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Abstract

In this paper, a graph-based, supervised classification method for multimodal data is intro-

duced. It can be applied on data of any type consisting of any number of modalities and can

also be used for the classification of datasets with missing modalities. The proposed method

maps the features extracted from every modality to a space where the intrinsic structure of

the multimodal data is kept. In order to map the extracted features of the different modal-

ities into the same space and, at the same time, maintain the feature distances between

similar and dissimilar modality data instances, a metric learning method is used. The pro-

posed method has been evaluated on NUS-Wide, NTU-RGBD and AV-Letters multimodal

datasets and has shown competitive results with the state-of-the-art methods in the field,

while is able to cope with datasets with missing modalities.

Keywords: Multimodal fusion, multimodal metric learning, multimodal classification,

distance graphs

1. Introduction

With the wide growth of processing power and network speed, a simple event can be

described using different types of multimedia. While in the past, news web pages would

present an event with textual descriptions and photos, nowadays photo captions, keywords

and videos are also used. At the same time, the wide use of capturing devices in combination
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with the easiness of their usage, their mobility capabilities and their low cost, made it

easy to capture an event from different users. Moreover, the ability of sharing these data

with the community, made available not only an event description with a large number of

captured data, but also its enrichment with textual and/or symbolic (emoticons and alike)

description attributed by the users. Therefore, nowadays an event representation consists

of a multitude of types of multimedia data, captured by different devices and user provided

textual and/or symbolic descriptions. Thus, the need to develop methods that use and

analyze this multimodal information has been emerged.

In this paper, a general classification framework is proposed that can be used on any

kind of data which describe objects, actions, contexts or other informative cues (hereinafter

all called objects) with the only constraint that an object is described by more than one

modalities. Modalities, in this context, are considered the image, the video, the audio, the

text or, in general, any data type that can be acquired by a device or added by the user to

describe an event.

In multimodal classification the objective is to assign a predefined label (class) to an ob-

ject that is described by more than one modalities. Lately, multimodal classification gained

more and more attention from the research community for two reasons: Firstly, because

nowadays more information for an object can be extracted from multiple sources. Secondly,

the processing power growth enables such analysis that was forbidden up until recent years

due to the induced complexity from the use of multiple modalities for classification.

There is a multitude of different approaches for multimodal classification. The two

major frameworks that are used are: 1) classifying each modality separately and fuse the

classification output to take a final decision (late fusion), and 2) by fusing multiple modalities

and classify them as a single entity (early fusion) [1]. Recently, a vast amount of effort has

been invested on multimodal fusion based on the biologically inspired idea that multimodal

fusion resembles the way the human brain works by using many input sources (senses) to

classify objects [2, 3]. The proposed method makes use of multimodal fusion since, even if

each separate modality adds information to the object under examination, the join analysis

of the different modalities can also provide additional information.
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In this paper a supervised multimodal fusion model is presented that fuses data both in

the feature level and the decision level, preserving information conveyed by one modality

to the other. The objective is to map all the extracted modalities’ features into the same

feature space, where distance between them can be measured, and therefore can be used in

a classification algorithm. The main assumption is that, when all modalities of an object are

on the same feature space, they can be processed independently and when fused, to provide

more information about it. This also allows at a next step, to use any classification method

on the projected features, taking decisions in higher semantic level.

The proposed method employs a supervised graph-based method that takes into account

similarities between different modalities of different training samples. In order to measure

the similarity between samples arriving from different modalities, a metric is defined that is

learned in a supervised way.

A common issue arising in multimodal setups is the fact that data from one or more

modalities are missing at the testing phase. In the taxonomy presented in [4], it is shown

that these cases form a distinct category of multimodal machine learning methods. In

the proposed method, data can be considered as multiple single-modality objects. It is

interesting that the proposed method is able to handle objects with missing modalities both

in training and in testing phases.

In this work, a novel approach for multimodal fusion for classification is proposed. The

method is generic and can be applied on datasets with any number and type of modalities.

The relationship between the modalities is used on every step of the procedure, so that most

of the information that exists among the modalities is exploited. The proposed method can

be applied even if modalities are missing in a number of samples. In this case, there is no

need of generating the missing modalities, since the available ones can be used both for

training and testing. Additionally, samples with missing modalities can also be mapped to

the feature space and thus be correctly classified.
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2. Related Work

Multimodal fusion has been used in various tasks, such as action or expression recognition

[5] - [7], image/video classification [8, 9], speech recognition [10, 11], person/object/context

recognition [12] - [16], medical diagnosis [17] - [19], etc. The data that are usually used in

these tasks are acquired from a large variety of sensors, such as bio-sensors (smart-meter

sensors or blood-pressure devices, fingerprints) [20] - [22], other passive sensors (Kinect and

other cameras, smart-phones) [23] - [27] or user created information, such as text or tags

[28] - [30].

There is a plethora of methods applying multimodal fusion on different levels partitioned

based on the stage at which the data fusion takes place (early fusion, late fusion, feature

level fusion, decision level fusion). We refer the reader to [1] for a comprehensive analysis

and presentation of different fusion methods. The methods therein are categorized according

to the diversity and the type of the multimodal data to be fused. According to [3], there

are various issues that usually come up in multimodal fusion such as data imperfections

caused by sensors, data outliers, time-invariant and varying with time data, different data

preprocessing, different data dimensions.

Regarding multimodal data analysis, in [12] a framework for multimodal content retrieval

is presented that supports retrieval of rich media objects as unified sets of different modali-

ties (image, audio, 3D, video and text), by efficiently combining all unimodal heterogeneous

similarities to a global one according to an automatic weighting scheme. In [20] Kalimeri et

al. present a multimodal framework using the fusion of electroencephalography (EEG) and

electro-dermal activity (EDA) signals, for assessing the emotional and cognitive experience

of blind and generally visually impaired people, when navigating in unfamiliar indoor envi-

ronments. In [19] the authors use grey-scale video (EEG) as one modality and the optical

flow between frames as the other modality. Then they use deep neural network (DNN)

with convolutional neural network (CNN) and recurrent neural network (RNN) for the EEG

classification. In [21] Wagh et al. fuse fingerprint and Iris images, in person identification

for security purposes. In [23] Patwardhan et al. propose a method for detecting aggressive
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actions and anger by fusing joint position, movement, body posture, head gesture, face and

speech data that have been captured by a Kinect device. In [24] Cricri et al. use video,

audio and sensorial data captured by mobile phones to classify sports.

Most of the research conducted thus far on multimodal fusion, either concatenates the

features and applies a classification method (e.g. [20, 21] - feature level fusion), or uses the

classification results for each modality to improve the result by aggregation (e.g. [23, 26] -

decision level fusion). Many methods use also both levels of fusion (hybrid fusion). These

methods do not exploit the mutual relationship between the different modalities, rather than

the joint effect that they have on the final decision.

To the best of our knowledge, the only methods that use the relationship among the

different modalities in order to classify the multimodal input are described in [31, 24] and

[32]. Yet, in [31] there is the necessity of generating the missing modalities using information

from the existing modalities in order to provide results. A similar approach is used in [32],

where information theory based measures are used to generate missing modalities. Therein,

the concatenated modalities are used to train a single representation using neural networks.

In [24] a feature weight is calculated using the relation between different modalities through

concatenation of the modalities and unimodal classification. Then, late fusion is applied in

order to enhance the classification results using the previously calculated weights.

The proposed method builds on [33] and [29] which also deal with multimodal classifi-

cation. In [33] a graph-based method is presented that performs multimodal image classifi-

cation. However, this method has restrictions, since it cannot be applied on data consisting

of modalities of different size or type. In fact, the method uses only one data type (image),

while different poses of the same person are considered as different modalities. Graph-based

classification has also been studied in [34]. This method gives good results in terms of image

tagging, however it has not been used for multimodal classification purposes instead for fea-

ture learning and image understanding. In [29] a method that seeks a metric to be used as

a distance between different modalities is proposed. This method maps all modalities to a

single representation in a lower-dimensional space. However, this method cannot be applied

on datasets that do not contain information for all modalities for each instance. Under the
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same motivation, namely the need of measuring the similarity between different features, in

[35] a method is proposed which uses a deep learning approach. This method also does not

cope with multimodal classification since it is used solely for image retrieval. Our method

employs matrix factorization in multiple steps of the process. Matrix factorization has also

been studied for image understanding in [36], using a deep learning approach.

3. The Proposed Method

The general form of the proposed framework consists of six parts that are described in

this section, and can be seen in Figure 2. Initially, the data are normalized by subtracting

the mean value of each feature of each modality. Then, a transformation is applied using

Singular Value Decomposition (SVD) so that all modalities lie on the same space, which is

the space of one existing modality.

At a next step, the unimodal data-input is mapped into multiple representations in a

new space, where distance between data can be measured. The representation in the new

space is calculated using the right Truncated SVD transformation [37] matrix as a base.

Truncated SVD is used to reduce the dimensions of the data with the minimum loss of

information. Then the transformation matrix is updated so that the distance between data

of the same/different class (label) is decreased/increased respectively [29]. The goal here is

to find a distance metric between the different modalities. So the different modalities are

mapped into a space where the distance between data of the same/different class (label) is

small/large and hence use this mapping for calculating distances between modalities. Each

update of the matrix results to a mapping that better complies to the general goal.

After this step, the different modalities (after being transformed) are used separately

and passed to the graph-based method. In this phase, the graph-based method is used to

preserve the distances between different objects. Then, the target representation in the

new space is derived using the graph. On this final space, any single modality classification

method can be applied.

Thus, the proposed method consists of the following steps:
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• Normalization and mapping of the extracted features of all modalities to the feature

space of one modality.

• Initialization of the first transformation matrix.

• Updating of the first transformation matrix based on the distance between modalities.

• Estimation of the final transformation matrix using a graph-based method.

3.1. Notations

Let X be a multimodal dataset of m modalities consisting of n labeled samples with

label li, i ∈ {1, . . . , c}. li represents the class of the ith sample where c is the total number

of the different classes. The representation of each sample of the modality j ∈ {1, 2, . . . ,m}

is given by the vector xi,j ∈ Rdj where dj is the dimension of the sample representation

for the modality j. Each sample can be represented by one vector xi by concatenating its

single-modality representations. Namely:

xi = [xi,1| . . . |xi,j], j = 1, 2, . . . ,m (1)

where xi is of size [1× d], d =
∑m

j=1 dj. The entire data set is represented by the matrix X

of size n×m where each line of X is the sample representation xi namely:

X =


x1

...

xn

 =


x1,1 . . . x1,m

...
...

xn,1 . . . xn,m

 = [X1| . . . |Xm] (2)

In other words, the kth value of the jth modality of sample i is located at the ith row and

the (f(j) + k)th column of X, where f(j) =
∑j−1

q=1 dj. Xj denotes the n × dj sub-matrix of

X that contains the jth modality features of all n samples.

3.2. Data pre-processing

The mean value of each modality per dimension is subtracted. For each sub-matrix Xj

of the multimodal dataset, the mean value is calculated as:

µµµj = [µj,1, . . . , µj,dj ] =
1

n

n∑
i=1

xi,j (3)
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and zi,j = xi,j − µµµj, with Z is X after normalization.

In the next step, all modalities j, w ∈ {1, 2, . . . ,m}, j 6= w are transformed such that

the distance ||Zw −RRRjZj|| is minimized. The rotation matrices RRRj for each modality j, w ∈

{1, 2, . . . ,m}, j 6= w are calculated.

All the modalities, except for the wth, are transformed since for modality w, RRRw = Idw ,

where Idw is the [dw × dw] identity matrix.

The solution of this minimization problem is obtained using SVD over the covariance

matrix cov(Zw,Zj) = ZT
wZj.

ZT
wZj = URΣVT

R

RRR = VRIUT
R

(4)

where VR is a matrix of size [dj × dj], I is a matrix of size [dj × dw] where its elements equal

Kronecker delta (Iij = δij), and UR is a matrix of size [dw × dw].

Hereafter, X will indicate the transformed modalities with Xi = RRRi ·Zi,∀i ∈ {1, 2, . . . ,m}

are then concatenated as in (2) resulting in matrix X.

3.3. Initial transformation

Truncated SVD Decomposition is applied on the above dataset for s largest singular

values so that X ≈ UΣVT . V is the initial transformation matrix of size [d× s] where s is

manually selected and since s < d dimensionality reduction of the dataset is also achieved.

V is the initial transformation matrix. It can be further updated by taking into account the

class information.

An iterative update algorithm is applied on the transformation matrix V (Algorithm 1).

Considering xα and xβ to be two random samples, for all pairs xα, xβ, we compute:

hα = xα ·V and hβ = xβ ·V (5)

where hα and hβ are the representations of the two respective samples and α, β ∈ {1, 2, . . . , n}, α 6=

β.
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(a) The SVD that provides the Initial transformation matrix V.

(b) The repetitive procedure that updates the initial matrix to the final

Figure 1: The transformation of data for the initial transformation matrix V. T corresponds to

the first while S to the second modality. This figure refers to the realization on NUS-Wide 1.5K

data.
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Then, the updated values for the transformation matrix V are calculated by:

uα = xTα · (hα − hβ) · 2 · C1 · st

and uβ = xTβ · (hβ − hα) · 2 · C2 · st
(6)

where C1 and C2 are parameters balancing the significance between the update matrices uα

and uβ, and st is the step-size parameter that determines how quickly the transformation

matrix will converge to the final matrix.

The transformation matrix V is updated as shown below for the pairs of α and β be-

longing to the same cluster (lα = lβ):

V := V − (uα + uβ) (7)

while for the pairs of α and β with lα 6= lβ, V is updated iff the euclidean distance between

hα and hβ is below a threshold ε:

V := V + (uα + uβ) , iff ‖hα − hβ‖2 ≤ ε (8)

This process is repeated for r iterations, so that the V matrix best represents the sim-

ilarities between modalities, after a predefined amount of iterations. The entire process for

the bi-modal case (m = 2) is illustrated in Figure 1.

3.4. Reshaping the dataset

After r iterations, the resulted transformation matrix is V. V consists of m concatenated

matrices Vj

V =
[
V1 · · ·Vm

]T
(9)

where each Vj matrix represents the jth modality of the dataset and is of size [dj× s], while

s is the number of the largest singular values of the truncated SVD.

In the next step, the dataset is divided into m parts, one for each modality. The reshaped

dataset can be written as :

X′ =
[
X′1 · · ·X′m

]
(10)
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Algorithm 1 The SGD Updating Algorithm

Initialize V = V0 by applying SVD

repeat

repeat

given a pair of samples (α, β) compute:

hα and hβ

uα and uβ

if α and β similar (lα = lβ) then

V := V − (uα + uβ)

else

if ‖hα − hβ‖2 ≤ ε then

V := V + (uα + uβ)

end if

end if

until a predefined number of pairs

until predefined number of iterations

where X′j = Xj · Vj is a sub-matrix of X′ that contains the transformation of the jth

modality of all samples, the size of X′j is [n × s], hence the size of X′ is [n′ × s], where

n′ = n ·m.

The above derives from the fact that by using simple matrix multiplication we can take:

X ·V = X1 ·V1 + · · ·+ Xm ·Vm =
m∑
j=1

Xj ·Vj (11)

This is the point where we intervene in the original method that is proposed in [29],

where a single representation for the concatenation of the two modalities is calculated. At

this representation a distance between the different objects consisting of all modalities can

be measured. We assume that we can keep the parts of the V that correspond to the jth

modality in order to map each modality to the new feature space independently. In this new

space, the distance can also be measured between different modalities.
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3.5. Graphs Creation

For the reshaped dataset X′, two graphs are constructed. A between-class graph {Gb,Wb}

and a within-class graph {Gw,Ww}, with Wb and Ww being the weight matrices of the two

graphs, respectively.

To make the connections between the different nodes of the graphs and thus create

meaningful edges, we use the kernel-based distances that we consider as similarity of the

nodes. To do so, we have made the hypothesis that the data lie on multiple manifolds in

order to put constraints for the connections between the nodes, as will be described in the

following paragraphs. Moreover, the evaluation of the kernel-based distances will be used

as weights of the edges of the graphs.

Given n′ data samples X′ = [x′1, . . . ,x
′
n′ ]T from c different classes, the data-points are

separated into % = c · m modality manifolds M = {M1, . . .M%}, where Mj,l is defined as

the jth modality-manifold-fragment (MMF) of the lth class. Then, the within-class graph

{Gw,Ww} and the between-class graph {Gb,Wb} graphs are constructed.

1) Within-class graph {Gw,Ww}. Within-class graph is based on the MMF inner struc-

ture. Thus, ∀xi ∈ Ml,k (l = 1, . . . , ρ, k = 1, . . . , c) we connect xi with all xj ∈ Q ⊂ M i
l,k

where |Q| = k, d(xi,xj) < d(xi,xk), ∀j ∈ Q, k ∈ M i
l,k − Q where M i

l,k ⊂ Ml,k with all the

elements of Ml,k excluding the ones that have been connected with xi in previous steps and

xi itself.

In other words, for all vertices that belong to the same MMF, namely the samples that

belong to the same class and the same modality, x′i′ ∈MM
j,l , an edge is added between x′i′p

and x′i′q, if x′i′q is among the k nearest-neighbors of x′i′p. In the case that an edge already

exists from a previous iteration of the algorithm, the next nearest-neighbor is selected.

The process above is performed for every MMF. In the next step, edges are added between

different MMFs that correspond to the same class using the following procedure:

∀ MMF Mi,k, connect Mi,k with Mj,k if xa ∈ Mj,k : d(xa,xb) < d(xc,xd) ∀xa,xc ∈ Mi,k and

xb,xd ∈Ml,k.

Thus, an edge is added between the two closest vertices belonging to different MMFs,

with the same restrictions set for the inner MMF structure. Yet, two MMFs are considered
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connected if any two of their vertices are connected.

2) Between-class graph {Gb,Wb}. The MMF inner connections are used as described

above. Then, edges are added between different MMFs that correspond to the same modality.

The graph vertices are connected with the same restrictions as set in the within-class graph

construction.

3.6. Graph output

From the graphs created in the previous step, the corresponding adjacency matrices Aw

and Ab are obtained. The Ww and Wb weight matrices are calculated using the heat kernel

according to which the weights of an edge between two vertices xi and xj are given by:

Wi,j = e
−
‖xi − xj‖2

h (12)

The two laplacian matrices Lw and Lb are then calculated as follows:

Lw = Dw −Ww and Lb = Db −Wb (13)

where Dw,Db are the diagonal matrices with the row-sums of the weight matrix as the

elements of the main diagonal, namely Dwi,i
=
∑

j Wwi,j
.

3.7. Final data representation calculation

As described in detail in [33], the objective is to simultaneously minimize three different

quantities:

1. YTLwY s.t YTLbY = I

2. ‖Y −XTA‖22
3. ‖A‖2,1

The final objective function is the following minimization of the weighted sum of the

three quantities above, namely:

min(YTLwY +$‖Y −XTA‖22 + σ‖A‖2,1) s.t. YTLbY = I (14)
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Figure 2: The different steps of the proposed method as they are described in 3. The titles of the

parts are following the corresponding subsections in which the parts are described.

where $ and σ are two balance parameters, A is a transformation matrix, and ‖A‖2,1 =∑n
i=1

√∑p
j=1([A]ij)2 or zero otherwise. By setting the objective function as F we get:

F = YTLwY +$‖Y −XTA‖22 + σ‖A‖2,1 (15)

By differentiating F with respect to A, setting it to zero and solving for A, we get:

A = (XXT + σ∆/2$)−1XY = ÂY (16)

where ∆ is a diagonal matrix whose ith diagonal element ∆i,i equals to (‖αi‖)−1 only

when αi 6= 0 (αi is the ith row vector of A). The proof of (16) is given in Appendix A. Here

we result in a different equation than the corresponding one in [33].
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F = YTLwY +$‖Y −XTA‖22 + σ‖A‖2,1)

=YTLwY+$(ATXXTA−2ATXY+YTY)+σAT∆A

=YTLwY+$(YT ÂTXXTÂY−2YT ÂTXY+YTY)+

+σYT ÂT∆ÂY

= YT [Lw +$(ÂTXXT Â− 2ÂTX + I) + σÂT∆Â]Y

(17)

If we set: L = Lw + $(ÂTXXT Â− 2ÂTX + I) + σÂT∆Â the minimization function can

be re-written as:

min(YTLY) s.t. YTLbY = I (18)

According to the Lagrangian method, the optimization problem can be solved by comput-

ing the eigenvectors corresponding to the l smallest eigenvalues of the following generalized

eigenvector problem:

LY = λLbY (19)

The optimization process is illustrated in Algorithm 2:

Algorithm 2 Optimization Algorithm

Initialize ∆0 = I, t = 0, $, σ

repeat

compute Yt by solving LY = λLbY

update At using A =

(
XXT +

σ∆

2$

)−1
XY

evaluate ∆ from At

t = t+ 1

until convergence or preset iterations

Hence, the final representation of the (pre-processed) input data is

R = x ·V ·A (20)

which can then be passed into any single modality classification method.
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In the testing procedure, let O be an object to be classified that consists of z ≤ m

modalities. Let also Z = {z1, . . . , zz} ⊂ {1, . . . ,m} where Z is the set of the indices of

the existing modalities of the object O and m the number of modalities of the training set.

Then, O is represented as

O =

∑z
i=1(xO,i ·Vzz ·A)

z
(21)

where, xO,i is the representation of the ith modality of O, Vzz is the zz
th submatrix of V

(see (9)). It should be noted that similarly to the training procedure, during testing the

input data are normalized and rotated by RRR. Thus, the µµµj vectors from the training step

are kept and re-used during the testing.

At this point we want to note that in case where there are samples in the training set

with missing modalities, they can be included in the training procedure, skipping though

some steps. If a modality of a sample in training is missing, the specific sample does not

take part in the pre-processing modality-transformation part and the metric learning part

(in initialization only). Yet in the next step, the existing modalities (except the wth) will

be transformed using (4). The only pre-processing the specific sample is through is the

normalization.

4. Experimental Results

Experiments were conducted on three multimodal datasets: NUS-Wide [38], NTU RGB-

D [39] and AV-Letters [40].

NUS-Wide samples consist of two modalities, images (six types of low-level features

extracted from them) and their associated tags from Flickr. We used a subset of 1520

samples from the dataset (NUS-Wide 1.5K) and kept the bag-of-words feature based on

SIFT descriptors.

NTU RGB-D dataset contains samples acquired by Microsoft Kinect devices. Each

sample represents a sequence of frames. In each frame, one or two bodies are recorded.

For each body, the 25 skeleton joints provided by the Kinect, are stored. For every joint,

x, y, z (3D) coordinates of the joint, 2D (x, y) mapping of the corresponding depth frame,
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2D (x, y) mapping of the corresponding RGB frame and 4D (w,x,y,z) orientation of the joint

are provided. From the entire dataset, 500 samples are selected randomly to work on.

The AV-Letters dataset consists of 780 samples. Each of the 780 samples contains a

sequence of video frames of various length illustrating lip-movement pronouncing a letter

(video) and a sequence of Mel Frequency Cepstral Coefficients (MFCC) describing the audio

of the corresponding letter.

In order to estimate appropriate parameters for our method, an exhaustive heuristic

method has been employed. The search concerned the $, σ, t parameters, the number of

singular values kept for the SVD step (sv), the number of iterations of the updating al-

gorithm (r), the number of eigenvalues kept in the Graph Optimization algorithm (l) and

the trade-off parameters (C1, C2), as described in Section 3. In Table 1, different indicative

values of the parameters used in experiments are shown. The optimal values have been

achieved for the parameters are written in bold. It is interesting that for most parameters

the optimal values are close for the datasets described above. This fact indicates that the

proposed method achieves strong generalization across datasets. The method’s accuracy of

multimodal classification on NUS-Wide 1.5k dataset for different values of parameters r and

h is illustrated in Figures 3a and 3b respectively.

4.1. NUS-Wide 1.5K dataset

As mentioned in the previous subsection, each of the 1520 samples of the NUS-Wide

1.5K dataset consists of two modalities that describe an image. The first modality is a 1000d

binary vector indicating the existence of 1000 tags on the image. The second modality is

the probability of SIFT features that has been clustered into a bag-of-words of 1024 bins, to

be found in the certain sample. A subset of 765 samples are used for training and a subset

of 756 samples are used for testing.

The two modalities are concatenated following the procedure described in section 3.1

resulting in a vector xi of length d = 2024. Then, the SGD step is applied on V, for all the

pairs of similar samples (9613 pairs), and for 10067 random dissimilar pairs.

In the next step, the dataset is reshaped (Section 3.4). Each of the new samples has
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(a) The effect of r parameter on multimodal accuracy for the NUS-Wide 1.5k dataset.

(b) The effect of h parameter on multimodal accuracy for the NUS-Wide 1.5k dataset.

Figure 3: Some indicative illustration of the effect of the parameters on multimodal accuracy

length sv = 60 and is labeled with the class and the modality it belongs to. The optimization

process is repeated until convergence or until 200 iterations.

An 8-fold cross validation is applied using multiple classifiers and the accuracy of each

of different cases is computed. The classifiers are trained with the single representation (the

mean of the resulting representations of each modality) and with independent representations
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Table 1: Parameters used in the experiments

NUS NTU AV

$ 1, 10, 100, 1000 1, 10, 100, 1000 1, 10, 100

σ 1, 10, 100, 1000 1, 10, 100, 1000 1, 10, 100

h 0.1, 1, 10, 100 0.1, 1, 10, 100 0.1, 1, 10, 100

sv 10, 30, 50, 60, 100 10, 30, 50, 60, 100 10, 30, 50, 60, 100

l 10, 30, 50, 60, 100 10, 30, 50, 60, 100 10, 30, 50, 60, 100

r 50, 100, 200, 400 50, 100, 200, 400 50, 100, 200

C1 100, 200, 300, 400 100, 200, 300, 400 100, 200, 300, 400

C2 200, 300, 400, 500 100, 200, 300, 400 200, 300, 400, 500

Table 2: The experimental implementations. The enumeration of cases are as described in section 4.4.

Framework Parts Classifiers Training

LS SVD SGD Graph Modalities sep Modalities av

1 X X X

2 X X X

3 X X X X

4 X X X X

5 X X X X

6 X X X X

7 X X X X X

8 X X X X X
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Table 3: The experimental implementations with tested accuracy and best classifiers and the experimental

results per modality for NUS-Wide. The enumeration of cases are as described in section 4.4.

Multimodal CVA Accuracy Per modality CVA Accuracy

av. sep Tags Mod SIFT Mod

1 91.71% 48.98% 92.88% 5.13%

2 91.95% 48.82% 92.61% 4.28%

3 94.34% 50.53% 94.08% 6.97%

4 94.46% 49.70% 94.60% 4.87%

5 92.09% 49.48% 93.53% 5.42%

6 92.09% 49.60% 92.86% 5.81%

7 94.74% 51.48% 94.47% 8.44%

8 94.20% 49.64% 94.47% 4.87%

of each modality.

The complete parameter selection is shown in Table 1. The threshold for updating the

V transformation matrix in case of dissimilar samples, is set to ε = 1. The results on NUS-

Wide dataset are presented in Table 2. The eight sub-cases (lines) of Table 3 correspond to

experiments that are presented in detail in sub-section 4.4.

4.2. NTU RGB-D dataset

Each frame sequence of the NTU RGB-D dataset is considered as a sample and the Bag

of Words (BoW) method is applied on the data. We use a random 85% of the selected

samples for training and the rest for testing. All the 25×3, 25×2, 25×2 and 25×4 features

of all frames are concatenated into 4 matrices and then k-means is applied on them for 50
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words (centers) each. Then, the probability of each word appearing in the each sample is

calculated. This procedure results in 4 sparse features of size (1×50), one for each sequence.

Since each sample is constructed as the concatenation of the 4 modalities feature vectors,

its dimension is (1 × 200). The SGD step is applied on V for the same number of pairs of

similar/dissimilar samples (1423/1423 pairs).

For the next step the dataset is reshaped at n′ = n ·m = 4 · 425 = 1700 samples. The

new sample length after SVD is sv = 30. The results are presented in Table 4. The A

and B rows in the table show the baseline. The baseline for comparison purposes is on the

extracted features of the BoW, without any processing. The same classifiers and the same

classification procedure is applied on the features to show the difference in terms of accuracy.

Considering this dataset, results for one missing modality are presented in Table 5, and

they are compared to the corresponding results of Table 4 under the av. column.

Table 4: The experimental implementations for NTU.

MM CVA Accuracy Per modality CVA Accuracy

av. sep Mod1 Mod2 Mod3 Mod4

A 3.64% 57.45% 56.72% 59.15% 56.52% 57.35%

B 61.54% 3.14% 3.23% 3.33% 5.00% 1.69%

1 50.00% 62.50% 67.21% 60.94% 62.50% 59.70%

2 60.00% 18.26% 11.86% 26.79% 32.79% 0.00%

3 55.00% 61.81% 60.61% 63.93% 64.41% 58.82%

4 58.21% 20.76% 18.75% 31.75% 24.14% 5.88%

5 3.77% 62.26% 60.94% 62.90% 60.61% 64.62%

6 57.58% 5.16% 2.08% 5.66% 5.88% 6.56%

7 40.98% 62.50% 60.00% 65.00% 64.06% 61.19%

8 70.69% 16.90% 18.97% 22.58% 19.61% 2.38%
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Table 5: The experimental implementations for NTU for 1 missing modality.

Overall Per missing modality CVA Accuracy

output Mod1 Mod2 Mod3 Mod4

B 61.54% 31.67% 31.58% 42.19% 28.07%

2 60.00% 40.91% 53.23% 50.72% 50.77%

4 58.21% 49.18% 50.00% 48.48% 47.69%

6 57.58% 9.43% 14.81% 17.46% 6.45%

8 70.69% 51.61% 64.41% 60.32% 43.94%

4.3. AV-Letters dataset

A neural network is used for feature extraction. The network consists of two LSTM

layers. The two modalities are passed through two similar neural networks separately. The

outputs of the networks are feature vectors for each modality of each sample, one for audio

and one for video. The length of each feature vector is [1×26] and represents the possibility

of the sequence to be classified in one of the 26 classes. We used a random subset of 650

samples for training and the rest 130 for testing. The features of the two modalities are then

concatenated resulting in a vector xi of length d = 52. The SGD step is applied on V for

8160 pairs of similar samples, and for 8160 random number of pairs of dissimilar samples.

Then, the dataset is reshaped at n′ = n · m = 2 · 650 = 1300 samples resulting (after

SVD) in sample length equal to sv = 60. Finally, as in NUS-Wide dataset, a 5-fold cross

validation has been applied. The results for AV-Letters dataset are presented in Table 6.

4.4. Results interpretation

LS and SGD are procedures that are included/omitted in the experiments resulting in

variations of the proposed framework as shown in the Framework Parts columns of Table 2.

As shown in (20), the training set elements that are fed into the classification method

are the rows of R. More specifically, we calculate the representation for each modality Rj
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Table 6: The experimental implementations for AV-Letters.

MM CVA Accuracy Per Modality CVA Accuracy

av sep mod-A mod-V

1 70.77% 46.54% 33.21% 59.87%

2 72.82% 41.60% 23.97% 59.23%

3 70.77% 46.67% 33.46% 59.87%

4 72.69% 41.41% 23.33% 59.49%

5 71.15% 47.05% 34.36% 59.74%

6 73.21% 41.15% 22.95% 59.36%

7 71.15% 47.05% 34.49% 59.62%

8 73.08% 41.03% 22.56% 59.49%

namely

Rj = Xj ·Vj ·A (22)

where j = 1, 2, . . . ,m. Each element ri,j

R =
[

R1 . . . Rm

]
=


r1,1 . . . r1,m

...
...

rn,1 . . . rn,m

 (23)

is the representation of the jth modality of the ith sample. Since all m modalities lie on

the same space in the final representation, in the training procedure we can use from each

sample either all the m l-d vectors (Separate training) or their average vector Rav
i =

∑m
i=1 ri,j

(Average Training). Hence in the first case the number of training vectors per sample is

m (in total m · n elements - Modalities sep column) while in the latter is one (in total

n elements - Modalities av column), as indicated in Table 2 under Classifier Training

columns.
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Similarly, in the testing procedure the input consists of m l-d vectors for each sample.

Thus, for the classification we can use the average of these m vectors (Multimodal CVA accu-

racy - sum column of Tables 2-6) or each modality representation separately (Per modality

CVA accuracy columns), where CVA stands for cross validation average. In other words, on

these columns, the method’s accuracy is presented in the cases that all or only one modality

is available. Column (Multimodal CVA accuracy - sep of Tables 2-6) equals the average of

the m columns under Per modality CVA accuracy.

From Table 2 it seems that in the NUS-Wide dataset, Tag modality significantly out-

performs SIFT modality, where the latter achieves very low accuracy (< 10%). We also

observe the same behavior in the AV-Letters dataset (Table 6) where Mod-V outperforms

Mod-A.

During the data-preprocessing (Subsection 3.2), for the experiments on NUS-Wide and

AV-Letters datasets, the modalities have been transformed to the first modality space (w =

1) as shown in Tables 2-6. This covers both possible cases, namely, in the NUS-Wide dataset

we mapped the modality with the low accuracy to the one with the high accuracy, while in

the AV-Letters we performed the inverse. We have also performed mappings to the other

modalities (w 6= 1) which resulted in similar with the initial case (w = 1) accuracies. On

the contrary, the results on NTU-RGBD dataset are for modalities transformed to the 4th

modality as shown in Table 4. Even though the 4th modality shows the lowest accuracy

on its own, when transforming all modalities to its space, the method shows significant

improvement compared to transforming to the other modalities.

As expected, the results were better when the same training/testing object vector rep-

resentation was used. Thus, the average of the modalities achieved better results in the

classifier trained with the average of the modalities and vice versa.

The proposed method gives comparable results to the state-of-the-art methods. As can

be seen in Tables 7 and 8, in AV-Letters database, our method surpasses the others by

far for the multimodal case, even though for the case of the single-modal classification of

AV-Letters is ranked last. In NUS-Wide database, our method surpasses previous state-

of-the-art methods. In all cases the reader is referred to the referenced works for more
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Table 7: Method performance in AV-Letters

AV A V

MDAE [2] 62.90% 58.40% 62.10%

CRBM [31] 64.8% 61.2% 62.60%

RTMRBM [41] 66.04% 64.41% 64.63%

Proposed 73.21% 34.49% 59.87%

Table 8: Method performance in NUS-Wide 1.5K. The un-cited methods’ results are taken from [29]

Xie [29] 93.52% Xing+Original 89.95%

ITML+Original 89.95% Xing+MWH 89.95%

ITML+MWH 92.86% MKE 80.56%

Proposed 94.74%

results compared to other methods. The numerical results given in the Tables for the other

methods, are taken by [41] and [29], respectively. For the NTU-RGBD dataset, we use as

baseline for comparison the features extracted with BoW method. As it can be seen in Table

4, our method gives a significant boost to the accuracy, especially in the multimodal case

that is shown in column under av. Moreover, in Table 5, the case where one modality is

missing, and thus, the classification is done for the three remaining modalities. Only the

Average training approach is presented.

However, the most significant contributions of our method is that it is universal, it can

be applied to any kind of data, and most importantly, it can deal with the cases of missing

modalities. For example, columns under Per modality CVA accuracy (Tables 2, 4, 6) illus-

trate the method’s performance if only one modality is available during the method testing,
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and Table 5 shows the performance for one missing modality of NTU-RGBD dataset. Fur-

thermore, objects with missing modalities can also be employed during training by following

the Separate training approach.

5. Method Convergence and Computational cost

In this section we briefly present the computational cost of our method’s time consuming

parts, namely the Updating and the Optimization procedures as presented in Algorithms 1

and 2. We present these procedures since these are the most time consuming ones because

they iterative procedures.

Updating : 2 · 2 · r · [2O(n · d · s) + O(n · s) + 3O(ld · s)] ·
∑

cO((nc − 1) · nc/2). Where∑
cO((nc − 1) · nc/2) is the number of the different pairs of samples that are similar in

terms of label (class). As nc we consider the number of samples that belong to class c, n

is the total samples and d and s the method’s parameters (see Section 3.3). Parameter r

is the maximum number of iterations of this part, the optimal value of which is found with

heuristic method as described in Section 3.3, and the effect of it is presented in Figure 3a.

Optimization: [5O(n′2 · l) + 2O(n′3) + 7O(n′2) + 4O(n′ · l2) +O(l3) +O(l2)] · rs. Similarly, n′

is the number of samples in the reshaped dataset, l the number of largest eigenvalues kept,

and rs is the maximum number of iterations that can be performed before convergence,

as explained in Sections 3.4 and 3.7. In this final step, the convergence of the method is

measured using the Euclidean distance between the transformed data and the calculated

embedding ‖Y −XTA‖22. The method is iterating until the distance becomes smaller than

a small predefined value, which has been heuristically estimated to be equal to 10−3. The

entire method is constrained at 200 repetitions, r = 200 (as referred in sub-section 4.1), a

number that has been identified experimentally.

Indicatively, for the optimal parameter selections shown in bold in Table 1 and for the

realization presented in subsections 4.1, 4.2 and 4.3, the mentioned parts were timed and

the results are shown below.

1. In NUS-wide dataset, Upd. → 183, 02s and Opt. → 133, 45s (103 iterations until
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convergence).

2. In NTU-RGBD dataset, Upd. → 32.66s and Opt. → 323.63s (200 iterations without

convergence).

3. In AV-Letters, Upd. → 9.04s and Opt. → 95.44s (200 iterations without convergence).

The realizations took place in a machine with i5-6600 CPU @ 3.30Ghz and 16GB of installed

RAM.

6. Conclusions

We have proposed a general-purpose, graph-based, multimodal fusion framework that

can be used for multimodal data classification. This method is a combination of multimodal

metric learning with a graph-based multimodal fusion method. The Bag of Words frame-

work and neural networks have been used for feature extraction in the datasets in order

to present results as dataset-independent as possible. Our method reaches classification

accuracy of the state-of-the-art methods for classification of the single representation of a

multimodal instance. It is very substantial that this method is able to use multimodal data

with missing modalities in both the training and the testing procedures. Experiments in

two well-known datasets proved that the proposed method outperforms other state-of-art

methods in multimodal classification.

On the other hand, due to the fact that it is an iterative method, using SVD the proposed

method cannot cope with large datasets of lots of modalities. However, since the results of

the proposed method on small and medium size datasets are competitive, there should

be more work on extending it in order to deal with large datasets by employing big data

methods and tools to overcome specific bottlenecks such as the enormous dimensions of the

Laplacian matrix of a graph of thousands of samples.

Appendix A. Proof of equation 16

Let

F = YTLwY +$‖Y −XTA‖22 + σ‖A‖2,1 (A1)
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where X ∈M (n×d1) and A ∈M (n×d2)

The three terms of (A1) are differentiated separately. The first term does not contain

A, thus it’s derivative equals 0. Then the second term can be written as:

‖Y −XTA‖22 =
n∑
i=1

d2∑
j=1

(yij −
d1∑
k=1

xkiakj)
2 (A2)

hence its derivative equals:

∂(‖Y −XTA‖22)
∂A

=
n∑
i=1

d2∑
j=1

∂((yij −
∑d1

k=1 xkiakj)
2)

∂A
(A3)

Let u = yij −
∑d1

k=1 xkiakj and g(u) = u2.

Then
∂((yij −

∑d1
k=1 xkiakj)

2)

∂A
=
∂g(u)

∂A
=
∂g(u)

∂u
· ∂u
∂A

= 2u · ∂u
∂A

(A4)

where

∂u

∂A
=


∂u

∂a11
. . .

∂u

∂a1j
. . .

∂u

∂a1d2
...

∂u

∂ad11
. . .

∂u

∂ad1j
. . .

∂u

∂ad1d2


∂u

∂apq
=−

d1∑
k=1

xki
∂akj
∂apq

=−xpi=−


0 x1i 0

0
... 0

0 xd1i 0

=−M
(i)
j

(A5)

So,

∂(yij −
∑d1

k=1 xki · akj)2

∂A
= −2(yij −

d1∑
k=1

xki · akj) ·M(i)
j (A6)
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From (A3) and by setting B = Y −XTA:

∂(‖Y −XTA‖22)
∂A

= −2
n∑
i=1

d2∑
j=1

(yij −
d1∑
k=1

xki · akj) ·M(i)
j

= −2
n∑
i=1

[
(yi1 −

d1∑
k=1

xkiak1) ·M(i)
1 + (yid2 −

d1∑
k=1

xkiakd2) ·M
(i)
d2

]

= −2
n∑
i=1

[
bi1M

(i)
1 + · · ·+ bid2M

(i)
d2

]

= −2
n∑
i=1


bi1x1i . . . bid2x1i

...

bi1xd1i . . . bid2xd1i


= −2X ·B = −2X · (Y −XTA) = −2XY + 2XXTA

(A7)

For the third term:

∂‖A‖2,1
∂A

=

d1∑
i=1

∂
√∑d2

j=1 a
2
ij

∂A
(A8)

let u(A) =
∑d2

j=1 aij, g(u) =
√
u and ai =

∑d2
j=1 aij
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Therefore,

∂‖A‖2,1
∂A

=

d1∑
j=1

∂g(u)

∂A
=

d2∑
j=1

∂g

∂u
· ∂u
∂A

=
∑ 1

2
√
u


∂u

∂a11
. . .

∂u

∂a1d2
...

∂u

∂ad11
. . .

∂u

∂ad1d2

 =

d1∑
i=1

1

2
∑d2

j=1 aij

d2∑
j=1


∂a2ij
∂a11

. . . . . .

. . .
. . . . . .

. . . . . . . . .



=

d1∑
i=1

1

2
√∑d2

j=1 aij

d2∑
j=1


0 . . . 0 . . . 0

0 . . . 2aij . . . 0

0 . . . 0 . . . 0



=

d1∑
i=1

‖ai‖−1


0 . . . 0 . . . 0

ai1 . . . aij . . . aid2

0 . . . 0 . . . 0

 =


a11
‖a1‖

. . .
a1d2
‖a1‖

...
. . . · · ·

ad11
‖ad1‖

. . .
ad1d2
‖ad1‖

 = ∆A

(A9)

where ∆ =


‖a1‖−1 0 . . . 0

0
. . . 0

...
... · · · ‖ai‖−1 0

0 . . . . . . ‖ad1‖−1

 (A10)

By substituting to (A1), ∂F/∂A equals 0

∂(YTLwY +$‖Y −XTA‖22 + σ‖A‖2,1))
∂A

= 0⇒

$ · ∂(‖Y −XTA‖22)
∂A

+
σ · ∂(‖A‖22,1)

∂A
= 0⇒

$ · (−2XY + 2XXTA) + σ ·∆A = 0⇒

−2$XY + (2$XXT + σ∆)A = 0⇒

−XY + (XXT +
σ

2$
∆)A = 0⇒

A = (XXT +
σ

2$
∆)−1 ·XY

(A11)
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