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ABSTRACT

This paper presents a new method for segmentation of am-
biguously defined structures, such as the hippocampus, by
exploiting prior knowledge from another perspective. An ex-
pert’s experience of where to use prior knowledge and where
image information, is captured as a local weighting map. This
map can be used to locally guide the evolution in a level set
evolution framework. Such a map is produced for every train-
ing image using Graph-cuts to calculate the most suited bal-
ance of current and prior information. Training maps are op-
timally adapted on the test image, through non-rigid registra-
tion, producing the Optimum Local Weighting map, which
is anatomically the most suitable to this test image. Exper-
imental results demonstrate the efficacy and accuracy of the
proposed method.

Index Terms— Brain, MRI, medical image, segmenta-
tion, hippocampus, amygdala, multi-atlas, prior knowledge,
level sets, boundary gradient.

1. INTRODUCTION

Segmentation of deep brain structures from MR images, such
as the hippocampus, is of major importance in the study of
various mental disorders, since morphological differences
among healthy and diseased could be valuable disease mark-
ers. The hippocampus is located in the medial temporal lobe
and is a site of structural and functional pathology in men-
tal illnesses [7]. Manual segmentation of the hippocampus
from MR images is tedious, time-consuming, susceptible to
human errors, non-reproducible and expensive. These rea-
sons constitute the motivation for developing an automatic
segmentation tool.

Electronic noise, the bias field and the partial-volume
effect in MR imaging cause neighboring structures of similar
intensities to lack separating borders. The hippocampus-
amygdala complex demonstrate this in Fig.1, since the miss-
ing and diffused boundaries between them cause erroneous
segmentation.

Fig. 1. (a) Brain MRI, highlighting the hippocampus and
amygdala region, (b) Hippocampus segmentation with the
Chan-Vese approach in red (black contour depicts the bound-
aries of hippocampus and amygdala), (b) Hippocampus seg-
mentation with the Chan-Vese and variational shape prior.

Many studies have been conducted offering various tech-
niques on hippocampus segmentation. The two major classes
of methods are the multi-atlas based [12, 1, 8] and the Ac-
tive Contour Models based [6, 9]. ACMs, offer a handy
mathematical formulation, since implicit representation of
structures and evolution through the use of level sets, can
solve the correspondence problem during alignment [15].
Methods based on ACMs are broadly divided into two cat-
egories, the edge and the region-based methods. The Ge-
ometric Active Contour model (GAC) [4], one of the most
popular edge-based methods, utilizes an edge-stop function.
However, this method has proved inefficient for noisy im-
ages, depicting structures with weak boundaries. On the
contrary, region-based ACMs use intensities’ statistical in-
formation. The Chan-Vese model [5], which is based on the
Mumford segmentation framework [13], is the most widely
used region-based method, able to detect objects with weak
boundaries. Nonetheless, for the purpose of anatomical im-
age segmentation, both ACMs share a serious drawback:
they lack anatomical information about structures undergoing
segmentation. Contour evolution depends solely on current
information, i.e. extracted from the test image. Addressing
this, Leventon et al. presented one of the most influential
works [11], by modeling anatomical information, through the
use of a statistical shape-prior model, and incorporating it
into the segmentation framework. The same approach was
later adopted by Yang et al. in [18], and extended to include
a statistical neighbor-prior model.

These methods and their descendants [20, 21, 17] mainly



Fig. 2. The proposed method in a block diagram.

focused on ways of modeling prior knowledge, and neglected
to model how a human expert would utilize his/her experi-
ence. A human expert would rather trust the image informa-
tion on boundary regions with strong edges, and would use
his/her experience on the regions with weak edges. Hence,
a local weighting scheme seems to mimic more the human’s
understanding, contrary to a global one that is widely used.
The first attempt to model such prior knowledge was pre-
sented in [19], where the Gradient Distribution on Hippocam-
pus Boundary map (GDHB) was built, based on the gradient
values across the boundary of the hippocampus. GDHB de-
fines the extend one should trust the image or the prior infor-
mation, at every boundary location.

In this paper, we extend the GDHB concept and present
a new framework for defining a local weighting map. The
empirical GDHB information is now calculated through an
optimization procedure that tries to produce the most accu-
rate segmentation on the training set, compared to the ground-
truth, offering one Pseudo-Optimal Local Weighting map per
training image. Each POLW is adapted on the test image,
through a registration step. Merging all the adapted POLWs
offers the final, actually optimal weighting map, called OLW.

2. PROPOSED METHOD

A schematic representation of the proposed method is de-
picted in Fig.2. For each training image, a Pseudo Optimal
Local Weighting map (POLW) is defined by the use of graph-
cuts, by formulating the problem of finding a POLW as a la-
beling problem, where labels represent the extend to which
the image and prior terms contribute to the energy functional
for segmentation. This map is pseudo-optimal, because the
ground-truth label image is used to define the POLW. Graph-
cuts minimize an energy function that imposes minimum dif-
ference between the shape resulting from the evolution of the
level set for a training image at each iteration and the level set
function that represents the corresponding ground-truth seg-
mentation. Each training image is then both affine and non-
rigidly registered to the test. Regarding the registration step,
the demons algorithm [16] was preferred to tackle variation
in a more efficient way. The resulting transformation matrix
is used to further register the label images and the POLWs
of the training images. Averaging the registered labeled im-
ages results to L, the spatial distribution of the hippocam-
pus labels. A weighted average of the POLWs is computed,
weighted by the similarity between the gradient of the test im-

age and the gradient at a narrow-band around the contour of
the hippocampus of the registered training image. The result
is the final OLW.

The empirical spatial distribution map L, is used as prior
knowledge into a level set segmentation framework, where
OLW defines the optimal local balancer between the prior and
the image term.

2.1. Level set framework
An evolving curve C is defined, as an implicit representation
in the image domain Ω ∈ R2 , indicating the zero level set of
a signed distance function φ : R2 → Ω

C = {(x, y) ∈ Ω | φ(x, y) = 0} (1)

where φ(x, y) < 0 inside the contour C and φ(x, y) > 0
outside the contour C. The evolution of curve C in the pro-
posed method, is driven by the locally-weighted sum of the
two terms; the gray-level information of the image and the
prior knowledge of the spatial distribution of the hippocam-
pus labels, which have been extracted after the registration of
the labeled images.

EIm(M) = λ1

∫
Ω1

M ◦ |I(v)− cI1|2dv + λ2

∫
Ω2

M ◦ |I(v)− cI2|2dv

(2)

EPr(M) = v1

∫
Ω1

M ◦ |L(v)− cL1 |2dv+ v2

∫
Ω2

M ◦ |L(v)− cL2 |2dv

The image term is modeled as in [5] and equals EIm
in equations 2, where the operation ◦ notates the Hadamard
product (in [5] M equals the identity matrix). The prior term
EPr is modeled with the exact same way as the image term,
but instead of working in the image domain, the map L com-
puted by the spatial distribution of the hippocampus labels is
used [19]. The total energy is then calculated through the lo-
cal blending with OLW:

ETotal = EIm(OLW ) + EPr(1−OLW ) (3)

Towards minimizing the total energy (equation 3), the con-
tour’s C update becomes:

ϑφ

ϑt
= δε(φ)

[
µ div

(
∇φ
|∇φ|

)
− ν

−OLW ◦
(
λ1(I − c1)2 − λ2(I − c2)2

)
(4)

−(1−OLW ) ◦
(
v1(L− d1)2 + v2(L− d2)2

)]
where I is the test image, c1 and c2 are the average intensities
inside and outside the contour in I respectively, and similarly
d1 and d2 for L. λ1 and λ2, and v1 and v2, balance the im-
portance between the terms inside and outside the contour.

2.2. Calculating POLW through Graph Cuts
Graph cuts have been widely used as energy minimizers.
Hereby, the Maxflow algorithm is used [3, 2, 10], to mini-
mize an energy functional which allows the calculation of the
POLW for a given training image.

In the proposed formulation, to each voxel v a label fv
corresponds. Each voxel’s label fv maps to POLW(v), i.e.
the amount of contribution of the image term in the energy



(a) (b) (c) (d) (e) (f) (g) (h) (i)
Fig. 3. Non-rigid registration: (a) the test image, (b) a train image, (c) train image (b) registered to test image (a), (d) target
OLW of test image (a) - unknown, (e) POLW of training image (b), (f) registered (e) to (a), (g) ground-truth hippocampus mask
of (a) - unknown, (h) ground-truth of image (b), (i) registered (h) to (a).

model for that voxel. The range of fv is [0, 1] 1, thus the
amount of contribution of the prior term equals to 1− fv .

Given a training image A and its corresponding label im-
age B, which serves as the ground truth, the goal is to de-
fine an optimal labeling f, offering the respective POLW. That
POLW, when used in the level set framework, should con-
verge the evolution on the ground-truth. Thus, finding the
optimal labeling is equivalent to minimizing an energy func-
tional E(f) that requires the difference between i) the result-
ing zero level set by the use of the calculated POLW in the
segmentation framework, and ii) the zero level set extracted
by the corresponding ground-truth image, to be minimum.

According to graph cut theory, the energy functional can
be formulated as:

E(f) =
∑
v∈V

Dv(fv) +
∑

v∈V,q∈Nv
Vv,q(fv, fq) (5)

where V is the set of all voxels in A, Dv is the individual
voxel cost for voxel v, and measures how well label fv fits
for voxel v given the ground-truth image. Nv denotes the
set of neighboring voxels of v and Vv,q(fv, fq) is the inter-
action potential between voxels v, q that penalizes disconti-
nuities between neighboring voxels, thus encouraging spatial
coherence.

Dv =
ϑφ

ϑt
(fv)−GT (v) , Vp,q = min(K, |fp − fq|) (6)

where ϑφ
ϑt is given by equation (4) and GT stands for the

ground-truth zero level set.

2.3. Adapting POLWs through registration
Images of the hippocampus are characterized by severe vari-
ation among different subjects. It is therefore of significant
importance to define an OLW that is produced by an adaptive
way, instead of using a common one for all testing images.
Inspired by the multi-atlas concept, we consider as atlases not
only the labels of training images, but also the POLWs. These
atlases-POLWs will be subsequently combined to produce a
more efficient OLW for each test image based on its anatomy,
as in Fig. 5(a). It should be noted that multi-atlas was pre-
ferred over one single atlas, since this choice increases the
accuracy of the final result. POLWs are then registered and
merged through a weighted averaging.

1In terms of implementation, fv should be integer values and get
[0, 1, . . . , 100], which are then divided by 100.

OLW =
∑

i=1,..,n

si ·AtlasPOLWi (7)

where n is the total number of training images, and si rep-
resents the similarity between the test image’s gradient and
the gradient on a narrow band around the contour of the reg-
istered training image i. The similarity measure used is the
squared differences of the gradients. Fig.3 demonstrates the
registration process.

3. RESULTS

The proposed method was tested on 23 images taken from the
OASIS database [14]. Ground-truth images were provided
by a professional radiologist who manually segmented the 23
hippocampal volumes.

All experiments were conducted in a leave-one-out pro-
cedure at the central sagittal slice of each MRI. Our method’s
performance (abbreviated as GC-Reg) was evaluated by com-
paring with two other methods: the ancestor of this work, the
GDHB method and the Chan-Vese method with variational
shape prior (indexed as SP in the figures). SP indicates the
performance of [18], neglecting any neighbor prior, since this
work is focused purely on hippocampus segmentation. The
comparison results are presented in detail in Fig.4 and overall
in Table I, while the comparison metrics used are the undi-
rected distance error, the Hausdorff distance, precision vs re-
call and F1 a.k.a. Dice coefficient which measures set agree-
ment. Visualization of the segmentation results are provided
in Fig.5.

Table 1. Averaged Comparison Results
F1 Precision Recall Haussdorf Un. Ave.

GC-Reg 0.86 0.81 0.92 2.57 0.74
GDHB 0.83 0.84 0.83 3.29 0.82
SP 0.77 0.82 0.76 4.65 1.26

The experimental results demonstrate the superiority of
the proposed method, verified by all metrics, with the excep-
tion of precision. Even for extremely difficult cases, included
in the database, the proposed method produces very good re-
sults (Fig.5(e)). Results evidently verify that local weighting
alleviates the challenging task of hippocampus segmentation.
In addition, the use of OLW, clearly surpasses the empirical
GDHB.
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Fig. 4. In (a), (c) and (d), red line depicts the proposed method, green line the GDHB, and blue line the SP. (a) F1/Dice
Coefficient, (b) Precision-Recall (the lines connect the performance of the proposed method and the GDHB for the same
subject; the more close to the upper right corner the better), (c) Hausdorff distance and (d) Undirected average distance error.
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(a) (b) (c) (d) (e)
Fig. 5. (a) The OLW of (b). (b)-(e) Segmentation results: red line depicts the proposed method, green the GDHB, while black
the ground-truth, for subjects 1, 4, 14, 19, respectively.

4. CONCLUSIONS

This paper proposes a novel concept for calculating Opti-
mal Local Weighting maps by the use of graph cuts for a
set of training images. The OLWs are used to achieve op-
timal and local balance between the region-based and prior
energy terms incorporated in a serious number of segmenta-
tion frameworks presented until today, as well in ours. The
OLWs of the training images are subsequently combined in
an adaptive way by means of a multi-atlas approach in order
to produce an OLW for the target image that fits its anatomy.
The results validate the sophisticated proposed concept, while
demonstrate the superiority of the proposed method.
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