
Received July 7, 2021, accepted August 2, 2021, date of publication August 30, 2021, date of current version September 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3108630

Zernike Pooling: Generalizing Average
Pooling Using Zernike Moments
THOMAS THEODORIDIS , KOSTAS LOUMPONIAS , NICHOLAS VRETOS , (Member, IEEE),
AND PETROS DARAS , (Senior Member, IEEE)
Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece

Corresponding author: Thomas Theodoridis (tomastheod@iti.gr)

This work was supported by the European Commission (TeNDER, affecTive basEd iNtegrateD carE for betteR Quality of Life) under
Grant 875325.

ABSTRACT Most of the established neural network architectures in computer vision are essentially
composed of the same building blocks (e.g., convolutional, normalization, regularization, pooling layers,
etc.), with their main difference being the connectivity of these components within the architecture and not
the components themselves. In this paper we propose a generalization of the traditional average pooling
operator. Based on the requirements of efficiency (to provide information without repetition), equivalence
(to be able to produce the same output as average pooling) and extendability (to provide a natural way
of obtaining novel information), we arrive at a formulation that generalizes average pooling using the
Zernike moments. Experimental results on Cifar 10, Cifar 100 and Rotated MNIST data-sets showed that the
proposed method was able to outperform the two baseline approaches, global average pooling and average
pooling 2× 2, as well as the two variants of Stochastic pooling and AlphaMEX in every case. A worst-case
performance analysis on Cifar-100 showed that significant gains in classification accuracy can be realised
with only a modest 10% increase in training time.

INDEX TERMS Neural networks, pooling, Zernike moments, image classification.

I. INTRODUCTION
Since the introduction of the AlexNet architecture [1] and the
wide-ranging impact that it had on computer vision, research
in this field has been progressing at an ever-increasing pace,
with new architectures being proposed every year. The ZFNet
architecture proposed in [2] was an improved version of
AlexNet, guided by feature visualization through the use
of a deconvolutional network. The Inception architecture
(GoogLeNet) [3] was built using stacks of inception modules.
The core idea behind the inception module is the parallel
processing of its input through four distinct paths that are
finally combined. The first path consists of a 1 × 1 convo-
lutional layer, the second consists of a 1 × 1 convolutional
layer followed by a 3 × 3 one, the third by a 1 × 1 followed
by a 5 × 5, while the last one consists of a 3 × 3 max
pooling layer followed by a 1 × 1 convolutional layer. The
VGG network [4] had a straightforward architecture, with a
series of convolutional layers with small 3×3 receptive fields

The associate editor coordinating the review of this manuscript and

approving it for publication was Seyedali Mirjalili .

followed by max pooling layers and three fully-connected
layers at the end. Residual networks (ResNets) [5] introduced
shortcut connections every few layers in the architecture and
showed that it is possible to train a considerably deeper
network with this architecture compared to previous works,
reaching up to 1202 layers. Wide residual networks (WRNs)
[6] increased the number of features in convolutional layers
and decreased the overall depth of the network compared
to ResNets. DenseNets [7] improved on the idea of short-
cut connections by using the output of a network layer as
input to all subsequent layers. This dense connectivity pat-
tern among the network layers allows gradients to propagate
more easily and encourages feature reuse. Neural architecture
search [8] comprised an interesting approach towards neural
network architecture design, with a controller RNN being
trained with reinforcement learning in order to generate accu-
rate model architectures for specific tasks. The drawback,
however, with this approach was the extremely high compu-
tational cost. As an evolution of the last approach, Efficient-
Nets [9] were obtained through a neural architecture search
for a baseline model, which can then be efficiently scaled up

121128 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2955-7331
https://orcid.org/0000-0002-6268-3893
https://orcid.org/0000-0003-3604-9685
https://orcid.org/0000-0003-3814-6710
https://orcid.org/0000-0002-1443-9458

T. Theodoridis et al.: Zernike Pooling: Generalizing Average Pooling Using Zernike Moments

using a specific ratio among its width, depth and resolution
attributes.

This progress over the last decade resulted in considerable
improvements in model inference accuracy and architecture
efficiency, both in terms of parameters and computational
cost. The novelty of the different network designs, however,
was mostly the result of individual choices regarding the
depth of the architecture, the connectivity pattern of the net-
work components as well as the parameter values of these
components, such as the receptive field of convolutional
layers. The core network components themselves, such as
the convolutional and pooling layers, have remained essen-
tially the same across all of the aforementioned architec-
tures. Although there have been efforts towards improving
convolutional [10] and pooling [11] layers, this research
domain has received far less attention from the research
community.

This work focuses on improving one of the core network
components, the pooling layer. Given that pooling layers
a) are ubiquitous in network architectures used in computer
vision and b) act as a mechanism of summarizing the infor-
mation within the region of pooling, being able to improve
them so they could retain more information from each pool-
ing region would be beneficial for the overall performance
of the architecture. To this end, we propose in this paper
a generalization of the average pooling operator using the
Zernike moments [12]. We selected these moments based on
the following requirements:

1) Efficiency. Zernike polynomials, and by extension
Zernike moments, are by construction orthogonal
to each other. This means that each additional
higher-order moment contributes information that can-
not be obtained by previous ones. This property makes
the proposed method efficient.

2) Equivalence. The first Zernike moment (A0,0) com-
putes the average value of the region it is applied
to. Therefore, the proposed method provides a way
of adjusting its behaviour so that it is equivalent to
traditional average pooling.

3) Extendability. Higher-order Zernike moments
(e.g., A1,1,A2,0,A2,2, etc.) constitute a natural way
of extending average pooling and providing novel
information.

Furthermore, an additional benefit of these moments is that
they retain the property of being rotation invariant, like aver-
age pooling, across all higher-order moments when their
magnitudes are used.

Following is a brief explanation of how the proposed
method works. Assuming that Zernike pooling is used in
place of global average pooling, each Zernike polynomial
needed for the chosen order is multiplied element-wise
(Hadamard product) with the input feature map. Then,
the resulting representation is averaged individually for each
channel, eliminating the spatial dimension of the input, and its
magnitude is computed. This produces a feature vector with
the same number of channels as the input featuremap. Finally,
the feature vectors produced by all needed polynomials are

concatenated in order to produce the output of our method.
The proposed method outperforms traditional global average
pooling bymore than 1.9% and 1.3% inCifar-100when using
different DenseNet variants.
The rest of this paper is organized as follows: Section II

provides an overview of related works regarding extensions
of the pooling operation and the use of Zernike moments in
computer vision. In Section III the mathematical formula-
tion of the proposed method is presented. The experimen-
tal evaluation of our method is presented in Section IV.
In Section V the limitations of our method are presented.
Finally, in Section VI conclusions are drawn.

II. RELATED WORK
A. ZERNIKE MOMENTS
Zernike moments [12] are well-known in the field of pattern
recognition due to their desirable properties, such as the
rotation invariance of their magnitudes.Most commonly, they
have been applied directly to input images, in order to obtain
suitable representation for reconstruction and recognition
purposes.
Khotanzad and Hong [13] utilized the Zernike moments as

image representations which are invariant to rotation, scale
and translation. Paired with a nearest-neighbor (NN) classi-
fier, the Zernike representations achieved an almost perfect
classification score when applied to a binary image data-set
consisting of scaled, translated and rotated upper case English
characters, as well as to binary images depicting aerial views
of four different lakes under various orientations.
Kan and Srinath [14] compared both Zernike moments

and orthogonal Fourier-Mellin moments as image descrip-
tors for the task of English character recognition from
binary images. Experimental results under two different
pre-processing schemes showed that Zernike moments
performed better when samples were normalized for
size, slant and stroke, while orthogonal Fourier-Mellin
moments performed better in the stroke-only normalization
scheme.
Wu et al. [15] compared the performance of several types

of moments, such as Geometric, Zernike, Legendre, etc.,
on classifying binary images into 9 classes. In their frame-
work, each moment was applied twice, one directly on the
input images and then on the extracted features. The final
recognition step was performed by a SVM classifier. The best
performance out of all tested moments was achieved with the
Zernike ones.
Haddadnia et al. [16] proposed a human face recogni-

tion method based on image representations obtained from
pseudo-Zernike polynomials. First, their method performs
human face localization so that only relevant parts of the
images are taken into account during feature extraction. Next,
pseudo-Zernike moment invariant features from these parts
are obtained. Finally, these features are processed by a radial
basis function (RBF) neural network classifier. Experimental
results on the ORL face database indicated a recognition rate
above 99%.

VOLUME 9, 2021 121129

T. Theodoridis et al.: Zernike Pooling: Generalizing Average Pooling Using Zernike Moments

Vretos et al. [17] employed Zernike moments for
3D facial expression recognition from depth images. To this
end, the initial 3D face point clouds were first converted
into depth images. A feature representation consisting of
order 20 Zernike moments was then extracted from these
images and was used in order to train a support vector
machine (SVM) classifier to recognize facial expressions.
The reported recognition results were 73% and 61% for the
BU3DFE and Bosphorus data-sets.

Tahmasbi et al. [18] proposed a computer-aided diagnosis
system for classifying benign and malignant breast masses
based on Zernike moments. Suspect regions of interest are
extracted from mammograms and processed in order to
obtain a binary image containing the mass shape, as well
as a gray-scale image which contains the mass margin.
Zernike moments were used for extracting relevant features
from these images, which were subsequently processed by a
multi-layer perceptron classifier.

A method for the early diagnosis of Alzheimer’s dis-
ease was proposed by Gorji and Haddadnia [19] based on
pseudo-Zernike moments. In order to distinguish people with
mild cognitive impairment from Alzheimer’s disease and
healthy control groups, pseudo-Zernike moments of order
30 were used for extracting relevant information from mag-
netic resonance images. These features where then processed
by a feed-forward fully-connected classifier.

Zhang et al. [20] employed pseudo-Zernike moments for
the task of pathological brain detection. Moments of order 19
were used for extracting relevant information from brain
images, processed by a support vector machine classifier with
an RBF kernel. Experimental results on 3 data-sets showed
sensitivity and specificity scores above 98%.

B. POOLING
Zeiler and Fergus [11] replaced the conventional determin-
istic pooling operation with a stochastic procedure, whereby
the activation within each pooling region is randomly chosen
according to the probability distribution formed by normaliz-
ing the activations within this region. At test time, the authors
noted that this procedure introduces noise and degrades
performance, so the expected activation was used instead,
i.e., the weighted average of the activations in the pooling
region, with the weights being the aforementioned probabili-
ties. It is worth noting that this approach is parameter-free.

Yu et al. [21] proposed a mixed pooling scheme which
combines max and average pooling operations in a stochastic
manner. During training, a binary randomvariable determines
which of the two operators (max or average) is active for
each feature map during each forward pass and a counter
measures how many times each of the two was activated.
Since similar issues to [11] were observed during evaluation,
the layer becomes deterministic during testing, by choosing
the operator with the highest count during training. The
authors note that this mixed pooling scheme is beneficial
for reducing over-fitting. This method also introduces no
additional parameters.

Lee et al. [22] proposed two strategies for generalizing
traditional pooling operations. The first one is similar to [21],
with the difference that the mixing ratio between average and
max pooling is now a learnable parameter between 0 and 1.
The second strategy makes use of the first one, but instead
of mixing predefined pooling functions, the functions them-
selves are also learned.

An interesting rank-based pooling approach was proposed
by Shi et al. [23] in the form of three variants, depending on
the pooling method: average, weighted and stochastic. In the
case of rank-based average pooling, the method computes
the average of the top t highest activations. When t equals
the pooling region size, it corresponds to average pooling,
while a value of t = 1 results in max pooling. In the cases
of rank-based weighted and stochastic pooling, the rank of
each element determines the probability pi assigned to it.
Simon et al. [24] proposed α-pooling, a generalization of

average and bilinear pooling methods. The pooling strategy
is controlled by parameter α, which is jointly optimized with
the rest of the network architecture during training. A value
of α = 1 corresponds to average pooling, while α = 2 is
equivalent to bilinear pooling.

Stochastic spatial sampling (S3Pool), proposed by
Zhai et al. [25], is a variation of the deterministic max pooling
operation, where the activations inside a pooling region are
still based on themax operator, but the downsampling process
is stochastic. During inference the process is substituted by
average pooling.

Saeedan et al. [26] proposed detail-preserving pooling
(DPP), a pooling method with learnable parameters that
rewards differences in the input activation values. Two
variants were tested in terms of reward, one that pre-
serves all details and one that preserves only details with a
higher-than-average activation. Based on the ResNet-101 and
VGG-16 architectures, the increase in parameters that this
method introduced was 43k and 18k respectively, while the
computational cost was +5% and +20%.
Zhang et al. [27] proposed a smooth, non-linear pooling

function (AlphaMEX) which adjusts its behaviour based on
the value of a controlling parameter α. For α = 0 the function
outputs the minimum value within the pooling region, for
α = 1/2 the average value and for α = 1 the maximum
value. Parameter α was added to the learnable parameters of

the network architecture, biased to lie within
(
1
2 , 1

)
.

As an alternative to traditional spatial pooling methods
which operate on N × N square regions, Hou et al. [28]
proposed strip pooling which operates on long but narrow
regions N × 1 and 1 × N . The output of the horizontal and
vertical pooling modules is combined in order to obtain the
final representation.

Spatial pyramid pooling, introduced by Grauman and Dar-
rell [29] and Lazebnik et al. [30], and popularized in deep
neural networks for computer vision by He et al. [31], par-
titions feature map responses into a number of spatial bins
of different sizes. Bin sizes are proportional to the input

121130 VOLUME 9, 2021

T. Theodoridis et al.: Zernike Pooling: Generalizing Average Pooling Using Zernike Moments

feature map size and their number is fixed, producing in this
way feature vectors of standard dimensions regardless of the
input spatial dimension. Chen et al. [32], [33] combined this
idea with atrous convolutions of different rates in order to
capture information at multiple scales. Another variation of
the pyramid pooling idea was proposed by Huang et al. [34],
where the output representations are not converted into a fea-
ture vector but are instead concatenated while retaining their
spatial dimension in order to produce the final representation.

Expansion downsampling scaling (EDS) pooling was pro-
posed by Singh et al. [35] in order to minimize the infor-
mation discarded using traditional pooling approaches such
as max and average pooling. EDS first increases the number
of input channels, while simultaneously reducing the input
spatial dimension (expansion and downsampling). Then it
utilizes a learnable scaling process in order to adjust the
importance of the extracted features.

Williams and Li [36] proposed wavelet pooling, a novel
pooling approach that uses wavelets to reduce the spa-
tial dimension of feature maps, in contrast to traditional
neighbour-based approaches. The method performs a second
order decomposition in the wavelet domain and constructs the
reduced representation using only the second order wavelet
subbands, while discarding the first order fine-scale coeffi-
cients.Wolter andGarcke [37] improved upon the idea of [36]
by introducing adaptive and scaled wavelet pooling, which
outperformed the former method in all experiments.

Finally, the survey of Akhtar and Ragavendran [38] on this
topic provides a breakdown of the various pooling methods
into general categories, as well as detailed explanations and
illustrations.

III. METHOD DESCRIPTION
The general description and mathematical formulation of
Zernike moments is presented in subsection III-A, while in
subsection III-B the proposed method for generalizing aver-
age pooling is presented.

A. ZERNIKE MOMENTS
In the general continuous case, the complex Zernikemoments
of order n with repetition m of a function f (r, θ) are defined
on the unit disc as follows:

An,m =
n+ 1
π

∫ 2π

0

∫ 1

0
f (r, θ)Z∗n,m(r, θ)r drdθ, (1)

where (r, θ) are defined over the unit disc, n ∈ N and m ∈ Z,
such that the following conditions hold:

n− |m| is even, |m| ≤ n (2)

Zn,m(r, θ) represents the Zernike polynomial of order n
with repetition m and is defined (in polar coordinates) as:

Zn,m(r, θ) = Rn,m(r)exp(i · m · θ), (3)

where i =
√
−1 and Rn,m(r) is the orthogonal radial polyno-

mial defined as:

Rn,m(r) =

n−|m|
2∑

s=0

(−1)s(n− s)!

s!(n+|m|2 − s)!(n−|m|2 − s)!
rn−2s (4)

Rn,m(r) = Rn,−m(r) and it must be noted that if the
conditions in (2) are not met, then Rn,m(r) is equal to 0.

In the discrete case, let I be a matrix with spatial dimension
M × N (without loss of generality, in the rest of this work
we will refer to I as matrix, image or feature map inter-
changeably, despite the fact that the last two areM × N ×D
tensors, since the process is applied to each channel D inde-
pendently). I (k, j) represents the value of thematrix located at
position (k, j). Then, the Zernike moments are defined as:

An,m =
n+ 1
π

M−1∑
0

N−1∑
0

I (k, j)Z∗n,m(r, θ) (5)

where Z∗n,m(r, θ) is the complex conjugate of Zn,m(r, θ) and
the discrete polar coordinates are given as:

rk,j =
√
x2j + y

2
k ,

θk,j = arctan
(yk
xj

)
(6)

while xj and yk are computed in the following way:

xj = c+
j · (d − c)
N − 1

yk = c−
k · (d − c)
M − 1

(7)

The numbers c and d are equal to −1 and 1, respectively,
in the case ofmapping amatrix outside of the unit circle (parts
of the matrix are not mapped), while they are equal to−1/

√
2

and 1/
√
2, respectively, in the case of mapping the matrix

inside the circle (the circle circumscribes matrix I).
Zernike moments can also be used in order to reconstruct

matrix I :

Î (r, θ) =
nmax∑
n=0

∑
m

An,mZn,m(r, θ) (8)

where Î (r, θ) is the reconstructed matrix and nmax is the
maximum order of the moments used for the reconstruction
process. The reconstruction Î can come arbitrarily close to the
original I as nmax →∞.

B. ZERNIKE POOLING
Assuming tensor I ∈ RM×N×D represents a real-valued
image or feature map with M rows, N columns and D chan-
nels, by utilizing an appropriate radius for its projection
onto the Zernike basis functions (such that the unit circle
circumscribes it, as mentioned in III-A), the Zernikemoments
of order n are calculated using Equation (5). The resulting
representation is:

I ′[n] =
[
|An,m1 | . . . |An,mω |

]
∈ RD×ln (9)

VOLUME 9, 2021 121131

T. Theodoridis et al.: Zernike Pooling: Generalizing Average Pooling Using Zernike Moments

where | . . . | denotes the magnitude, [. . .] denotes concate-
nation and ln denotes the number of order n moments that
exist. In other words, I ′[n] represents the concatenation of the
magnitudes of all ln moments of order n into a single matrix
of size D × ln. Consequently, in order to represent tensor I
with Zernike moments up to order n, the magnitudes of all
moments up to n are concatenated:

I ′n =
[
I ′[0]I

′

[1] . . . I
′

[n]
]

=
[
|A0,0||A1,1| . . . |An,m1 | . . . |An,mω |

]
∈ RD×Ln (10)

where Ln = l0 + · · · + ln. It is evident that the size
of representation I ′n increases by ln+1 for each additional
order n+ 1.

Finally it is worth noting that the aforementioned rep-
resentation I ′n can be used to describe the whole feature
map I or just smaller spatial regions therein. The first case
would be similar to the global average pooling operation,
while the second one would correspond to per-region average
pooling.

IV. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SET-UP
The proposed pooling method was evaluated on the
Cifar-10, Cifar-100 [39] and Rotated MNIST data-sets [40].
Cifar consists of 60000 colour images of size 32 × 32,
split into 50000 images for training and 10000 for test-
ing. As indicated by the name, images in Cifar-10 belong
to 10 classes, while in Cifar-100 to 100. Rotated MNIST is
a heavily modified version of MNIST, where each digit was
randomly rotated by θ ∈ (0, 2π) radians. Since this data-set
is split into 12000 images of size 28 × 28 for training and
50000 for testing, it provides an opportunity to evaluate
the generalization performance of our method under limited
training data.

Two variants of the DenseNet [7] architecture were
employed in our experiments, DenseNet-40 (1M params)
and DenseNet-22 (300K params), in order to assess the
effectiveness of Zernike pooling on architectures of different
sizes. The global average pooling (GAP) layer within each
network, placed before the fully-connected classifier, was
replaced by global Zernike pooling (GZP), thus utilizing
the proposed pooling layer only once in each architecture.
Since the concatenation formulation (Eq. 10) was used for
the Zernike moments, an input feature map with D chan-
nels would increase in size to D × Ln after Zernike pool-
ing. Therefore, a second baseline approach was created by
replacing global average pooling with 4× 4 average pooling,
in order to produce a feature map of size 2 × 2 × D, which
was finally reshaped to 4 × D. This approach was named
average pooling 2 × 2 (AP2) and corresponds, in terms of
overall network parameters, with order 2 Zernike pooling
(GZP2). In addition to these baselines, we also implemented
two variants of Stochastic pooling [11] for comparison pur-
poses. The first one (SP) follows the approach of [11], while

the second is similar to our baselines, i.e. global Stochastic
pooling (GSP) replaces global average pooling in the archi-
tecture. Since the activations reaching the pooling layers in
DenseNets cannot be assumed to be positive, as was the case
in [11], they are converted into probabilities using the softmax
function. Finally, results from [27] (AlphaMEX pooling) are
also reported in the DenseNet-40 case for comparison.

All networks were trained using stochastic gradient
descend (SGD) with an initial learning rate of 0.1 and a
momentum of 0.9. Learning rate was divided by 10 after 50%
and 75% of the total training epochs had elapsed. In the case
of the smaller DenseNet-22 architecture the total number of
training epochs was scaled by 0.66, resulting in 200 epochs
on Cifar and 66 on Rotated MNIST, while DenseNet-40 was
trained for 300 and 100 respectively. Batch size was set
to 64 and no data augmentation process was used.

B. EXPERIMENTAL RESULTS
1) EVALUATION OF DIFFERENT ORDERS FOR ZERNIKE
POOLING
In order to evaluate the impact of using different orders
for Zernike pooling in terms of accuracy and training time,
we provide experimental results on Cifar 100 with both
architectures in Table 1, using moments up to order 4. It is
worth noting that the choice of Cifar 100 for this evalua-
tion, the most demanding data-set of the three, constitutes a
worst-case scenario for our method in terms of parameters
and time, since the concatenation formulation for Zernike
moments (Eq. 10) is combined with a high number of output
classes.

TABLE 1. Classification results on Cifar 100 with the DenseNet-22 and
DenseNet-40 architectures using higher-order moments for Zernike
pooling.

In the case of DenseNet-22, we see that GZP1 provided
a significant increase in performance compared to GAP
with only a 5% increase in training time, while a further
improvement was observed with GZP4, reaching an accuracy
of 69% with an increase of 18% in training time. We also
tested 5th order moments, but they resulted in signifi-
cant over-fitting to the training data. In the case of the
DenseNet-40 architecture, GZP1 provided a 0.69 improve-
ment in accuracy for a 4% increase in training time
compared to GAP. 2nd order moments doubled the perfor-
mance improvement offered by the previous ones, reaching
a 73.66% accuracy with an increase of 7% in training time.
Higher-order moments provided similar performance with
up to a 13% increase in training time. Based on these findings,

121132 VOLUME 9, 2021

T. Theodoridis et al.: Zernike Pooling: Generalizing Average Pooling Using Zernike Moments

Zernike moments up to order 2 were chosen for the compari-
son with other pooling methods, as they offer a good trade-off
between accuracy gain and increase in training time.

The train and test loss curves of the GAP, GZP2 and GZP4
methods with the DenseNet-40 architecture on Cifar 100 can
be seen in Figure 1. As we can observe, the train loss curves
of GZP2 and GZP4 immediately drop below the GAP one
at the beginning of training and remain at this configuration
(GZP4 < GZP2 < GAP) until the end of training. The test
loss curves follow a similar pattern, but their behaviour can
be observed more clearly after the first learning rate decrease
at epoch 150. These results, in combination with the classi-
fication results of Table 1, indicate that the proposed method
is able to extract novel information from the input features
compared to GAP, which in turn is translated into higher
classification accuracy. When comparing GZP4 to GZP2,
we observe that the additional information offered by the two
extra moments could not be translated into higher classifica-
tion accuracy in this instance. Instead, it was translated into
larger classification margins.

FIGURE 1. DenseNet-40 train and test losses on Cifar 100 using
GAP (blue), GZP2 (orange) and GZP4 (red).

2) EVALUATION OF POOLING METHODS
Experimental results with the DenseNet-40 architecture are
presented in Table 2. GAP [7] denotes results reported by
Huang et al., while GAP denotes our evaluation of the same
method. Starting off with Cifar-10, the proposed Zernike
pooling with up to order 1 moments (GZP1) achieved an
accuracy of 93.65, finishing ahead of GAP by 0.31, sur-
passing GSP and SP by 0.79 and 1.4 respectively, as well
as AlphaMEX by 0.19. Results in the more challenging
Cifar-100 data-set follow a similar pattern, but differences
among the methods grew wider here. GZP2 managed to
outperform GAP by 1.32 and AlphaMEX by 0.9, achiev-
ing an overall score of 73.66. The difference to SP and

TABLE 2. Classification results on Cifar 10, Cifar 100 and Rotated
MNIST with the DenseNet-40 architecture.

GSP grew substantially here, to more than 4 and 6 accu-
racy points respectively. In Rotated MNIST GZP2 provided
an improvement of 1.53, 1.86, 3.73 and 4.35 compared to
GAP, SP, GSP and AP2 respectively, reaching an accuracy
of 97.85.

Regarding the effectiveness of Zernike pooling on
smaller architectures, Table 3 summarizes the results for
the DenseNet-22 case. GZP1 is ahead of GAP by 0.14,
AP2 by 0.64 and surpasses SP and GSP by more than 1
point in Cifar-10. The performance advantage of our method
in Cifar-100 increases substantially, reaching 1.36, 1.84,
4.57 and 12.64 higher than GAP, AP2, SP and GSP. In the
case of Rotated MNIST, GZP1 was 0.58 ahead of AP2 and
1.53 ahead of GAP. Compared to SP and GSP it achieved an
improvement of 2.87 and 5.53 respectively. GZP2 improved
upon the first order results by 0.19 in Cifar-10 and by 0.07
in Rotated MNIST, while it performed slightly worse in
Cifar-100 (−0.19). These results are in accordance with the
DenseNet-40 case, indicating that Zernike pooling is effective
in both deep and shallow architectures.

TABLE 3. Classification results on Cifar 10, Cifar 100 and Rotated
MNIST with the DenseNet-22 architecture.

3) COMPUTATIONAL COMPLEXITY
In this section we analyze the time complexity of Zernike
and average pooling in order to complement the experimen-
tal results presented in Table 1, as well as to provide a
concrete understanding of the computational efficiency of
each algorithm (in terms of the number of performed oper-
ations) with respect to the input size. To this end, we make
use of the big-O notation [41]. Given functions f (n) and
g(n) from N −→ N, f (n) = O(g(n)) if there exists a
constant c such that f (n) ≤ cg(n) for n ≥ n0. Further-
more, in order to put the computational cost of the pool-
ing modules into perspective, we also compute the num-

VOLUME 9, 2021 121133

T. Theodoridis et al.: Zernike Pooling: Generalizing Average Pooling Using Zernike Moments

ber of floating point operations (FLOPs) performed by the
rest of the network components. Other works concerned
with the efficiency of deep neural networks [42]–[44] have
also employed similar metrics (FLOPs, fused multiply-adds,
etc.). In this work, we assume that multiplications and addi-
tions are not fused and that each basic operation and eval-
uation of elementary functions requires one floating point
operation.

Without loss of generality, we assume that the input fea-
ture map I ∈ RN×N×D for both pooling modules has
N rows and columns and D channels. In the case of Zernike
pooling, the Ln Zernike polynomials Z∗n,m ∈ CN×N needed
for order n pooling are also given to the network as input.
Regarding the time complexity of global average pooling,
for each channel D, we have to sum the values of I across
both spatial dimensions and then divide the result by the size
of the corresponding area. Therefore, for each channel D,
we have an inner complexity ofO(N 2), resulting in an overall
complexity of O(DN 2). Regarding the time complexity of
global Zernike pooling of order n, for each of the Ln Zernike
polynomials and for each channel D, we first compute the
Hadamard product between polynomial Z∗n,m and the input
feature map I , then, we compute the global average of the
resulting feature map, obtaining Zernike moment An,m, and
finally, we compute the magnitude of An,m. The first two
operations involve traversing allN×N elements of the corre-
spondingmatrices and performing basic operations, while the
last one involves basic operations and calculating the square
root of a single number. Therefore, the inner complexity is
dominated by O(N 2), resulting in an overall complexity of
O(LnDN 2). In the special case where order n is given (fixed),
Ln can be considered as a constant c and we can say that
both pooling methods belong to the same complexity class
of O(DN 2). Finally, it is worth mentioning that although the
steps performed by Zernike pooling involve complex num-
bers, and therefore require more operations to compute than
their real counterparts (e.g., complex multiplication requires
4 multiplications and 2 additions), nevertheless they still
belong to the same complexity classes as their real counter-
parts.

In order to better understand the computational cost of the
pooling modules in relation to the total number of floating
point operations (FLOPs) performed by the network, Table 4
shows the FLOPs of different network components for
two separate architectures (DenseNet-22 and DenseNet-40)
employed on Cifar 100. For each architecture, three different
settings are shown in the table. All three share the same
base model, which contains all network layers before global
pooling, and differ only in the pooling module used and
the final fully-connected (FC) layer, as Zernike pooling
affects the number of features reaching it. As we can see,
the operations performed by the base model account for more
than 99% of the total number of FLOPs performed by the
whole network in all cases, reaching as high as 99.98% in
the case of DenseNet-40 with GAP. Although not shown in
the table, the operations within the base model are dominated

TABLE 4. Number of floating point operations (FLOPs) for different
components of the DenseNet-22 and DenseNet-40
architectures on Cifar 100.

by convolutional layers, which account for more than 96%
of the total FLOPs of the network. Regarding the pooling
and fully-connected layers, the combination GAP + FC
contributes 0.02 − 0.04% to the total number of FLOPs,
GZP2 + FC contributes 0.24−0.44% depending on the archi-
tecture, while GZP4 + FC contributes 0.53% in the case of
DenseNet-40 and almost 1% in the case of DenseNet-22.
When comparing the difference in FLOPs between
DenseNet-22 with GAP and with GZP4, an almost 1%
increase in total FLOPs, and the recorded 18% increase in
training time for the same pair in Table 1, we see that the
added operations by Zernike pooling have a disproportionate
effect in training time. This indicates potential inefficien-
cies in our implementation of Zernike pooling that can be
improved. For instance, the calculation of each Zernike order
could be improved so that it runs in parallel, instead of
running sequentially after the previous order. This would
not affect the number of FLOPs, but would result in lower
overhead in training time.

V. LIMITATIONS
Regarding the limitations of the proposed method, although
the experimental results in Section IV showed that Zernike
pooling provides better performance than competing meth-
ods, the use of higher order moments does not always trans-
late to increased performance. Furthermore, there exists a
limit in the number of orders that can be effectively utilized
with the concatenation formulation, after which the network
starts to significantly over-fit to the training data if counter
measures are not employed.

Section IV also discussed the effect of Zernike pool-
ing in training time, showing an increase between 4%
and 18% depending on the order and network architecture.
When these results are considered together with the ones
of Table 4, they suggest an inefficiency in our implemen-
tation of Zernike pooling that could be improved in the
future.

VI. CONCLUSION
The focus of this paper was on improving one of the core com-
ponents of state-of-the-art architectures in computer vision,
the pooling layer. Based on the requirements of efficiency,

121134 VOLUME 9, 2021

T. Theodoridis et al.: Zernike Pooling: Generalizing Average Pooling Using Zernike Moments

equivalence and extendability, a novel pooling method was
proposed that generalizes average pooling using the Zernike
moments. Experimental results on Cifar-10, Cifar-100
and Rotated MNIST data-sets with the DenseNet-22
and DenseNet-40 architectures showed that the proposed
method was able to outperform the two baseline approaches,
GAP and AP2, as well as the two variants of Stochastic
pooling and AlphaMEX in every case. A time complexity
analysis of Zernike pooling showed that when the order n is
given, then both Zernike and average pooling belong to the
same complexity class of O(DN 2).

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[2] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer,
2014, pp. 818–833.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[4] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[5] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[6] S. Zagoruyko and N. Komodakis, ‘‘Wide residual networks,’’ 2016,
arXiv:1605.07146. [Online]. Available: http://arxiv.org/abs/1605.07146

[7] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[8] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforce-
ment learning,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2017,
pp. 1–16.

[9] M. Tan and Q. Le, ‘‘EfficientNet: Rethinking model scaling for convolu-
tional neural networks,’’ in Proc. Int. Conf. Mach. Learn. (ICML), 2019,
pp. 6105–6114.

[10] M. Weiler, F. A. Hamprecht, and M. Storath, ‘‘Learning steerable filters
for rotation equivariant CNNs,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 849–858.

[11] M. D. Zeiler and R. Fergus, ‘‘Stochastic pooling for regularization of
deep convolutional neural networks,’’ 2013, arXiv:1301.3557. [Online].
Available: http://arxiv.org/abs/1301.3557

[12] M. R. Teague, ‘‘Image analysis via the general theory of moments,’’ J. Opt.
Soc. Amer., vol. 70, no. 8, pp. 920–930, 1980.

[13] A. Khotanzad and Y. H. Hong, ‘‘Invariant image recognition by Zernike
moments,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 5,
pp. 489–497, May 1990.

[14] C. Kan and M. D. Srinath, ‘‘Invariant character recognition with Zernike
and orthogonal Fourier–Mellin moments,’’ Pattern Recognit., vol. 35,
no. 1, pp. 143–154, Jan. 2002.

[15] J. Wu, S. Qiu, Y. Kong, Y. Chen, L. Senhadji, and H. Shu,
‘‘MomentsNet: A simple learning-free method for binary image recog-
nition,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2017,
pp. 2667–2671.

[16] J. Haddadnia, M. Ahmadi, and K. Faez, ‘‘An efficient feature extraction
methodwith pseudo-Zernikemoment in RBF neural network-based human
face recognition system,’’ EURASIP J. Adv. Signal Process., vol. 2003,
no. 9, pp. 890–901, Dec. 2003.

[17] N. Vretos, N. Nikolaidis, and I. Pitas, ‘‘3D facial expression recognition
using Zernike moments on depth images,’’ in Proc. 18th IEEE Int. Conf.
Image Process., Sep. 2011, pp. 773–776.

[18] A. Tahmasbi, F. Saki, and S. B. Shokouhi, ‘‘Classification of benign
and malignant masses based on Zernike moments,’’ Comput. Biol. Med.,
vol. 41, no. 8, pp. 726–735, Aug. 2011.

[19] H. T. Gorji and J. Haddadnia, ‘‘A novel method for early diagnosis of
Alzheimer’s disease based on pseudo Zernike moment from structural
MRI,’’ Neuroscience, vol. 305, pp. 361–371, Oct. 2015.

[20] Y.-D. Zhang, Y. Jiang, W. Zhu, S. Lu, and G. Zhao, ‘‘Exploring a smart
pathological brain detection method on pseudo Zernike moment,’’ Multi-
media Tools Appl., vol. 77, pp. 22589–22604, Sep. 2018.

[21] D. Yu, H. Wang, P. Chen, and Z. Wei, ‘‘Mixed pooling for convolutional
neural networks,’’ in Proc. Int. Conf. Rough Sets Knowl. Technol. Cham,
Switzerland: Springer, 2014, pp. 364–375.

[22] C.-Y. Lee, P. W. Gallagher, and Z. Tu, ‘‘Generalizing pooling functions
in convolutional neural networks: Mixed, gated, and tree,’’ in Proc. Artif.
Intell. Statist., 2016, pp. 464–472.

[23] Z. Shi, Y. Ye, and Y. Wu, ‘‘Rank-based pooling for deep
convolutional neural networks,’’ Neural Netw., vol. 83, pp. 21–31,
Nov. 2016.

[24] M. Simon, Y. Gao, T. Darrell, J. Denzler, and E. Rodner, ‘‘Generalized
orderless pooling performs implicit salient matching,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 4960–4969.

[25] S. Zhai, H. Wu, A. Kumar, Y. Cheng, Y. Lu, Z. Zhang, and
R. Feris, ‘‘S3Pool: Pooling with stochastic spatial sampling,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4970–4978.

[26] F. Saeedan, N.Weber,M.Goesele, and S. Roth, ‘‘Detail-preserving pooling
in deep networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2018, pp. 9108–9116.

[27] B. Zhang, Q. Zhao, W. Feng, and S. Lyu, ‘‘AlphaMEX: A smarter global
pooling method for convolutional neural networks,’’ Neurocomputing,
vol. 321, pp. 36–48, Dec. 2018.

[28] Q. Hou, L. Zhang, M.-M. Cheng, and J. Feng, ‘‘Strip pooling: Rethinking
spatial pooling for scene parsing,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 4003–4012.

[29] K. Grauman and T. Darrell, ‘‘The pyramid match kernel: Discriminative
classification with sets of image features,’’ in Proc. 10th IEEE Int. Conf.
Comput. Vis. (ICCV), 2005, pp. 1458–1465.

[30] S. Lazebnik, C. Schmid, and J. Ponce, ‘‘Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,’’ in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2006,
pp. 2169–2178.

[31] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pool-
ing in deep convolutional networks for visual recognition,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916,
Sep. 2015.

[32] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

[33] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘‘Rethinking atrous
convolution for semantic image segmentation,’’ 2017, arXiv:1706.05587.
[Online]. Available: http://arxiv.org/abs/1706.05587

[34] Z. Huang, J. Wang, X. Fu, T. Yu, Y. Guo, and R. Wang, ‘‘DC-SPP-YOLO:
Dense connection and spatial pyramid pooling based YOLO for object
detection,’’ Inf. Sci., vol. 522, pp. 241–258, Jun. 2020.

[35] P. Singh, P. Raj, and V. P. Namboodiri, ‘‘EDS pooling layer,’’ Image Vis.
Comput., vol. 98, Jun. 2020, Art. no. 103923.

[36] T. Williams and R. Li, ‘‘Wavelet pooling for convolutional neural net-
works,’’ in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–12.

[37] M. Wolter and J. Garcke, ‘‘Adaptive wavelet pooling for convolu-
tional neural networks,’’ in Proc. Int. Conf. Artif. Intell. Statist., 2021,
pp. 1936–1944.

[38] N. Akhtar and U. Ragavendran, ‘‘Interpretation of intelligence in CNN-
pooling processes: A methodological survey,’’ Neural Comput. Appl.,
vol. 32, no. 3, pp. 879–898, Feb. 2020.

[39] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features
from tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep.,
2009.

[40] Rotated MNIST Data-Set. Accessed: Aug. 8, 2021. [Online]. Avail-
able: https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/
variations-on-the-mnist-digits

[41] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

[42] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient convnets,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2017,
pp. 1–13.

VOLUME 9, 2021 121135

T. Theodoridis et al.: Zernike Pooling: Generalizing Average Pooling Using Zernike Moments

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, N. A. Gomez,
L. Kaiser, and P. Illia, ‘‘Attention is all you need,’’ in Proc. Conf. Neural
Inf. Process. Syst. (NIPS), 2017, pp. 5998–6008.

[44] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

THOMAS THEODORIDIS received the bach-
elor’s (B.Sc.) degree in mathematics and the
master’s (M.Sc.) degree in web science from the
School of Mathematics, Aristotle University of
Thessaloniki, Greece. He has participated in five
European projects as a Researcher. His research
interests include pattern recognition, computer
vision, neural networks, human action recognition,
and complex systems.

KOSTAS LOUMPONIAS received the B.Sc.
degree in mathematics, and the M.Sc. and Ph.D.
degrees in statistics from the School of Mathemat-
ics, Aristotle University of Thessaloniki, Greece,
in 2013, 2015, and 2020, respectively. He is
currently working as a Postdoctoral Researcher
with the Centre for Research and Technology
Hellas. His main research interests include hidden
states estimation with censored data, social net-
work analysis, and neural networks.

NICHOLAS VRETOS (Member, IEEE) received
the B.Sc. degree in computer science from the Uni-
versity Pierre et Marie Curie (Paris VI), in 2002,
and the Ph.D. degree from the Aristotle Univer-
sity of Thessaloniki, in 2012. He is currently a
Researcher at VCL/ITI-CERTH. He worked in
twelve European projects as a Technical Man-
ager/WP Leader/Researcher. He has published
more than 70 articles in scientific journals and
conference proceedings and a book chapter. He has

committed as a reviewer for several journals and conferences in the field
of image and video processing. His main interests include image and video
processing, semantic analysis, neural networks, and 3-D data processing.

PETROS DARAS (Senior Member, IEEE)
received the Diploma degree in electrical and
computer engineering and the M.Sc. and Ph.D.
degrees in electrical and computer engineering
from the Aristotle University of Thessaloniki,
Greece, in 1999, 2002, and 2005, respectively.
He is currently a Research Director and the Chair
of the Visual Computing Laboratory, Information
Technologies Institute. He has been involved in
more than 50 projects, funded by the EC and the

Greek Ministry of Research and Technology. His main research interests
include visual content processing, multimedia indexing, search engines,
recommendation algorithms, and relevance feedback. His involvement with
those research areas has led to the coauthoring of more than 300 articles in
refereed journals and international conferences.

121136 VOLUME 9, 2021

