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Abstract

In this paper, a novel, low-complexity, method for action recog-
nition from videos is presented. A 3D Sobel filter is applied
to the video volume resulting into a binary image with non-
zero pixels in areas of motion. The non-zero valued pixels
are spatially clustered using k-means and the most dominant
centers of video motion are extracted. The centers are then
tracked forming sparse trajectories, whose properties are later
used to create a new feature type, namely the Histogram of Ori-
ented Trajectories (HOT), describing the video. Feature vectors
are finally passed to an AdaBoost classifier for classification.
The proposed method reports competitive results in KTH and
MuHAVi datasets, while remaining low in complexity and thus
being suitable to be used in surveillance systems requiring low
processing power.

1 Introduction

Nowadays, with the increasing demand on safety and security
the need for intelligent surveillance systems is at its peak. Ac-
tion recognition from videos consists one of the most important
aspects of building intelligent surveillance systems and has at-
tracted a lot of researchers of the computer vision community.
Despite its popularity, the topic remains a challenging and com-
plex one. Any effective and robust action recognition method
has to face a number of difficulties such as non-stationary cam-
eras, moving backgrounds as well as view-point and illumina-
tion variations. So far, action recognition has been addressed
under various and distinct approaches resulting in varying out-
puts in both recognition accuracy and computational complex-
ity. For surveillance systems in particular, where low-power
and low-cost systems are often employed, algorithms of low
computational complexity constitute a common requirement.
In this paper, we present a novel, low-complexity, method
for action recognition in videos by extracting sparse trajecto-
ries of few representative centers of motion. A binary mask of
pixels that correspond to areas of motion is firstly computed
by applying a 3D Sobel filter to the input video. Subsequently,
centers that represent the most dominant areas of motion are
calculated by spatial clustering of the non zero valued pixels
of the mask (i.e. the centers of the bigger clusters). These

centers, called “centers of the most dominant motion”, are then
tracked forming sparse trajectories. Based on information from
the sparse trajectories, we introduce a new feature type, namely
the Histograms of Oriented Trajectories (HOT), which is sub-
sequently passed to an AdaBoost [1] classifier for classifica-
tion. The main novelty of this paper is the simplicity and low
computational complexity of the method while retaining near
state-of-the art results, making it suitable for surveillance sys-
tems requiring low-power consumption. We evaluate against
the well known KTH dataset [12] achieving 88.7% recogni-
tion accuracy and the more challenging MuHAVi [13] dataset
achieving recognition accuracy of 72.2% over 17 classes in to-
tal.

The rest of the paper is organized as follows: In Section 2
related work is discussed. In Section 3 the proposed approach
is illustrated and detailed while in Section 4 evaluation results
are given. Finally, Section 5 concludes the paper.

2 Related Work

Vision-based human action recognition, at its simplest form,
can be regarded as a combination of feature extraction and
subsequent classification of these features to predefined classes
[9]. In [12], Schiildt et al represent motion patterns by using lo-
cal space-time features [5] combined with SVM classification
for human action recognition. In [4], Laptev et al, presented
a method for video classification based on local space-time
features, space-time pyramids and multi-channel non-linear
SVMs. Later, Kovashka et al [3], proposed to learn the shapes
of space-time feature neighborhoods that are most discrimina-
tive for a given action category.

In [14], dense points are sampled from each frame and
then tracked based on displacement information from a dense
optical flow field forming dense trajectories. HOGHOF and
Motion Boundary Histogram (MBH) descriptors are then com-
puted along these trajectories and used for action recognition.
In [11], a high-level representation of a video is proposed based
on many individual action detectors. Action recognition is car-
ried out by SVM classifiers on the output of action detectors.
This method reports highly accurate results on many datasets.
However, the computational complexity of the method is sev-
eral orders of magnitude higher than the rest of the methods
reported in the bibliography, making it impractical for real life
applications.

More recently, Oneata et al [8], focus on the low-level fea-
tures and their encoding with application to action recognition
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Figure 1. In green and yellow the 2 most dominant motion
centers extracted by the k-means algorithm. Frames come from
the KTH dataset.

from uncontrolled videos. The authors use the Fisher Vectors
as an alternative to bag-of-words histograms in order to ag-
gregate a small set of state-of-the-art low-level descriptors, in
combination with linear classifiers. Very good results are also
reported while using fewer features and less complex mod-
els. In [15], Wang et al, improve the method of [14] by tak-
ing into account camera motion and applying motion correc-
tions/compensation. Camera motion estimation is performed
by employing SURF descriptors and dense optical flow while
the motion correction is applied to trajectories and improves the
motion-based descriptors HOF and MBH. Finally, Liu et al [6]
propose a method for action recognition by feature selection
using the AdaBoost algorithm and classification by the naive
Bayes nearest-neighbor classifier. Feature extraction is based
on 3D-SIFT and 3D-HOG descriptors computed on overlap-
ping sub-blocks of the video sequence.

3 Proposed Method

From a high level perspective, the proposed algorithm follows
the standard feature extraction and classification workflow. Ini-
tially, the most dominant centers of motion are detected and
subsequently tracked and registered in a frame-by-frame basis
in order to form trajectories. Then, the trajectories’ velocities
and accelerations are computed and finally, the histogram of
oriented trajectories (HOT) is built, forming the feature vector
that is later used for classification.

The input to the algorithm is considered to be a video se-
quence. Firstly, the video sequence is transformed to a 3D vol-
ume considering the 2 spatial dimensions of the frame as the
first two dimensions of the 3D volume and the third dimension
expanding in time. Thus, a volume is created containing along
the third dimension all the video frames. Then a 3D Sobel fil-
ter is applied to this volume. The 3D Sobel filter will result in
edges along the third dimension, which can be interpreted as
trajectories of moving pixels. Thus, the 3D Sobel filter serves
as a means to extract the motion information from the video.
For each time frame ¢, the Sobel filter’s output is thresholded
and result to a binary image where the non-zero valued pixels
indicate areas of motion. Thereafter, we choose to have k cen-
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Figure 2. In green and yellow the 2 most dominant motion cen-
ter’s trajectories. The sequences come from the KTH dataset.

ters of dominant motion based on the videos’ dataset. These k
centers are being calculated by applying the k-means clustering
algorithm [7] in the spatial image domain and only for the pixel
coordinates of the non-zero valued pixels of the binary image
(see Fig. 1). Subsequently, these k£ motion centers are being
tracked, forming £ distinct and sparse motion trajectories that
are later used to form features describing an action.

Since k-means is performed at each time frame ¢, motion
centers need to be identified and registered in a frame-by-frame
manner. To do so, we employ a nearest neighbor strategy to
match each motion center of frame ¢ to the frame ¢ — 1 and
thus, track centers and form trajectories. In practice, match-
ing the motion centers of frame ¢ to motion centers of frame
t — 1 is prone to errors when the motion centers are spatially
close to each other. To resolve the latter, we use a more ro-
bust technique employing the moving average throughout the
trajectory. Let ci(¢),i € {0,...,k — 1} denote the i-th mo-
tion center extracted by the k-means algorithm for frame ¢. It
should be clear that up to this point, c’(¢) has not been regis-
tered to a particular trajectory and is still unidentified. To per-
form identification and registration let c;(t) denote the motion
center registered with trajectory 7}, j € {0, ...,k — 1} at frame
t. Superscript i in c’(¢) is used to denote a yet unidentified
motion center while the subscript j in c;(t) denotes a motion
center registered to trajectory 7. To increase trajectory extrac-
tion robustness, for each trajectory T); and at time ¢ we monitor
its motion center’s moving average position, €;(t) using a win-
dow of w frames, ie. ;(t) = L Zj;lﬂ c;j(n). Then, at
frame ¢ the unidentified motion center c’(¢) resulted from the
output of the k-means algorithm, is assigned to the trajectory
T} only if ||c*(t) — €;(¢)||2 is minimal, with || - ||> denoting the
euclidean norm. Thus, c;(t) = arg minei ) (||c*(t) —<€;()]|2).
Figure 2 depicts trajectories extracted using this method.

By the completion of the previous step, the output con-
sists of k trajectories, which characterize the most dominant
motions inside the video. Each such trajectory 7} can be ex-
pressed as a N x 2 matrix M, with each row containing the
(z, y) spatial coordinate pairs of the j-th motion center for each
frame ¢t € {0,..., N — 1}, where N denotes the number of all



frames in the video. Furthermore, let W and H denote the
frame’s width and height, respectively. To achieve invariance
across different video resolutions, we normalize the coordinate
pairs to [0, 1] by dividing each (z,y) coordinate by the factor
s = max(W, H) to preserve the original aspect ratio. Finally,
we smooth the trajectories by applying a moving average filter
to the matrix M;;.

Based on the extracted trajectories 7}, j € {0,....,k — 1},
we can compute the velocities for each trajectory at time ¢ as
v;(t) = M;(t) — M;(t — 1), where M;(t) is the ¢-th row
of matrix M;. Moreover, the trajectory accelerations at time
t can be computed as: a;(t) = v;(t) — v;(t — 1). After we
have calculated v,;(t) and a;(¢), we use them in order to ex-
tract the feature vector that is used for video classification. The
proposed feature vector, namely Histogram of Oriented Tra-
jectories (HOT), is based on the concatenation of 3 different
histograms: 1) the joint histogram, with respect to the different
centers, of velocity orientations, 2) the joint histogram, with
respect to the different centers, of velocity magnitudes and 3)
the joint histogram, with respect to the different centers, of ac-
celeration magnitudes.

To calculate the joint histogram of velocity orientations,
we define the k£ dominant centers’ marginal histograms hav-
ing all NB; distinct bins. Then, the joint histogram will
have (NB;)" bins resulting from the NB; permutations of
k with repetitions. To quantize the orientations we corre-
spond each one of the NB; bins to a different orientation
interval, equally distributed in the range 0 — 360°. For all
J, each velocity vector v;(t) is assigned a quantization in-
dex idx_or;(t) € {0,...NBy — 1} of the corresponding an-
gle. Finally, all the quantization indices idz_or;(t) contribute
to an unweighted vote to the joint histogram’s bin indexed
by (NB1)*Lidw_ory_1(t) + (NB1)*~2idz_orp_o(t) + ... +
idx_org(t), assuming 0-based indexing. In other words, all ve-
locity vectors at frame ¢ from the different motion centers con-
tribute together to a single bin of the joint histogram of velocity
orientations, thus encoding the interplay between the dominant
motions trajectories.

The computation of the joint histograms of velocity mag-
nitudes and acceleration magnitudes follows the same method-
ology, with the difference that instead of quantizing the vector
orientations, quantization of the magnitude of the vectors is as-
sumed. Following the previous discussion, let NBs and NBj
denote the number of distinct bins for velocities” and acceler-
ations’ magnitude, respectively. Moreover, let each velocity
magnitude and acceleration magnitude be a clamped value in
the interval [0, max,] and [0, max,], correspondingly. Further-
more, for the shake of clarity and in the current context, let
vi'(t) denote the velocity vector of the j-th motion center at
frame ¢ and for the video m € {0, ..., L — 1}, where L denotes
the total number of videos in the training set. Then,

1 m
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Similarly,

1
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Thus, for velocities, the magnitude of each vector ||v;(t)||2
is mapped to an index by the following formula (assuming O-
based indexing):

) v @l
dr_v;(t) = "= NB5|,NBy — 1 3
ida;(t) = min( DL TENB, | NB ~ 1) @)
Likewise, for accelerations, the magnitude of each vector
l|la;(t)||2 is mapped to the following 0-based index:

, ol @l
dx_a;(t) = — "= NB;3|,NB; — 1 4
idx_a;(t) = min(| ax, 3], NB3 — 1) “)
Obviously, idx_v;(t) € {0, ..., NBy — 1} and idz_a;(t) €
{0, ..., NB3—1}. Finally, the velocity magnitudes of the k most
dominant motion centers altogether contribute to the histogram
bin indexed by:

(NBy)F~Yidx vy, 1 (t)+(NB2) = 2idx vy, _o(t)+...+idx_vo (t)

)]
while for acceleration magnitudes the previous equation holds
in a similar manner, where NB5 is substituted with NB3 and
idx_v;(t) with idr_a;(t).

4 Experimental Results

In this section, the evaluation of the proposed algorithm is
presented. Firstly, the evaluation is carried out on the KTH
dataset [12] that contains 600 videos in total from 25 people
performing 6 different actions. Secondly, we evaluate against
the MuHAVi dataset [13] which contains 17 actions all per-
formed by 7 people and captured by 8 cameras.

In order to choose the parameters of the system, we run a
grid based approach resulted in the proposed values. Firstly,
the number of most dominant motion centers per video was set
to k = 2. This means that for each video, 2 trajectories of
the most dominant motion centers are extracted. Secondly, for
trajectory extraction the parameter w is set to 25. Finally, the
HOT parameters NB1, NB, and NBj are all set to 8 and the
classifier used was AdaBoost.

For evaluation in KTH dataset we use the standard proce-
dure proposed in [12]. The total recognition accuracy achieved
by our method is 88.7%. The resulted confusion matrix is il-
lustrated in table 2, while a comparison with respect to some
methods in the bibliography is given in table 3. Most of the
methods in the bibliography, like [10] and [4], lack a computa-
tional complexity analysis except for [11] and are not included
in the table, but even [11] is proved to be a too complex algo-
rithm to run in systems requiring low processing power.

While MuHAVi is a multi-view dataset, we use a single
view for each action and more precisely the view which is per-
pendicular to the action. The evaluation strategy is set to leave-
one-actor-out. The total recognition accuracy of the proposed
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Climb Ladder 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Jump OverFence 0 857 0 0 0 0 14.3 0 0 0 0 0 0 0 0 0 0
Punch 0 0 428 0 0 0 0 143 143 286 0 0 0 0 0 0 0
Crawl On Knees 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
Jump Over Gap 0 14.3 0 0 57.1 0 143 143 0 0 0 0 0 0 0 0 0
Run Stop 0 0 0 0 0 714 0 0 0 0 0 0 28.6 0 0 0 0
Drunk Walk 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
Kick 0 14.3 0 0 0 0 143 571 0 14.3 0 0 0 0 0 0 0
Shotgun Collapse 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
Pickup Throw Object 0 0 286 0 0 0 14.3 0 0 14.3 0 42.8 0 0 0 0 0
Pull Heavy Object 0 0 0 0 0 0 14.3 0 0 0 85.7 0 0 0 0 0 0
Smash Object 0 0 0 0 0 0 0 0 143 143 0 714 0 0 0 0 0
‘Walk Turn Back 0 0 0 0 0 0 0 0 0 0 0 0 85.7 0 0 0 14.3
‘Wave Arms 0 0 0 0 0 0 0 0 0 0 0 0 0 714 28.6 0 0
Draw Graffiti 0 0 0 0 0 0 0 0 0 14.3 0 0 0 143 428 28.6 0
Look In Car  28.5 0 0 0 0 0 0 0 0 0 0 0 0 0 285 428 0
Walk Fall 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Table 1. 17-class MuHAVi dataset confusion matrix.
Walk  Jog Run Box Hclp Hwav Stage Time (sec)
Walk 92 29 08 43 0 0 Trajectory extraction 1.4
Jog 76 790 127 0.2 0.5 0 HOT feature extraction 0.006
Run 1.5 159 819 03 0.2 0.2 AdaBoost Testing 0.01
Box 0.1 0 0 966 3 03 Total 1416
Hclp 0 0 0 84 88.6 3
Hwav 0.1 0 0 31 22 946 Table 5. Average per video processing times, for videos from

Table 2. KTH dataset confusion matrix.

Method Accuracy (%)
Schiildt et al [12] 71.7
Klaser et al [2] 84.3
Proposed Method 88.7
Sadanand et al [11] 98.2

Table 3. Accuracy of the methods in the bibliography on KTH
dataset

method for all the 17 classes is 72.2% and the confusion matrix
is given in table 1. We further evaluate on a subset of 10 ac-
tion classes of the same dataset, achieving 92.8% recognition
accuracy while the confusion matrix is given in table 4.

As for the computational complexity aspects of the pro-
posed method, we run our MATLAB code on an Intel 17-2700K
3.5GHz CPU with 8GB RAM. In table 5, the average per video
processing times for videos from the KTH dataset are given.
The average video length in KTH dataset is 484 frames and the
average per video processing time of our algorithm is measured
to be 1.4 sec.
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Climb Ladder 100 0 0 0 0 0 0 0 0 0
Crawl On Knees 0 100 0 0 0 0 0 0 0 0
Run Stop 0 0 715 0 0 0 0 285 0 0
Drunk Walk 0 0 0 8.7 0 0 0 143 0 0
Shotgun Collapse 0 0 0 0 100 0 0 0 0 0
Pull Heavy Object 0 143 0 143 0 714 O 0 0 0
Smash Object 0 0 0 0 0 0 100 0 0 0
Walk Turn Back 0 0 0 0 0 0 0 100 0 0
Wave Arms 0 0 0 0 0 0 0 0 100 0
Walk Fall 0 0 0 0 0 0 0 0 0 100

Table 4. 10-class MuHAVi dataset confusion matrix.

the KTH dataset.

5 Conclusion

In this paper, a novel method for action recognition from videos
has been presented based on sparse trajectories. Moreover,
a new feature vector type has been proposed for classifica-
tion: the histogram of oriented trajectories (HOT), which is
based on properties of the aforementioned trajectories, particu-
larly on trajectory orientations and velocity/acceleration mag-
nitudes. Evaluation of the algorithm was conducted in KTH
[12] and MuHAVi [13] datasets showing competitive results.
The proposed algorithm is low in computational complexity
and thus suitable to be used in surveillance systems requiring
low processing power.
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