
BLENDING REAL WITH VIRTUAL IN 3DLIFE

K.C. Apostolakis*, D.S. Alexiadis*, P. Daras*, D. Monaghan•, N.E. O’Connor•, B. Prestele‡, P. Eisert‡,
G. Richard□, Q. Zhang†, E. Izquierdo†, M.B. Moussa↑, N. Magnenat -Thalmann↑

* Centre for Research and Technology - Hellas, Information Technologies Institute, Thessaloniki, Greece

• CLARITY: Centre for Sensor Web Technologies, Dublin City University, Ireland
‡ Fraunhofer HHI / Humboldt University, Berlin, Germany
□ Institut Telecom / Telecom ParisTech, Paris, France

† Multimedia and Vision Group (MMV), Queen Mary University, London, UK
↑ MIRALab, University of Geneva, Geneva, Switzerland

ABSTRACT

Part of 3DLife’s major goal to bring the 3D media Internet
to life, concerns the development and wide-spread
distribution of online tele-immersive (TI) virtual
environments. As the techniques powering challenging tasks
for user reconstruction and activity tracking within a virtual
environment are maturing, along with consumer-grade
availability of specialized hardware, this paper focuses on
the simple practices used to make real-time tele-immersion
within a networked virtual world a reality.

1. INTRODUCTION

Networked virtual environments oriented towards TI [1] [2]
[3] are becoming a frontier in social computing. Scientific
interest has been focused towards allowing users to fully
immerse themselves within the interactive experience, as the
boundaries between real and virtual are blurred. With the
introduction of consumer-grade devices such as Microsoft’s
Kinect sensor, striving to introduce real-time interaction
within immersive virtual environments to everyday average
users over the Internet, poses the next logical challenge in
the TI research frontier.

In this paper, research work towards achieving
immersion of users within a networked virtual world is
demonstrated. Within the scope of a collaborative dance
masterclass use case scenario, we showcase how users can
immerse themselves within the virtual environment as they
are being reconstructed in real time, or puppeteering a pre-
created virtual character (avatar). In both cases, skeleton
tracking algorithms collect data in real time, and a dance
comparison algorithm assesses comparative results between
the user’s current performance and a pre-recorded
choreography uploaded by another user, highlighting
environmental reaction to user intervention. The experience

Fig. 1. Screenshot of the integrated 3DLife application:
Reconstructed user interacts with a virtual character within an
immersive environment running in Google Chrome.

can further be enriched with additional effects, such as auto
stereoscopic rendering for glasses-free 3D display and
spatial 3D surround sound. All these are achieved by
connecting to a standard client-server network using just a
Kinect sensor and a web browser. A screenshot of the dance
studio use case scenario application developed for 3DLife
can be seen in Fig. 1.

The remainder of this paper is organized as follows:
Section 2 describes the collaborative dance masterclass use
case motivating the integration, while Section 3 summarizes
the minimum setup prerequisites. Real-time online 3D
reconstruction of users is covered in Section 4, a method for
avatar embodiment using skeleton tracking is presented in
Section 5 and integration of on-line dance evaluation
algorithm is explained in section 6. This paper concludes
with a brief overview on related topics of interest in Section
7, before final conclusions are drawn in Section 8.

2. COLLABORATIVE DANCE MASTERCLASS

In order to demonstrate how real-life interaction within a
virtual world can be achieved, a simple use case was devised
revolving around a fictional social network service

This work was supported by the European Commission under contract
FP7-247688 3DLife (http://www.3dlife-noe.eu/3DLife)

Fig. 2. Examples of reconstructed mesh point clouds rendered in
60 FPS running on Google Chrome web browser, a single Kinect,
the ZigFu browser plugin and Three.js 3D Library.

designed to help users improve their dancing skills with the
help of certified professionals. Users are able to create
accounts and identify themselves as either dance tutors or
dance students, allowing them to enter 3D virtual dance
scenes and try out simple dance routines, showcasing and
comparing their dance moves to other users sharing the
network. This use case succeeds in covering all research
aspects concerning the blending of real with virtual
interaction boundaries.

3. MINIMUM USER REQUIREMENTS

Along the proposed literature 3D tele-immersive systems [4]
[5], in this paper we demonstrate a cost-efficient, simple
approach in order to reach a wide audience of average users
and make 3D TI systems applicable in real-life situations.
The importance of such an off-the-shelf approach generates
a need to introduce consumer-grade devices to the pipeline,
lifting the burden of time-consuming external software
dependency installations. For the integrated demo, a
Microsoft Kinect sensor is required. Furthermore, in order to
allow communication of JavaScript client-based code with
the Kinect skeleton tracking libraries, the ZigFu browser
plug-in (available at http://zigfu.com/) is required.
Installation of this plugin is a familiar process that takes no
more than a couple of seconds, similar the installation of
other web browser plugins, such as Adobe’s Flash player.

4. REAL-TIME ON-LINE RECONSTRUCTION

In order to achieve real-time reconstruction of users over the
web, the Kinect sensor’s depth and color streams are used to
generate a colored 3D point cloud as described in [6], which
can then be placed inside the virtual scene. The Kinect depth
stream is represented as a 3-channel color video, obtained
through the ZigFu browser plugin, where the Least
Significant Byte (LSB) is encoded in the red channel

(,)
R
D u v and the Most Significant Byte (MSB) in the green

channel (,)
G
D u v . Namely, the depth value at pixel (,)u v is

given in mms by (,) 256 (,) 256 (,)
R G

D u v D u v D u v = ⋅ + ⋅   .

The depth map is masked by the user-tracking label map in
order to subtract background. For each nonzero pixel (,)u v

in the masked depth image (,)D u v , a 3D point (vertex)
T(,) [(,), (,), (,)]u v X u v Y u v Z u v=V is created. The Z

coordinate (depth) of each vertex is obtained from the depth
map, at the corresponding pixel (,)D u v . Afterwards, the 3D

point coordinates X and Y are calculated using the
standard pinhole camera model:

()
()

0

0

/

/
x

y

X u u Z f

Y v v Z f

= − ⋅

= − ⋅
,

where
0 0

(,)u v is the depth camera’s principal point and
x
f ,

y
f the depth camera’s focal length components. With each

vertex 3D position V known, re-projection to the Kinect
RGB camera can provide information on the vertex color.
The vertex V is initially transformed from the depth camera
to the RGB camera 3D coordinate system, according to
equation ' R= ⋅ +V V T , where the matrix R and vector
T represent the relative rotation and translation between the
two sensors. Then, re-projection of 'V to the Kinect RGB
camera using the (pinhole) RGB camera’s model, gives the
corresponding pixel on the RGB map, and the 3D vertex
color is retrieved.

All of the above calculations are performed on the GPU
using WebGL shaders. Compensating on the reconstruction
quality by reducing depth and color map resolution to
160x120 pixels, reconstruction over the web is achievable in
real-time with rendering performance reaching 60 FPS on a
mid-range PC. Examples of reconstructed meshes are shown
in Fig. 2.

5. AVATAR CONTROL VIA SKELETON TRACKING

A second milestone for user immersion within the virtual
scene alongside capturing and reconstruction, avatar
embodiment allows users to puppeteer a virtual character
created by an external authoring application. The process
requires that the character mesh is parented to an articulated
structure of control elements called bones. Bones can be
viewed as oriented 3D line segments that connect
transformable joints (such as a knee or shoulder). Avatar
embodiment within the collaborative dance masterclass use
case is achieved by allowing users to create avatars, rigged
with a pre-defined 17-joints hierarchy (similar to the
OpenNI joint tracking structure), as in [7].

For each frame, the OpenNI skeleton-tracking module
generates joint position and rotation data with respect to the
Kinect camera’s world coordinate system. However, since
the avatar skeletal rig generated using Blender 3D Modeling
application follows a hierarchical structure that requires
transformations to be applied in each joint’s local axis space
in relation to its parent, the data obtained by the skeleton
tracking module is translated to avatar skeletal animation
data using the following algorithm:

Fig. 3. Example of the avatar embodiment algorithm.

1. For each avatar rig joint , 1, ,17
i
i =J … , the bone

lengths , CH{ }c

i
L c i∈ to its first-level children joints

CH{ }i are calculated in the avatar rig hierarchy, along

with the corresponding unit vector directions

()/c

i c i c i
= − −d J J J J . These calculations are

performed once off-line, before tracking is initiated. For

notational simplicity, we drop the superscript c (referring
to the “children”), wherever it is implied.

2. For each tracking frame, the user’s joint positions
i
P

with respect to the camera’s world coordinate system are
given by the skeleton tracking algorithm.

3. The direction of each user-tracked bone is determined by

the unit-normalized vector () /i c i c i
= − −s P P P P ,

similar to the calculations made in the first offline step.
The result is then multiplied by its corresponding length

value
i
L , to ensure that all tracked joints are within pre-

defined avatar bone length distances of each other.

4. The axis of rotation
i
m is determined by calculating the

cross product
i i
×d s , while the angle of rotation is

calculated by 1cos ()
i i i
θ

−= ⋅d s , i.e. from the inner

product of
i
d and

i
s .

5. Avatar new joint position is set by traversing the joint
hierarchy from the parent joint and adding the

offset
i i
L ⋅ s . The local rotation quaternion loq

i
 is

calculated from the axis
i
m and the eigen-angle

i
θ . The

final rotation quaternion q
i

 is calculated by multiplying

the inverse rotation quaternion of the parent
pa

q

with loq
i

, i.e ()
1

lo

pa
q q q
i i

−

= ⋅ .

Actual animation is computed by traversing the avatar joint
hierarchy from its root and setting up the final skeleton pose.
A set of joint influences and corresponding weights are
applied onto each vertex of the mesh via skinning equations.

The resulting mesh resembles the virtual character
mimicking the user’s pose, as can be seen in Fig. 3. The
effect can also be applied with pre-recorded skeleton
tracking data as input, allowing virtual characters to
playback past recorded animations.

6. ON-LINE VIRTUAL DANCE EVALUATION

In order to support collaborative dance features of the
integrated 3DLife demo, and explore virtual environment
feedback on immersed user activities, a variant of the
automated dance evaluation algorithm described in [8] was
integrated onto the demo application. In a nutshell, the
employed algorithm makes use of quaternions to represent
the user’s joint position data relative to the skeletal hierarchy
root joint (Torso). An instantaneous evaluation score is
calculated for each frame, by computing the “all-joints”
quaternionic correlation coefficient, within the temporal
window of the last few frames.

A web-oriented implementation of the algorithm was
used to evaluate user real-time dance performance in
comparison to a pre-recorded choreography uploaded by
another user of the network. More specifically, user data is
placed within a FIFO queue, with a frame capacity of

150T∆ = frames (this corresponds to 5sec, considering
the Kinect’s frame rate 30fps). The same time window is
applied for consideration of pre-recorded teacher skeleton
data in the same time reference. Then:
1. The joint positions, relative to the Torso for both the

teacher and student are calculated, by subtracting from
each joint the Torso position. These positions are then
represented as “pure” quaternions and stored in
quaternionic matrices P(;)i t and Q(;)i t of sizes

17 T×∆ .

2. Additionally, the temporal mean quaternions P()i and

Q()i are calculated and subtracted, to produce the zero-

mean (along time) quaternionic matrices
�P(;) P(;) P()i t i t i= − and �Q(;)i t , respectively.

3. The “all-joints” quaternionic correlation coefficient is
now calculated from:

 P,Q

P,P Q,Q

|c |

c c
S =

⋅
,

 where

� �

� �

� �

P,Q
,

P,P
,

Q,Q
,

c P(;) Q(;)

c P(;) P(;).

c Q(;) Q(;)

i t

i t

i t

i t i t

i t i t

i t i t

= ⋅

= ⋅

= ⋅

∑

∑

∑

The resulting score value lies in the interval[0,1]. This

instantaneous scoring information can be utilized by

environmental assets, such as autonomous virtual tutors and
graphic displays, to notify users about their performance.

7. IMPLEMENTATION SPECIFICS

The following paragraphs provide a brief summary of the
techniques used to address some issues presented during the
development phase, concerning relative areas of interest.

7.1. Streaming Kinect data over the web

As the depth channel frames are represented as 3-channel
color video, and current web technologies only support
video data being subjected to considerable compression
(MP4, WebM and OGG), recording and streaming the
highly sensitive depth data stream will inevitably lead to
data corruption. To address this issue each depth frame is
encoded using a Base64 encoding scheme. Consecutive
frames are thus saved as an array of ASCII strings. A
Base64 decoder is similarly required on the client-side to
decode the string array and obtain the original depth image.
Similar techniques are used to preserve the quality of the
color and label map stream data. This method of storage is
practically lossless, and guarantees the preservation of the
depth data integrity, enabling uploading and downloading of
pre-recorded depth data for reconstruction. However the
resulting file data volume being stored onto a remote server
is analogous to the recording time and frame resolution. As a
counter-measure, all recordings within the integrated use
case scenario are limited to 1 min. 30 sec. per dance routine.

7.2. Auto-stereoscopic rendering

To further enhance modern 3D immersive experience, auto-
stereoscopic rendering post-processing effects can be
applied to the WebGL renderers, to support glasses-free 3D
wherever a specialized display is available. To this end, a
Three.js (http://mrdoob.github.com/three.js/) effect module
for rendering WebGL 3D content to the Tridelity MP 4210
auto-stereoscopic display was implemented and integrated
onto the demo. As the module applies the effect after the
scene has been rendered, real-time performance of the
rendering pipeline is not burdened.

7.3. Web 3D spatial sound

Complete immersion within the virtual environment requires
that the world is enriched with realistic surround audio.
Using 3D spatial sound adds an additional layer of realism
to the virtual scene, as users are able to identify where each
audio signal originated as well as their proximity to its
source location by strategically increasing or decreasing
sound volume as users approach or withdraw from the
source. Modern web technologies support the simultaneous
playback of multiple audio signals, and as such, the
development of real-time web-based methods that split a

single audio signal into spatial components is considered a
highly added value.

8. CONCLUSIONS

In this paper, research work on immersing users within
networked virtual environments and blending the boundaries
between real and virtual was demonstrated. An integrated
collaborative dance masterclass use case around which a
prototype networked virtual world was built, serves as a
prime example of how different methodologies for online
real-time user reconstruction, avatar embodiment via
skeleton tracking and real-time environmental feedback in
the form of a dance evaluation algorithm, can be applied to
enhance user 3D web immersive experience. Additionaly,
other topics of interest have been addressed and could serve
as possible areas for future research. We have shown with
this integrated demo that such technologies have reached a
maturity level that can capitalize on current consumer-grade
hardware, and have hopefully paved the first step towards
wide-spread application of web-based 3D TI environments.

9. REFERENCES

[1] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo and R. Bajcy,
“Enabling multi-party 3D tele-immersive environments with
ViewCast,” ACM Transactions on Multimedia Computing,
Communications, and Applications, vol. 6(2), 2010, pp. 1-30.

[2] R. Vasudevan, G. Kurillo, E. Lobaton, T. Bernardin, O.
Kreylos, R. Bajcy and K. Nahrstedt, “High quality visualization for
geographically distributed 3D teleimmersive applications,” IEEE
Transactions on Multimedia, vol. 13(3), 2011.

[3] D.S. Alexiadis, G. Kordelas, K.C. Apostolakis, J.D. Agapito,
J.M. Vegas, E. Izquierdo and P. Daras, “Reconstruction for 3D
immersive virtual environments,” 2012 13th International
Workshop on Image Analysis for Multimedia Interactive Services
(WIAMIS),.IEEE, 2012, pp. 1–4.

[4] Z. Yang, K. Nahrstedt, Y. Cui, B. Yu, J. Liang, S.H. Jung and
R. Bajscy, “Teeve: The next generation architecture for tele-
immersive environments,” in Multimedia, Seventh IEEE
Symposium on. IEEE, 2005, pp. 8–pp.

[5] W. Wu, R. Rivas, A. Arefin, S. Shi, R.M. Sheppard, B.D. Bui
and K. Nahrstedt, “MobileTI: a portable tele-immersive system,”
in Proceedings of the 17th ACM International conference on
Multimedia. ACM, 2009, pp. 877–880.

[6] J. Kramer, M. Parker, D. Herrera, N. Burrus and F. Echtler,
“Hacking the Kinect,” Apress, 2012.

[7] A. Sanna, F. Lamberti, G. Paravati and F.D. Rocha, “A kinect-
based interface to animate virtual characters,” in Journal on
Multimodal User Interfaces. 2012, pp. 1-11.

[8] D.S. Alexiadis, P. Kelly, P. Daras, N.E. O’Connor, T.
Boubekeur and M.B. Moussa, “Evaluating a dancer’s performance
using kinect-based skeleton tracking,” in Proceedings of the 19th
ACM International conference on Multimedia. ACM, 2011, pp.
659-662.

