 19.06 79.61 (78.17)
75.66 31.19 72.07 (71.21)
68.58 27.59 70.44 (70.63)
72.24 34.78 68.55 (68.75)
80.60 14.71 82.91 (81.57)
70.10 15.46 76.65 (75.97)
85.48 12.28 86.59 (86.42)
87.35 9.37 88.96 (88.34)

Coverage(%) Overflow(%) F-Score(%)
74.49 24.11 75.18 (74.21)
65.78 17.73 73.11 (71.63)
62.33 45.51 58.15 (57.40)
60.28 37.21 61.51 (61.42)
71.96 8.51 80.56 (80.32)
66.16 32.78 66.69 (66.12)
81.89 15.60 83.13 (83.47)
89.27 17.02 86.01 (85.55)

C. Impact of parameters on performance

Having examined the performance of GSTG when using
“good” GSTG parameter values, we then examined the im-
pact of each of these parameters separately. Starting with
the number Jv of visual concept detectors that are taken
into account (Eq. 5), experiments were carried out with it
varying from 10 to 90 with a step of 10; the use of all
101 visual concept detectors was also examined. Assuming
that, when selecting a subset of the available detectors, it
makes sense to select the best Jv detectors out of all the
available ones, two different “goodness” criteria were used
for the detectors: Average Precision (AP ) and Delta Average
Precision (ΔAP ) [39]. Both AP and ΔAP for the trained
concept detectors were those calculated on the test portion
of the TRECVID 2005 dataset (section V-B). The results
presented in Fig. 6 indicate that when y ∈ {V C}, higher
Jv values generally lead to higher F-Score. When considering
combinations of features, though, Jv values between 40 and
80 lead to the best results; using additional concept detectors
leads to slight performance decrease. A possible explanation
of this is that even poorly-performing concept detectors tend
to produce similar responses for “similar” keyframes (if not
semantically similar, at least visually similar). Thus, in the
absence of other features, such concept detectors provide some
useful information to the scene boundary detection algorithm,
besides introducing noise due to their poor performance in
detecting specific concepts. When used in combination with
other features, though (specifically, low-level visual features),
visual similarity can be reliably estimated from the latter
features, and the poorly-performing concept detectors seem
to only introduce additional noise to the representation of the
shots. This noise is responsible for the slight decline of the
F-score when increasing the value of Jv beyond an optimal
one. In the above cases, selecting the detectors according to
ΔAP is advantageous, compared to using AP , although the
differences between the two are generally small (< 1% in F-
Score). What is most interesting though is that regardless of
the value of Jv , y ∈ {V, V C} consistently performs better than
the baseline y ∈ {V }. Furthermore, when additional features
are introduced (y ∈ {V, V C,A}, y ∈ {V, V C,A,AE}), the
F-Score curves as a function of Jv tend to become more
flat, i.e. although {V C} introduces significant performance
improvement (particularly for the Movie dataset), GSTG is
rather insensitive to the number of employed visual concept
detectors.

A similar study of the number Ja of employed audio event
detectors was also carried out, with Ja ranging from 20 to 60
with a step of 10; using all 75 audio events of Table II was also
examined. The F-Score of each individual audio event detector,
calculated on the test portion of the audio event corpus (section
V-D), was used as a detector goodness criterion. The results,
shown in Fig. 7, are similar to those for the visual concept
detectors that were discussed above.

Finally, regarding the impact of weights wy and threshold
T when y ∈ {V, V C,A,AE}), results from varying each of
wV C , wA, wAE and T separately are shown in Fig. 8. In
varying the weights, wV was set equal to 1−wV C−wA−wAE ;
thus, in Fig. 8(a) wV C varies from 0 to 100% of its maximum
allowed value, the latter being the one that would make wV

equal to 0 for the given (constant) values of wA and wAE ; sim-
ilarly for wA and wAE in Fig. 8(b) and (c), respectively. The
results indicate that GSTG is not very sensitive to the values of
weights wy , since in all cases there is a relatively large range of
weight values that result in close-to-maximum F-Score, and no
abrupt changes in F-Score for small changes in a weight value
are observed. Threshold T (Fig. 8(d)) is shown to have a more
significant impact on F-Score, which was however expected,
considering that its minimum and maximum values practically
mean that all and no potential scene boundaries, respectively,
are accepted as scene boundaries. Even for T though there is a
relatively large range of values that result in close-to-maximum
F-Score.

D. Results using automatically determined parameters and
comparison with literature works

An advantage of the GSTG approach, discussed in section
IV-B, is that weights wy of GSTG are not hard-to-optimize
STG construction parameters; on the contrary, they can be
easily optimized using Least Squares Estimation (LSE). In this
section, we repeat the series of experiments of section VI-B,
using however the single out-of-testset video for each dataset
that was mentioned in section VI-A in order to automatically
select the values of weights wy as well as all other GSTG
parameters (T , Jv , Ja). For weights wy , LSE estimation is
employed. Specifically, a value of 1 is assigned to each shot
boundary of the out-of-testset ground-truth-segmented video
that is also a scene boundary, according to the ground-truth
segmentation, and a value of 0 to each other shot boundary.
LSE estimates the weights wy that minimize the sum of
differences between the aforementioned values and pi (Eq. 3)
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Fig. 6. F-Score as a function of the number Jv of visual concept detectors, (a) Documentary dataset, concepts selected according to AP , (b) Documentary
dataset, concepts selected according to ΔAP , (c) Movie dataset, concepts selected according to AP , (d) Movie dataset, concepts selected according to ΔAP .
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Fig. 7. F-Score as a function of the number Ja of audio event detectors, (a) y ∈ {AE}, (b) y ∈ {V, V C, A, AE}.

for this video. Threshold T is then set to the value that
maximizes the F-Score attained for the same out-of-testset
video, given the estimated weights; this value is determined
by simple exhaustive search. Finally, the above optimization
process is repeated for different selected values of Jv and Ja

(the same few values used for plotting Figs. 6 and 7), and
the set of parameters that leads to the maximum F-Score for
the out-of-testset video is chosen. Although this may not be
the most elegant optimization process possible, it is a simple
one that requires use of just one out-of-testset ground-truth-
segmented video for automatically estimating all parameters of
GSTG. The results of using the estimated parameters on the
test datasets are reported in the first part of Table IV. Again,
the Coverage, Overflow and F-Score columns report the results

of GSTG when the algorithm of [5] is used for individual
STG construction, while the F-Score values in parentheses
correspond to the case where the fast approximation of section
III is used instead, as part of GSTG. It can be seen that,
in comparison to the results of Table III, the F-Score in
almost all experiments has only been slightly reduced (F-
Score differences of approx. 1%). The F-Score attained by the
GSTG when all audiovisual features of section V are employed
continues to be about 10 points higher that that of y ∈ {V },
and every one of the 4 examined types of features is shown to
have a non-negligible contribution. The conclusion here is that
automatic selection of GSTG parameter values using a simple
procedure and a single out-of-testset video of the same genre
is sufficient for getting very close to the upper performance
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Fig. 8. F-Score as a function of weights wy and threshold T : (a) F-Score versus wV C , (b) F-Score versus wA, (c) F-Score versus wAE , (d) F-Score versus
T .

bounds identified in section VI-B.
For the purpose of comparing the proposed GSTG method

with additional methods of the literature, besides the STG
[5] (whose results, when it also exploits the probabilistic
technique introduced in section IV-B, are essentially those
reported above for y ∈ {V }), three additional methods are
tested and their results are also reported in Table IV. These are
the very recent unimodal method of [12], which is based on an
elaborate sequence alignment technique, and the multimodal
methods of [21] and [24], which similarly to GSTG combine
visual and audio features. The latter method ([24]) is based
on a discriminative classifier (SVM) that realizes early fusion
of the audio-visual features. For ensuring a fair comparison,
the same keyframes, audio segmentation results and high-
level audio features (where applicable) that are used by the
proposed approach were also used when experimenting with
these three methods. It can be seen from the reported results
that the GSTG method significantly outperforms [12], [21] and
[24]. These performance differences are caused by the use of
a wealth of low- and high-level audiovisual features in the
proposed approach, as opposed to just low-level features being
used in [12], [21]. The proposed probabilistic merging process
that effectively combines these features also contributes to
improved performance, in comparison to simpler heuristics
used in [21] for audiovisual feature combination, and also in
comparison to early fusion of low- and high-level audiovisual
features used in [24].

Finally, in the last row of Table IV, results of the GSTG are
reported for the case that the weights wy and all other GSTG

parameters are automatically selected with the use of an out-
of-testset ground-truth-segmented video that belongs to a dif-
ferent genre (i.e., one documentary video is used for estimating
the GSTG parameters for the movie dataset, and similarly
one movie video is used for the documentary dataset). For
both datasets, this cross-genre automatic parameter selection
results in F-Score differences of < 0.5%, compared to using
a same-genre video for this task. These results complement
our previous findings about the insensitivity of the proposed
technique to parameters (section VI-C), and indicate that the
GSTG can in practice be applied to different video genres
without using even one manually segmented video of the same
genre, with minimal performance loss.

E. Applicability of GSTG to News videos

In order to discuss the applicability of the GSTG approach
to different video genres, most notably news-related videos,
we first need to make the distinction between two broad
types of video content: loosely-structured content and tightly-
structured one. We use the term “tightly-structured content”
here to denote content that is known to follow a very specific
structure. Examples of such video are the news bulletins of
a single broadcaster: they tend to follow a structure that is
characteristic of the broadcaster, e.g. each scene starts with
one anchor-person shot and is followed by external reporting
shots. On the contrary, video genres such as documentaries,
movies, unedited news-related video etc., do not observe
such strict structuring rules, and consequently fall under the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED FOR PUBLICATION , 2011



13

TABLE IV
GSTG PERFORMANCE, USING GSTG PARAMETER VALUES THAT WERE AUTOMATICALLY ESTIMATED WITH THE USE OF AN OUT-OF-TESTSET

GROUND-TRUTH-SEGMENTED VIDEO, AND COMPARISON WITH LITERATURE WORKS [12], [21], [24].

Documentary Dataset Movie Dataset
Index y (types of STGs in GSTG)

{V }
{V C}
{A}
{AE}

{V, V C}
{A, AE}

{V, V C, A}
{V, V C, A, AE}

Coverage(%) Overflow(%) F-Score(%)
76.96 20.80 78.06 (77.10)
76.37 35.37 70.01 (70.53)
68.52 28.44 70.01 (68.50)
63.81 28.47 67.45 (67.47)
83.29 18.42 82.43 (81.32)
70.96 21.18 74.68 (74.41)
85.44 16.77 84.32 (84.71)
86.30 10.91 87.67 (87.40)

Coverage(%) Overflow(%) F-Score(%)
73.55 26.11 73.72 (72.81)
71.20 25.68 72.73 (71.36)
59.64 44.79 57.34 (57.31)
62.14 40.97 60.55 (60.68)
80.62 20.93 79.84 (80.30)
66.49 34.42 66.03 (65.18)
84.77 19.32 82.67 (81.70)
87.91 17.89 84.91 (84.64)

Method
GSTG (y ∈ {V, V C, A, AE})

Method of [12]
Method of [21]
Method of [24]

Coverage(%) Overflow(%) F-Score(%)
86.30 10.91 87.67 (87.40)
70.90 24.13 73.30
77.59 17.31 80.06
78.22 16.73 80.67

Coverage(%) Overflow(%) F-Score(%)
87.91 17.89 84.91 (84.64)
76.43 16.15 79.97
75.12 24.29 75.41
79.50 21.17 79.16

GSTG (y ∈ {V, V C, A, AE})
+ cross-genre parameter selection

Coverage(%) Overflow(%) F-Score(%)
85.93 11.40 87.24 (87.22)

Coverage(%) Overflow(%) F-Score(%)
87.52 18.17 84.58 (84.37)

category of loosely-structured content. In the case of tightly-
structured content, it is evidently advantageous to develop
dedicated methods that exploit the knowledge about the con-
tent’s structure (thus focusing, for example, on detecting the
anchor-person shots that may signify a scene change). The
GSTG approach, on the other hand, similarly to most literature
works, is a generic approach that does not make any restrictive
assumptions about the structure of the video, thus is mostly
suited for processing loosely-structured content.

For examining how the GSTG performs on news-related
content falling under the latter category, we used the third
dataset defined in section VI-A, which simulates unedited
news video content. Application of GSTG to it (with the fast
STG approximation of section III being used as part of GSTG;
y ∈ {V, V C,A,AE}) and looking for the experimental upper
bounds of performance (as in section VI-B) resulted in F-
Score equal to 78.76%; automatically determining the GSTG’s
parameters resulted in F-Scores equal to 77.91% and 77.83%,
when a documentary and a movie were used for cross-genre
parameter selection, respectively (as in the last paragraph of
section VI-D). In comparison, the F-Scores for the literature
works [12], [21] and [24] were 75.97%, 75.09% and 75.19%,
respectively.

F. Computational efficiency

Concerning the computational efficiency of the GSTG ap-
proach, this is experimentally shown to be high. Specifically,
excluding the pre-processing of the audio-visual stream (e.g.
shot segmentation) and feature extraction, the GSTG approach
is faster than real-time (approximately 60 frames per second)
on an 3.0GHz PC, considering y ∈ {V, V C,A,AE} and
employing the method of [5] for individual STG construction.
When, instead of the latter, the fast STG approximation
introduced in this work is used as part of GSTG, the frame
processing rate rises to over 1200 frames per second, repre-
senting a speed-up by over 20 times. As a result, the processing
time for a 90-minute film (featuring 25 frames per second)

is reduced from about 40 minutes to less than 2. The pre-
processing and feature extraction processes excluded from
the aforementioned time measurements clearly introduce some
additional computational overhead; nevertheless, i) some of
these processes (e.g. shot segmentation) are common to all
scene segmentation methods, ii) other processes (e.g. concept
detection) are typically performed on the video as part of
its semantic analysis, and re-using their results also for the
purpose of scene segmentation does not introduce additional
computational cost, iii) real-time or near-real time imple-
mentations for all of them generally exist (even for concept
detection, e.g. [40]).

VII. CONCLUSIONS

In this work a novel multimodal scene segmentation method,
making use of high-level audiovisual features, was presented.
As part of this method, algorithms were developed i) for a
fast STG approximation, ii) for extending the STG so as to
exploit non-visual input, and iii) for effectively combining
STGs that were constructed with the use of different features,
possibly coming from processing different modalities of the
audiovisual stream. New high-level features, such as model
vectors constructed with the help of large numbers of trained
visual concept detectors or audio event detectors, were pre-
sented and were exploited by the proposed multimodal scene
segmentation method. For training these detectors, existing
annotated corpora were employed; these were unrelated to
the datasets used for experimentation in this work, thus not
leaving room for any doubts on the usefulness of the model
vector-based features on different datasets. The experimental
results revealed the merit of the developed algorithms and doc-
umented the significance of introducing high-level audiovisual
features in the scene segmentation task.
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