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Human Action Recognition Using 3D
Reconstruction Data
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Abstract—In this paper, the problem of human action recog-
nition using 3D reconstruction data is deeply investigated. 3D
reconstruction techniques are employed for addressing two of
the most challenging issues related to human action recognition
in the general case, namely view-variance (i.e. when the same
action is observed from different viewpoints) and the presence
of (self-) occlusions (i.e. when for a given point of view a body-
part of an individual conceals an other body-part of the same
or an other subject). The main contributions of this work are
summarized as follows: i) Detailed examination of the use of
3D reconstruction data for performing human action recogni-
tion. The latter includes: a) the introduction of appropriate
local/global, flow/shape descriptors, and b) extensive experiments
in challenging publicly available datasets and exhaustive compar-
isons with state-of-art approaches. ii) A new local-level 3D flow
descriptor, which incorporates spatial and surface information
in the flow representation and efficiently handles the problem
of defining 3D orientation at every local neighborhood. iii) A
new global-level 3D flow descriptor that efficiently encodes the
global motion characteristics in a compact way. iv) A novel
global temporal-shape descriptor that extends the notion of
3D shape descriptions for action recognition, by incorporating
the temporal dimension. The proposed descriptor efficiently
addresses the inherent problems of temporal alignment and
compact representation, while also being robust in the presence
of noise (compared with similar tracking-based methods of the
literature). Overall, this work significantly improves the state-of-
art performance and introduces new research directions in the
field of 3D action recognition, following the recent development
and wide-spread use of portable, affordable, high-quality and
accurate motion capturing devices (e.g. Microsoft Kinect).

Index Terms—Action recognition, 3D reconstruction, 3D flow,
3D shape.

I. INTRODUCTION

AUTOMATIC and accurate recognition of the observed
human actions has emerged as one of the most challeng-

ing and active areas of research in the broader computer vision
community over the past decades [1]. This is mainly due to
the very wide set of possible application fields with great com-
mercialization potentials that can benefit from the resulting
accomplishments, such as surveillance, security, human com-
puter interaction, smart houses, helping the elderly/disabled,
gaming, e-learning, to name a few. Methods in this research
area incorporate the typical requirements for rotation, trans-
lation and scale invariance for achieving robust recognition
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performance. However, additional significant challenges, re-
gardless of the particular application field, need also to be
efficiently addressed, like the differences in the appearance
of the subjects, the human silhouette features, the execution
of the same actions, etc. Despite the fact that human action
recognition constitutes the central point of focus for multiple
research groups/projects and that numerous approaches have
already been proposed, significant obstacles towards fully
addressing the problem in the general case still remain.

Action recognition approaches can roughly be divided into
the following three categories [2], irrespectively of the data
that they receive as input (i.e. single-camera videos, multi-
view video sequences, depth maps, 3D reconstruction data,
motion capture data, etc.): a) spatio-temporal shape- [3], [4],
b) tracking- [5]–[9] and c) Space-Time Interest Point (STIP)-
based [10]–[13]. Spatio-temporal shape-based approaches rely
on the estimation of global-level representations for per-
forming recognition, using e.g. the outer boundary of an
action; however, they are prone to the detrimental effects
caused by self-occlusions of the performing subjects. The
efficiency of tracking-based approaches, which are based on
the tracking of particular features or specific human body parts
in subsequent frames (including optical-flow-based methods),
depends heavily on the robustness of the employed tracker
that is often prone to mistakes in the presence of noise. STIP-
based methods perform analysis at the local-level. They are
robust to noise, while they are shown to satisfactorily handle
self-occlusion occurrences; however, they typically exhibit
increased computational complexity for reaching satisfactory
recognition performance.

Two of the most challenging issues related to human action
recognition in the general case (i.e. in unconstrained envi-
ronments) that current state-of-art algorithms face are view-
variance and the presence of (self-) occlusions. In order to
simultaneously handle both challenges in a satisfactory way,
3D reconstruction information is used in this work. This choice
is further dictated by the recent technological breakthrough,
which has resulted in the introduction of portable, affordable,
high-quality and accurate motion capturing devices to the mar-
ket; these devices have already gained tremendous acceptance
in several research and daily-life application fields.

In this paper, the problem of human action recognition using
3D reconstruction information [14] is investigated. In particu-
lar, the main contributions of this work are the following:

• A thorough examination of the use of 3D recon-
struction data for realizing human action recogni-
tion. This involves: a) the introduction of appropriate
local/global, flow/shape descriptors, and b) extensive



2

Fig. 1. Proposed 3D human action recognition framework

experiments in challenging publicly available datasets
and exhaustive comparisons with state-of-art methods.
This comprehensive study sheds light on several aspects
of the problem at hand and proposes solutions to the
encountered challenges.

• A new local-level 3D flow descriptor, which incorpo-
rates spatial and surface information in the flow represen-
tation (i.e. moving away from current naive histogram-
based approaches) and efficiently handles the problem
of defining a consistent 3D orientation at every local
neighborhood (which in turn ensures the extraction of
directly comparable low-level descriptions at different
locations).

• A new global-level 3D flow descriptor, which efficiently
encodes the global motion characteristics in a compact
way (i.e. surpassing the need for complex, detailed and
susceptible to noise global flow representations).

• A novel global temporal-shape descriptor that ex-
tends the notion of 3D shape descriptions for action
recognition, by incorporating temporal information. The
proposed descriptor efficiently addresses the inherent
problems of temporal alignment and compact representa-
tion, while also being robust in the presence of noise
(as opposed to similar tracking-based methods of the
literature).

It must be noted that the descriptors utilized in this work
cover all three main action recognition methodologies that
were outlined in the beginning of this section; hence, mean-
ingful conclusions regarding the advantages/disadvantages of
every methodology can be reached by the examination of the
conducted experimental evaluation. A graphical representation
of the proposed 3D human action recognition framework is
illustrated in Fig. 1, while its constituent parts are detailed in
the subsequent technical sections of the manuscript.

The remainder of the paper is organized as follows: Previous
work is reviewed in Section II. Section III describes the 3D
information processing methodology. The descriptor extraction
procedure is detailed in Section IV. Section V outlines the
adopted action recognition scheme. Experimental results are
presented in Section VI and conclusions are drawn in Section
VII.

II. PREVIOUS WORK ON 3D ACTION RECOGNITION

The recent introduction of accurate motion capturing de-
vices, with the Microsoft Kinect being the most popular
one, has given great boost in human action recognition tasks
and has decisively contributed in shifting the research focus
towards the analysis in 3D space. This is mainly due to the
wealth of information present in the captured stream, where
the estimated 3D depth maps facilitate in overcoming typical
barriers (e.g. scale estimation, presence of occlusions, etc.)
of traditional visual analysis on the 2D plane and hence
significantly extending the recognition capabilities. The great
majority of the methods that belong to this category typically
exploit human skeleton-tracking or surface (normal vectors)
information, which are readily available by applying widely-
used open-source software (e.g. OpenNI SDK1, Kinect SDK2,
etc.). In [15], a depth similarity feature is proposed for
describing the local 3D cuboid around a point of interest
with an adaptable supporting size. Additionally, Zhang et al.
[16] introduce 4D color-depth (CoDe4D) local spatio-temporal
features that incorporate both intensity and depth information
acquired from RGB-D cameras. In [17], an actionlet ensemble
model is learnt to represent each action and to capture the
intra-class variance. Xia et al. [18] utilize histograms of 3D

1http://structure.io/openni
2http://www.microsoft.com/en-us/kinectforwindows/
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joint locations (HOJ3D) as a compact representation of human
postures. In [19], an action graph is employed to model
explicitly the dynamics of the actions and a bag of 3D points
to characterize a set of salient postures that correspond to
the nodes in the action graph. Moreover, Papadopoulos et
al. [20] calculate the spherical angles between selected joints,
along with the respective angular velocities. In [21], different
slicing views of the spatiotemporal volume are investigated.
Multiple configuration features (combination of joints) and
movement features (position, orientation and height of the
body) are extracted from the recovered 3D human joint and
pose parameter sequences in [5]. Furthermore, Sun et al. [22]
extract view-invariant features from skeleton joints. In [23],
the distribution of the relative locations of the neighbors for
a reference point in the human body point cloud is described
in a compact way.

A. Flow descriptors

Although numerous approaches to 3D action recognition
have already been proposed, they mainly focus on exploiting
human skeleton-tracking or surface (normal vectors) informa-
tion. Therefore, more elaborate information sources, like 3D
flow [24] (which is the counterpart of 2D optical flow in the
3D space) have not received the same attention yet. The latter
is mainly due to the increased computational complexity that
inherently 3D flow estimation involves, since its processing
includes an additional disparity estimation problem. In particu-
lar, 3D flow estimation algorithms, exhibiting satisfactory flow
field calculations, have been presented [25], [26], requiring
few seconds for processing per frame. However, methods that
emphasize on reducing the required computational complexity,
by adopting several optimization techniques (hardware, algo-
rithmic, GPU implementation), have achieved processing rates
up to 20Hz [27], [28]. Consequently, these recent advances
have paved the way for introducing action recognition methods
that make use of 3D flow information.

Regarding methods that utilize 3D flow information for
recognizing human actions, Holte et al. [10] introduce a local
3D motion descriptor; specifically, an optical flow histogram
(HOF3D) is estimated, taking into account the 4D spatio-
temporal neighborhood of a point-of-interest. In [28], a 3D
grid-based flow descriptor is presented, in the context of
a real-time human action recognition system. Additionally,
histograms of 3D optical flow are also used in [29], along
with other descriptions (spatio-temporal interest points, depth
data, body posture). Gori et al. [30] build a frame-level 3D
Histogram of Flow (3D-HOF), as part of an incremental
method for 3D arm-hand behaviour modelling and recognition.
In [31], a 3D flow descriptor is derived by performing a
multiple-window partition of a silhouette’s bounding box and
subsequently concatenating the average flow values of each
formed window. Furthermore, Fanello et al. [32] present an
approach to simultaneous on-line video segmentation and
recognition of actions, using histograms of 3D flow.

Although some works have recently been proposed for
action recognition using 3D flow information, they mainly
rely on relatively simple local/global histogram- or grid-based

representations. Therefore, significant challenges in 3D flow
processing/representation still remain partially addressed or
even unexplored, like incorporation of spatial and surface in-
formation, view-invariance, etc. Additionally, for the particular
case of local-level flow representations, a satisfactory solution
to the problem of defining a consistent 3D orientation at
different locations (e.g. at different points-of-interest) has not
been introduced yet.

B. Shape descriptors

Concerning the exploitation of 3D shape information for
action recognition purposes, the overpowering majority of the
literature methods refers to the temporal extension of the
corresponding 2D spatial analysis (i.e. analysis in the xy+t 3D
space), which is typically initiated by e.g. concatenating the
binary segmentation masks or outer contours of the examined
object in subsequent frames. Consequently, analysis in the ‘ac-
tual’ xyz 3D space (or equivalently analysis in the xyz+t 4D
space, if the time dimension is taken into account) is currently
avoided. In particular, Weinland et al. [3] introduce the so
called Motion History Volumes (MHV), as a free-viewpoint
representation for human actions, and use Fourier transforms
in cylindrical coordinates around the vertical axis for effi-
ciently performing alignment and comparison. In [4], human
actions are regarded as three-dimensional shapes induced by
the silhouettes in the space-time volume and properties of the
solution to the Poisson equation are utilized to extract features,
such as local space-time saliency, action dynamics, shape
structure and orientation. Additionally, Efros et al. [33] present
a motion descriptor based on optical flow measurements in a
spatio-temporal volume for each stabilized human figure and
an associated similarity measure.

Towards the goal of performing shape analysis for action
recognition in the above-mentioned xyz+ t 4D space, Huang
et al. [34] present time-filtered and shape-flow descriptors for
assessing the similarity of 3D video sequences of people with
unknown temporal correspondence. In [35], an approach to
non-sequential alignment of unstructured mesh sequences that
is based on a shape similarity tree is detailed, which allows
alignment across multiple sequences of different motions,
reduces drift in sequential alignment and is robust to rapid
non-rigid motions. Additionally, Yamasaki et al. [36] present a
similar motion search and retrieval system for 3D video based
on a modified shape distribution algorithm. The problem of
3D shape representation, which is formulated using Extremal
Human Curve (EHC) descriptors extracted from the body
surface, and shape similarity in human video sequences is the
focus of the work in [37].

Despite the fact that some works on temporal-shape de-
scriptions have already been proposed, their main limitation
is that they include in their analysis the problem of the tem-
poral alignment of action sequences (typically using common
techniques, like e.g. dynamic programming, Dynamic Time
Warping, etc.). The latter often has devastating effects in the
presence of noise or leads to cumulative errors in case of
misalignment occurrences. To this end, a methodology that
would alleviate from the burden of the inherent problem of
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temporal alignment when performing temporal-shape analysis,
while maintaining a compact action representation, would be
beneficial.

III. 3D INFORMATION PROCESSING

A. Reconstruction

In order to efficiently address two of the most important
problems inherent in human action recognition, namely view-
variance and the presence of (self-)occlusions, 3D reconstruc-
tion techniques are employed in this work. In particular, the
3D reconstruction algorithm of [14], which makes use of a set
of calibrated Kinect sensors, is utilized for generating a 3D
point-cloud of the performing subjects, where the estimated
points correspond to locations on the surface of the human
silhouette. After the point-cloud is generated, it undergoes a
‘voxelization’ procedure for computing a corresponding voxel
grid V Gt = {vt(xg, yg, zg) : xg ∈ [1, Xg], yg ∈ [1, Yg], zg ∈
[1, Zg]}, where t denotes the currently examined frame. In
the current implementation, a uniform voxel grid is utilized.
Additionally, it is considered that vt(xg, yg, zg) = 1 (i.e.
vt(xg, yg, zg) belongs to the subject’s surface) if vt(xg, yg, zg)
includes at least one point in the corresponding real 3D space
and vt(xg, yg, zg) = 0 otherwise.

B. Flow estimation

For 3D flow estimation, a gradual approach is proposed in
this work that relies on the application of a 2D flow estimation
algorithm to every Kinect RGB stream and the subsequent
fusion of the acquired results. In particular, a 2D optical
flow estimation algorithm is initially applied to every captured
RGB frame of the c-th (c ∈ [1, C]) employed Kinect and
the resulting 2D optical flow field is denoted f2Dc,t (xrgb, yrgb),
where (xrgb, yrgb) are coordinates on the 2D RGB plane and
the algorithm receives as input the frames at times t and t−1.
The optical flow algorithm of [38] was selected using the
implementation provided by [39], since it was experimentally
shown to produce satisfactory results [39]. In parallel, a 3D
point-cloud W 3D

c,t (xl, yl, zl) is estimated from the correspond-
ing depth map D2D

c,t (xd, yd), where (xl, yl, zl) and (xd, yd)
denote coordinates in the real 3D space and on the 2D depth
map plane corresponding to the c-th Kinect, respectively.
Subsequently, a 3D flow field f3Dc,t (xl, yl, zl) is estimated by
converting the pixel correspondences in f2Dc,t (xrgb, yrgb) to
point correspondences; the latter is realized by considering the
point-clouds W 3D

c,t (xl, yl, zl) and W 3D
c,t−1(xl, yl, zl). It must

be noted that f3Dc,t (xl, yl, zl) flow vectors that involve points
that correspond to ‘holes’ (i.e. missing depth estimations
from the Kinect), background or different human body parts
are discarded. Points in W 3D

c,t (xl, yl, zl) are considered to
belong to the background if their depth value zl exceeds
threshold Tb, while two points are assumed to correspond
to different body parts if their depth difference is greater
than threshold Tl (Tl=25mm in this work). f3Dc,t (xl, yl, zl) may
contain significant amounts of noise, due to the frequent failure
of the Kinect sensor to provide accurate depth estimations.
For tackling this noise, a reliability value is associated with
every f3Dc,t (xl, yl, zl) vector. More specifically, the reliability

value r3Dc,t (xl, yl, zl) of point (xl, yl, zl) is approximated by
the reliability value r2Dc,t (xd, yd) of its corresponding point
(xd, yd) in D2D

c,t (xd, yd), which is calculated as follows:

r2Dc,t (xd, yd) =

∑xd+Q
x́d=xd−Q

∑yd+Q
ýd=yd−Q b(x́d, ýd)

(2Q+ 1)2
(1)

where r2Dc,t (xd, yd) ∈ [0, 1]. b(x́d, ýd) = 0 if point (x́d, ýd)
corresponds to background/hole or a different body part than
the reference point (xd, yd) and b(x́d, ýd) = 1 otherwise.
r2Dc,t (xd, yd) = 0 if (xd, yd) belongs to the background or a
hole in D2D

c,t (xd, yd). Q = 20 based on experimentation.
For estimating the 3D flow field f3Dc,t (xl, yl, zl), the map-

pings from the (xrgb, yrgb), (xd, yd) spaces to each other as
well as to the (xl, yl, zl) one are required. If the (xrgb, yrgb)
and (xd, yd) spaces are not strictly aligned during capturing
(i.e. (xrgb, yrgb) ̸= (xd, yd)), a typical calibration model [40]
requires the setting of the following parameters: a) depth
camera intrinsics and extrinsics, b) RGB camera intrinsics,
c) distortion model of both cameras, and d) a Rotation-
Translation (RT) transform from (xd, yd) to (xrgb, yrgb). Con-
cerning the datasets utilized in this work (Section VI-A),
for the Huawei/3DLife the aforementioned parameters are
publicly available, while for the NTU RGB+D and UTKinect
the best fit parameters from the Kinect sensors in the authors’
laboratory were used.

Having estimated the flow fields f3Dc,t (xl, yl, zl), the next
step is to compute a 3D flow field F3D

t (xg, yg, zg) in V Gt.
For achieving this, every Kinect c is initially examined sep-
arately. In particular, for every voxel vt(xg, yg, zg) a flow
vector F3D

c,t (xg, yg, zg) is estimated according to the following
expression:

F3D
c,t (xg, yg, zg) =

∑
∆ r3Dc,t (xl, yl, zl)Ψ[f3Dc,t (xl, yl, zl)]

M
(2)

where ∆ comprises the points in W 3D
c,t (xl, yl, zl) that cor-

respond to voxel vt(xg, yg, zg) and for which flow vectors
f3Dc,t (xl, yl, zl) have been calculated, M is the total number of
points in ∆ and Ψ[.] denotes the extrinsic calibration-based
transformation from the W 3D

c,t (xl, yl, zl) to the (xg, yg, zg)
space. It must be noted that a depth difference threshold
Tg (similar to the Tl described above) is used for control-
ling the assignment of points in W 3D

c,t (xl, yl, zl) to voxels
vt(xg, yg, zg) in V Gt (Tg = 25mm in this work). For
combining F3D

c,t (xg, yg, zg) vectors estimated from different
Kinect sensors, the following reliability value is estimated for
each voxel vt(xg, yg, zg) that is visible from every Kinect c:

a3Dc,t (xg, yg, zg) = ⟨mc(xg, yg, zg),nt(xg, yg, zg)⟩ (3)

where ⟨·, ·⟩ denotes the dot product of two vectors,
mc(xg, yg, zg) is the unit vector that connects voxel
vt(xg, yg, zg) with the center of the c-th Kinect, nt(xg, yg, zg)
is the unit normal vector to the 3D reconstructed surface
at voxel vt(xg, yg, zg) and a3Dc,t (xg, yg, zg) ∈ [0, 1]. Subse-
quently, F3D

t (xg, yg, zg) is computed, as follows:

F3D
t (xg, yg, zg) =

∑
U a3Dc,t (xg, yg, zg)F

3D
c,t (xg, yg, zg)

L
(4)
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(a) (b) (c) (d) (e)

Fig. 2. Indicative 3D flow field F̄3D
t (xg , yg , zg) estimation examples for actions: (a) golf-chip, (b) hand-waving, (c) knocking the door, (d) push-away and

(e) throwing.

where U comprises the Kinect sensors from which
vt(xg, yg, zg) is visible and L (L ≤ C) their number. From
the above definition, it can be seen that 3D flow estimations
originating from Kinect sensors, whose infrared illumination
strikes perpendicularly to the surface to be reconstructed,
are favored. For further noise removal, F3D

t (xg, yg, zg) is
low-passed using a simple 11x11x11 mean filter; hence, re-
sulting to flow field F̄3D

t (xg, yg, zg). Indicative examples of
F̄3D
t (xg, yg, zg) estimations for different actions are shown in

Fig. 2.

IV. DESCRIPTOR EXTRACTION

A. Local descriptions

In order to analyse human motion at local level, Spatio-
Temporal Interest Points (STIPs) need to be detected first. In
this work, an extension of the 3D (xy- coordinates plus time)
detector of [41] to its counterpart in 4D (xyz-coordinates plus
time) has been developed. In particular, the voxel grid V Gt is
processed by a set of separable linear filters, according to the
following equations:

R(xg, yg, zg, t) =

{vt(xg, yg, zg) ∗ k(xg, yg, zg;σ) ∗ hev(t; τ, ω)}2

+{vt(xg, yg, zg) ∗ k(xg, yg, zg;σ) ∗ hod(t; τ, ω)}2 (5)

where R(xg, yg, zg, t) is the response function, ∗ denotes the
convolution operator, k(xg, yg, zg;σ) is a Gaussian smooth-
ing kernel applied only to the spatial dimensions, ω =
4/τ and hev(t; τ, ω) = − cos(2πtω)e−t

2/τ2

, hod(t; τ, ω) =
− sin(2πtω)e−t

2/τ2

is a quadrature pair [42] of 1D Gabor
filters applied temporally. From the above definition, it can be
seen that the response function R(xg, yg, zg, t) is controlled by
parameters σ and τ , which roughly correspond to the spatial
and temporal scale of the detector, respectively. Thresholding
the estimated values of R(xg, yg, zg, t) generates the detected
STIPs. In the current implementation, σ = 2.0 and τ = 0.9
were set based on experimentation.

1) Local flow descriptor: For extracting discriminative
local-level 3D flow descriptors, the following challenges need
to be addressed: a) the difficulty in introducing a consistent
orientation definition at every STIP location for producing
comparable low-level descriptions among different STIPs,
and b) the incorporation of spatial distribution and surface
information in a compact way, while maintaining 3D rotation
invariance.

Fig. 3. Example of ring-shaped areas Ai,j formation for i = 0 and J = 5
in the defined cylindrical coordinate system.

Under the proposed approach, a novel local-level 3D flow
descriptor is introduced for efficiently addressing the afore-
mentioned issues. Initially, the normal vector nstipt (xg, yg, zg)
at every STIP is used for defining a local cylindrical coordinate
system (ϱ, ϕ, z), where the origin is placed at the STIP
point vstipt (xg, yg, zg), the direction of the longitudinal axis
Z coincides with vector nstipt (xg, yg, zg) and the direction of
the polar axis Φ (perpendicular to the longitudinal one) is
selected randomly. Using this coordinate system, concentric
ring-shaped areas are defined, according to the following
expressions and depicted in Fig. 3:

Ai,j =



(j − 1)µ ≤ ϱ ≤ jµ
ν/2 + (i− 1)ν ≤ z ≤ ν/2 + iν

, i > 0

(j − 1)µ ≤ ϱ ≤ jµ
−ν/2 ≤ z ≤ ν/2

, i = 0

(j − 1)µ ≤ ϱ ≤ jµ
−ν/2 + iν ≤ z ≤ −ν/2 + (i+ 1)ν

, i < 0

(6)

where i ∈ [−I, I] and j ∈ [1, J ] denote the indices of the
defined areas Ai,j , µ = Ds

cub/J , ν = Ds
cub/(2I + 1) and

Ds
cub is the spatial dimension of the spatio-temporal cuboid

(Ds
cub = 31 is set experimentally), which is defined around

its central point vstipt (xg, yg, zg) and constitutes the support
area for the respective descriptor extraction procedure. From
the expressions in (6), it can be seen that the direction of the
polar axis, which is used for calculating angle ϕ, does not
affect the formation of regions Ai,j nor the estimation of the
descriptor values, as it will be discussed in the sequel. In this
work, I = 2 and J = 5 were set based on experimentation.

For describing the flow information in every Ai,j region, a
loose representation is required that will render the respective
descriptor robust to differences in the appearance of the
subjects and the presence of noise. To this end, a histogram-
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based representation is adopted. In particular, for every
vt(xg, yg, zg) ∈ Ai,j for which a 3D flow F̄3D

t (xg, yg, zg)
vector is estimated, the following angle is calculated:

ϑ = cos−1(
⟨nt(xg, yg, zg), F̄3D

t (xg, yg, zg)⟩
∥nt(xg, yg, zg)∥∥F̄3D

t (xg, yg, zg)∥
) (7)

where ∥.∥ denotes the norm of a vector and ϑ ∈ [0, π].
nt(xg, yg, zg) is used instead of nstipt (xg, yg, zg) in (7) for
implicitly encoding 3D surface information, i.e. for discrimi-
nating between an arm and a head that undergo a forward hor-
izontal movement. Based on the calculated angles, a histogram
is constructed for every region Ai,j , by uniformly dividing the
interval [0, π] into a set of p equal-length bins (p = 8 in this
work). During the histogram estimation, ∥F̄3D

t (xg, yg, zg)∥
is added to the appropriate bin value, when vt(xg, yg, zg) is
processed. By concatenating the histograms that have been
computed for all regions Ai,j in a single feature vector, the
proposed local-level 3D flow descriptor for vstipt (xg, yg, zg)
is formed. It must be noted that during the descriptor ex-
traction procedure, the normal nt(xg, yg, zg) and the flow
F̄3D
t (xg, yg, zg) vectors of all frames in the spatio-temporal

cuboid defined for vstipt (xg, yg, zg) are considered; however,
the cylindrical grid defined for frame t is used unaltered
for all other frames as well. The temporal cuboid dimension
Dt
cub, i.e. the total number of frames that it includes, is set

equal to 3 in the current implementation. Additionally, for
accounting for the difference in appearance and the execution
of actions among different individuals (e.g. different velocity
when the same action is performed by different individuals)
the estimated 3D flow feature vector is L1 normalized.

2) Local shape descriptor: For reducing the effects of noise
present in the 3D flow estimates and also for providing a more
complete representation, 3D shape information is additionally
extracted at every STIP position; however, only frame t is
considered this time and not all frames in the STIP’s cuboid.
In the current implementation, the LC-LSF shape descriptor
of [43], which employs a set of local statistical features for
describing a 3D model, is used. The aforementioned descriptor
was selected on the basis of its relatively low computational
complexity and its increased efficiency in non-rigid 3D model
retrieval.

B. Global descriptions

1) Global flow descriptor: For estimating a global 3D
flow description, an approach similar to the one described
in Section IV-A1 for local-level flow analysis is followed. In
particular, the fundamental problem of orientation definition
outlined in Section IV-A1 is addressed here by assuming a
vertical direction consideration. The latter selection is justified
by the fact that the angle of the principal axis of the 3D
human silhouette with the vertical direction typically does not
exhibit significant deviations among different instances of a
given action.

The descriptor extraction procedure is initiated by esti-
mating a vertically aligned minimum bounding cylinder of
all vt(xg, yg, zg) for which a flow vector F̄3D

t (xg, yg, zg) is
estimated for all frames t that comprise the examined action.

Fig. 4. Example of ring-shaped areas Bκ,λ formation for κ = 3 and λ ∈
[1, 4] for a ‘push-away’ action instance.

The center of the cylinder (i.e. the central point of its axis)
is denoted vcg(xcg, ycg, zcg), while its radius is represented
by ζ. Additionally, the upper and lower cylinder boundaries
are denoted ycmax and ycmin, respectively. Then, a set of con-
centric ring-shaped areas are defined, similarly to (6):

Bκ,λ =


(λ− 1)γ ≤ ξ ≤ λγ
ycmin + (κ− 1)δ ≤ yg ≤ ycmin + κδ

ξ =
√
(xg − xcg)2 + (zg − zcg)2

(8)

where κ ∈ [1,K], λ ∈ [1,Λ], γ = ζ/Λ and δ = (ycmax −
ycmin)/K. For every Bκ,λ area, a 2D angle histogram is
estimated, taking into account all flow vectors F̄3D

t (xg, yg, zg)
during the whole duration of the examined action that corre-
spond to voxels vt(xg, yg, zg) that lie in that spatial area. More
specifically, for each of the aforementioned F̄3D

t (xg, yg, zg),
the following two angles are calculated:

ψ = tan−1(
zg − zcg
xg − xcg

)− tan−1(
F̄3D
z,t (xg, yg, zg)

F̄3D
x,t (xg, yg, zg)

)

o = cos−1(
⟨(0, 1, 0), F̄3D

t (xg, yg, zg)⟩
∥F̄3D

t (xg, yg, zg)∥
) (9)

where F̄3D
x,t (xg, yg, zg) and F̄3D

z,t (xg, yg, zg) are the x- and z-
component of the flow vector F̄3D

t (xg, yg, zg), respectively.
ψ ∈ [−π, π] corresponds to the angle between the horizontal
projection of F̄3D

t (xg, yg, zg) and the projection of the vector
connecting the cylindrical center (xcg, ycg, zcg) with the ex-
amined voxel position (xg, yg, zg) on the horizontal xz plane,
while o ∈ [0, π] corresponds to the angle of F̄3D

t (xg, yg, zg)
with the vertical axis. Then, the above-mentioned 2D his-
togram for area Bκ,λ is computed by partitioning the value
ranges of ψ and o into bψ and bo equal-width non-overlapping
bins, respectively. During the calculations, ∥F̄3D

t (xg, yg, zg)∥
is aggregated to the appropriate histogram bin. The global
flow descriptor is computed by concatenating the estimated
angle histograms of all Bκ,λ areas, while it is subsequently L1
normalized for rendering the descriptor robust to the difference
in the speed with which every action is executed. From the
definitions of the ring-shaped areas Bκ,λ and angle ψ, it can
be justified that the proposed global-level 3D flow descriptor
satisfies the requirement for rotation invariance, while it also
incorporates spatial distribution-related information in the flow
representation. In this work, the following parameter values
were selected after experimentation: Λ = 4, K = 4, bψ = 6



7

and bo = 3. An example of ring-shaped Bκ,λ areas formation
for a ‘push away’ action instance is given in Fig. 4.

2) Global shape descriptor: As described in Section II-B,
current temporal-shape techniques include in their analysis the
problem of the temporal alignment of the action sequences,
which has devastating effects in the presence of noise or leads
to cumulative errors in case of misalignment occurrences.
To this end, a temporal-shape descriptor that encodes the
dominant shape variations and avoids the need for exact
action sequence alignment, while maintaining a compact shape
representation, is proposed in this section.

The biggest challenge in using the temporal dimension for
realizing 3D shape-based action recognition is the temporal
alignment of different action executions, which is often mis-
leading and causes devastating aggregated errors. Additionally,
this alignment is more likely to lead to mismatches if high-
dimensional vector representations need to be used, which
is the case of 3D shape-based analysis. For overcoming
these obstacles, a frequency domain analysis is followed in
this work for identifying and modeling the dominant shape
characteristics and their variation in time. In this way, the
temporal sequence of the action constituent postures is cap-
tured, although this is not a strict temporal alignment of the
respective action frames. In particular, for every frame t that
belongs to the examined action segment an individual global
3D shape descriptor qt is extracted. More specifically, for
every frame t a composite voxel grid V Gcot is computed,
by superimposing all V Gt from the beginning of the action
segment until frame t and estimating their outer surface. qt
is then computed by estimating a 3D shape descriptor for
V Gcot . Using V Gcot , instead of V Gt, for descriptor extraction
was experimentally shown to lead to better temporal action
dynamics encoding. Indicative examples of V Gcot estimation
for different human actions are depicted in Fig. 5.

For producing a compact temporal-shape representation,
the descriptor vector sequence qt is initially adjusted to
a predefined length H forming sequence qh, using linear
interpolation; the latter accounts for action sequences that
typically consist of a different number of frames. H = 20
based on experimentation. Subsequently, 1D frequency domain
analysis is applied to each of the value sequences qs,h that
are formed by considering the s-th (s ∈ [1, S]) element of qh
each time. For frequency domain analysis, the Discrete Cosine
Transform (DCT) is applied to qs,h, as follows:

fcs(β) =
H∑
h=1

qs,h cos
π

H
[(h− 1) +

1

2
(β − 1)] (10)

where fcs(β) are the estimated DCT coefficients and β ∈
[1,H]. The reason for using the DCT transform is twofold:
a) its simple form requires relatively reduced calculations,
and b) it is a frequency domain transform that receives
as input a real sequence and its output is also a real set
of values. Other common frequency analysis methods (e.g.
Fourier transform) were also evaluated; however, they did not
lead to increased performance compared with the one achieved
when using DCT. Out of the H fcs(β) coefficients, only
the first P are considered, since the remaining ones were

experimentally shown to correspond mainly to noise or did
not add to the discriminative power of the formed descriptor.
The P selected coefficients for each qs,h are concatenated
in a single vector that constitutes the proposed global 3D
temporal-shape descriptor. It must be noted that modeling
the correlations between different qs,h sequences during the
descriptor extraction procedure (e.g. by directly applying 2D
DCT transform on sequence qh) led to inferior recognition
performance, mainly due to overfitting occurrences. To this
end, 1D DCT analysis, applied to each individual qs,h (as
detailed in (10)), is adopted.

Although the proposed 3D temporal-shape descriptor extrac-
tion methodology is independent of the particular 3D static
shape descriptor to be used, in this work the ‘shape distri-
bution’ descriptor [50] (3D distance histogram) was utilized;
this was experimentally shown to lead to better overall action
recognition performance than other common shape descriptors.
In [34], description and comparative evaluation of different
static 3D shape descriptors for action recognition are given.

V. ACTION RECOGNITION

After extracting a set of local/global 3D flow/shape de-
scriptors for every examined human action (as detailed in
Section IV), an individual feature vector is estimated for every
case. In particular, for the cases of the local 3D flow and
shape information (where a set of STIPs is estimated for every
action segment and subsequently local-level 3D flow/shape
descriptions are extracted at every STIP location), the ‘Bag-of-
Words’ (BoW) methodology [51] is followed for constructing
a single vector description, where every action is represented
by a L1-normalized histogram of 500 words. Additionally, the
extracted global-level 3D flow/shape descriptors are also L1-
normalized. In all cases, action recognition is realized using
multi-class Support Vector Machines (SVMs).

VI. EXPERIMENTAL RESULTS

A. Datasets

In order to robustly, fairly and objectively evaluate the per-
formance of the introduced human action recognition methods,
as well as comparatively evaluating them against the respective
literature approaches, challenging publicly-available datasets
are required. In Table I, the most common and widely adopted
datasets that have recently been introduced for the task of 3D
human action recognition are reported. For every dataset, the
most important characteristics are given, namely the number
of action types, the total number of action instances, the
number of individuals, the type of data and a short description
of the capturing settings. The main criterion for selecting
the datasets to be used in the experimental evaluation was
the total number of action instances. In this respect, the
two Huawei/3DLife datasets [49], which were used in the
ACM Multimedia 2013 ‘Multimedia Grand Challenge’, were
utilized for designing and evaluating the proposed descriptors.
In particular, in ‘Dataset 1, session 1’ (denoted D1), 17
individuals were involved and C = 5 synchronized Kinect
(placed at different viewpoints covering the whole body) were
used for motion capturing. On the other hand, in ‘Dataset 1,
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(a)

(b)

t = 0 t = 0.25T t = 0.50T t = 0.75T t = T

Fig. 5. Indicative examples of composite voxel grid V Gcot estimation for actions: (a) jumping-jacks and (b) tennis-forehand. T denotes the overall duration
of the action. TABLE I

DATASETS FOR 3D HUMAN ACTION RECOGNITION

No of No of
action action No of

Dataset types instances individuals Type of data Description
UTKinect [18] 10 200 10 RGB, depth Single Kinect

Multiview Action3D [44] 10 1475 10 RGB, depth, human skeleton 3 synchronized Kinect
MSR Action3D [19] 20 567 10 Depth Single depth sensor (using infra-red light)

MSR DailyActivity 3D [17] 16 320 10 RGB, depth, human skeleton Single Kinect
RGB, Mocap, depth Multi-view

Berkeley MHAD [45] 11 660 12 accelerometer, audio multi-modal capturings
Single Kinect,capturing of human

HuDaAct [46] 12 1189 30 RGB, depth activities (30–150 sec)
CAD-60 [47] 12 ∼350 4 RGB, depth, human skeleton Single Kinect
i3DPost [48] 12 104 8 RGB, 3D meshes Multi-view capturings

Huawei/3DLife [49] 5 synchronized Kinect
Dataset 1, session 1 22 ∼1870 17 RGB, depth, audio, WIMU multi-modal capturings
Huawei/3DLife [49] 2 synchronized Kinect
Dataset 1, session 2 22 ∼1540 14 RGB, depth, audio, WIMU multi-modal capturings

RGB, depth, 3 synchronized Kinect
NTU RGB+D [7] 60 56880∗ 40 human skeleton, infrared multi-modal capturings

∗ total number of single-view action instances

session 2’ (denoted D2) actions of 14 human subjects were
captured using C = 2 Kinect sensors. Out of the available
22 supported actions, the following set of 17 dynamic ones
were considered for the experimental evaluation in this work:
E = {eg, g ∈ [1, G]} ≡{Hand waving, Knocking the door,
Clapping, Throwing, Punching, Push away, Jumping jacks,
Lunges, Squats, Punching and kicking, Weight lifting, Golf
drive, Golf chip, Golf putt, Tennis forehand, Tennis backhand,
Walking on the treadmill}. The remaining 5 discarded actions
(namely ‘Arms folded’, ‘T-Pose’, ‘Hands on the hips’, ‘T-
Pose with bent arms’ and ‘Forward arms raise’) correspond
to static ones that can be easily detected using a simple
representation. At this point, the following facts need to be
highlighted about these datasets: a) In D2, the data stream
from only the frontal Kinect was utilized, and b) In D1, 5
Kinect were used for human motion capturing; however, the
interference between multiple Kinect degrades the quality of
the captured depth maps. This results into the introduction of
noise (compared with D2), which for example makes standard
depth-based skeleton-tracking algorithms (e.g. the standard
OpenNI skeleton-tracking module) less accurate. Additionally,

the ‘NTU RGB+D’ [7], which is the broadest in the literature
and is denoted D3, and the ‘UTKinect’ [18] (denoted D4)
datasets were also used, mainly for comparatively evaluating
the proposed approach. For the latter datasets only overall
action recognition results are provided. In the sequel, for
D3 performance is measured using the ‘cross-subject’ and
‘cross-view’ evaluation criteria explicitly defined in [7]. For
all other datasets, performance evaluation is realized following
the ‘leave-one-out’ methodology, where in every iteration
one subject is used for performance measurement and the
remaining ones are used for training.

B. Local descriptors evaluation

In this section, experimental results, as well as comparative
evaluation, from the application of the proposed local-level
descriptors (presented in Section IV-A) are presented. In Fig.
6, quantitative action recognition results are presented in the
form of the calculated recognition rates (i.e. the percentage of
the action instances that were correctly identified), when local
flow and shape information is used. Additionally, the value
of the overall classification accuracy, i.e. the percentage of all
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(a) (b)

Fig. 6. Action recognition results using local-level descriptors for a) D1 and b) D2 datasets.

action instances that were correctly classified, is also given
for every case. From the presented results, it can be seen that
the proposed 3D flow descriptor leads to satisfactory action
recognition performance (overall accuracy equal to 49.00%
and 66.81% in D1 and D2, respectively). Examining the
results in more detail, it is observed that there are actions that
exhibit high recognition rates in both datasets (e.g. ‘Jumping
jacks’, ‘Punching and kicking’ and ‘Weight lifting’), since
they present characteristic motion patterns among all subjects.
However, there are also actions for which the recognition
performance is not that increased (e.g. ‘Punching’, ‘Throwing’
and ‘Tennis backhand’). This is mainly due to these actions
presenting very similar motion patterns over a period of
time during their execution with other ones (e.g. ‘Throwing’,
‘Punching and kicking’ and ‘Tennis forehand’, respectively).
On the other hand, it can be seen that the 3D flow descriptor
leads to slightly increased in D1 and comparable performance
in D2, compared with the utilized 3D shape descriptor. 3D
flow leads to this inferior performance in D2 mainly due to
the relatively lower quality of F̄3D

t (xg, yg, zg), which in D2

is estimated using a single Kinect.

The proposed 3D flow descriptor is comparatively evaluated
with a similar approach of the literature, namely the HOF3D
descriptor with ‘vertical rotation’ presented in [10]. HOF3D
is also a local-level histogram-based descriptor. However, the
local-level coordinate system is defined using the vertical
axis and the horizontal component of the 3D flow vector
at the examined STIP. Subsequently, a 3D flow histogram
is constructed by uniformly dividing the corresponding 3D
sphere into a set of orientation bins. It must be highlighted
that the above-mentioned HOF3D descriptor is representative
of a set of literature methods that employ local-level 3D flow
histogram representations for performing action recognition,
including the work of [29] (i.e. flow descriptions that do not
take into account spatial distribution or surface information).
From the results presented in Fig. 6, it is obvious that
the proposed flow descriptor leads to increased performance
compared with HOF3D in both datasets. This is due to
the following advantageous characteristics that the proposed
flow descriptor presents and which are described in details
in Section IV-A1: a) introduction of a consistent orientation
definition at every STIP location, based on the normal vec-
tor nstipt (xg, yg, zg); on the contrary, HOF3D considers the
vertical axis for orientation definition at all STIP positions.
b) inclusion of spatial distribution related information, by

estimating an individual flow histogram for every defined
concentric ring-shaped area Ai,j ; HOF3D does not incor-
porate information regarding the spatial distribution of the
flow vectors in the neighborhood of each STIP location. c)
inclusion of surface information, by constructing the histogram
of the values of angle ϑ (i.e. the angle between the normal
nt(xg, yg, zg) and the flow F̄3D

t (xg, yg, zg) vectors at every
voxel vt(xg, yg, zg) position, as defined in (7)) in each Ai,j
area; HOF3D does not incorporate surface information. The
aforementioned advantageous characteristics result in the pro-
posed local flow descriptor to exhibit approximately 9.22%
and 34.13% increased overall performance, compared with
HOF3D, in D1 and D2, respectively. This large performance
difference in D2 is in principle caused by the decreased
quality of flow field F̄3D

t (xg, yg, zg) that is estimated using
a single Kinect, while F̄3D

t (xg, yg, zg) in D1 is computed by
fusing information coming from 5 Kinect. In other words, the
proposed local flow descriptor is shown to be more robust
in the presence of noise and lower quality of the available
flow field than HOF3D. Nevertheless, the performance of the
proposed local flow descriptor is also affected, since in D1 it
slightly outperforms the proposed local shape descriptor, while
in D2 local shape information is advantageous.

1) Parameter selection: In order to apply and evaluate the
performance of the proposed local-level descriptors, particular
values inevitably need to be selected for the defined param-
eters. In this section, quantitative evaluation results are given
for the most crucial parameters, aiming at shading light on
the behavior of the respective descriptors. It must be noted
that experimental results are given only for D1, while similar
behavior of the proposed local-level descriptors has been ob-
served in D2. For D3 and D4, the parameters selected for D1

were used. In particular, the descriptor behavior for different
values of the following parameters, along with justification
where particular values were selected, has been investigated:

• Parameters σ and τ : These roughly correspond to the
spatial and temporal scale of the employed STIP detector
(Section IV-A). In this work, σ = 2.0 and τ = 0.9 were
set. These constitute values that are typically used in
similar STIP detectors of the literature (analysis in the
xy+t 3D space) [41] [52]. Additionally, the respective
threshold value, which is used for generating the detected
STIPs, was selected so as to lead to the estimation of
at least 200 STIPs for any supported action type (e.g.
even for the ‘Clapping’ action instances that typically
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Fig. 7. Action recognition results using global-level descriptors for a) D1 and b) D2 datasets.

correspond to short temporal segments with no extensive
motion observed). This was experimentally shown to be
sufficient to lead to good recognition results. Using lower
threshold values (i.e. generating more STIPs) did not lead
to performance improvement, although it significantly
increased the computational cost.

• Parameters I , J and p: These correspond to the number of
segments along the longitudinal axis, number of segments
along the polar axis and number of histogram bins during
the local flow descriptor extraction procedure (Section
IV-A1), respectively. In particular, the performance ob-
tained by the application of the introduced local flow
descriptor is given for different sets of values for the
aforementioned parameters in Table II. It must be noted
that the pair (I = 0, J = 1) corresponds to the
case where no spatial information is incorporated in
the extracted descriptor, i.e. a single flow histogram is
estimated for the whole spatio-temporal cuboid defined
for a given STIP vstipt (xg, yg, zg). From the first group
of presented results, it can be observed that the pair
(I = 2, J = 5) leads to the best overall performance.
Additionally, based on the second group of results, it can
be seen that using more histogram bins (p = 8) leads to
slightly increased recognition performance.

• Parameter Ds
cub: This defines the spatial dimension of

the spatio-temporal cuboid used for local flow/shape
descriptor extraction (Section IV-A1). In Table III, the
recognition performance accomplished using the pro-
posed local flow and shape descriptor is reported. From
the presented results, it can be seen that low values of
Ds
cub (i.e. Ds

cub = 21) lead to decreased recognition
performance, mainly due to the reduced size of the cuboid
not being sufficient for efficiently capturing the local
action dynamics. On the other hand, values greater than
31 lead practically to marginal variations in performance;
however, the computational cost of the descriptor extrac-
tion procedure increases exponentially.

• BoW dimension: This defines the number of ‘words’ used
in the BoW representation (Section V). In Table IV, the
action recognition performance for different values of the
BoW dimension for the proposed local-level descriptors
is given. It can be observed that using a small number
of ‘words’ leads to decreased performance, while using
a number of approximately 500 ‘words’ leads to the best
recognition performance for both descriptors.

• Parameter Dt
cub: This defines the temporal dimension (i.e.

number of frames) of the spatio-temporal cuboid used for
local flow/shape descriptor extraction (Section IV-A1).
In this work, Dt

cub = 3 was set. Greater values were
also evaluated (i.e. Dt

cub = 5, 7); however, these resulted
into negligible variations in the overall recognition perfor-
mance, while significantly increasing the computational
complexity at the same time.

TABLE II
LOCAL FLOW DESCRIPTOR PARAMETER SELECTION

Parameters Accuracy
I=0, J=1, p=8 36.31%
I=0, J=3, p=8 37.23%
I=1, J=1, p=8 43.14%
I=1, J=3, p=8 44.91%
I=2, J=1, p=8 45.38%
I=2, J=5, p=8 49.00%
I=4, J=9, p=8 47.41%
I=2, J=5, p=4 48.11%
I=2, J=5, p=8 49.00%

TABLE III
SPATIAL CUBOID DIMENSION SELECTION

Ds
cub

Descriptor 21 31 41 51
Local flow 42.11% 49.00% 48.68% 48.71%

Local shape 41.56% 48.40% 47.98% 48.08%

TABLE IV
BOW DIMENSION SELECTION

BoW dimension
Descriptor 100 250 500 1000
Local flow 42.98% 47.52% 49.00% 47.25%

Local shape 42.48% 46.93% 48.40% 46.44%

C. Global descriptors evaluation

In this section, experimental results and comparative eval-
uation from the application of the proposed global-level de-
scriptors (described in Section IV-B) are presented. In Fig.
7, quantitative results in terms of the estimated recognition
rates and overall accuracy are given for the proposed global
flow and shape descriptors. From the presented results, it can
be seen that both descriptors achieve high recognition rates
in both datasets; namely, the flow (shape) descriptor exhibits
recognition rates equal to 81.27% and 78.99% (76.53% and
69.83%) in D1 and D2, respectively. From these results, it
can be observed that the global flow descriptor outperforms
the respective shape one in both utilized datasets; this is
mainly due to the more detailed and discriminative information
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contained in the estimated 3D flow fields. Due to the latter
factor, the flow descriptor is advantageous for actions that
incorporate more fine-grained body/body-part movements (e.g.
‘Hand waving’, ‘Knocking the door’, ‘Punching and kicking’
and ‘Weight lifting’). On the other hand, the cases that the
shape descriptor is better involve body movements with more
extensive and distinctive whole body postures (e.g. actions
‘Clapping’ and ‘Squats’).

In order to investigate the behavior of the proposed global
temporal-shape descriptor, comparison with the following
benchmarks is performed: a) global static shape descriptor:
A static shape descriptor (the ‘shape distribution’ descriptor
described in Section IV-B2) is extracted for the composite
voxel grid V Gcot for t = T, i.e. when all constituent voxel grids
V Gt of an action are superimposed. This can be considered
as the counterpart of the respective volumetric descriptions
for the 2D analysis case, i.e. methods that estimate a 3D
volumetric shape of the examined action from the 2D video
sequence and subsequently estimating a 3D shape descriptor
of the generated volume (like in [4] [3]). b) variant of the
proposed temporal-shape descriptor, where voxel grids V Gt
are used instead of the composite ones V Gcot during the
descriptor extraction procedure. c) method of [34]: A self-
similarity matrix is computed for every action (by means
of static shape descriptor extraction for every frame) and
subsequently a temporal shape descriptor is estimated by
applying a time filter to the calculated matrix. From the
results presented in Fig. 7, it can be seen that the proposed
temporal-shape descriptor significantly outperforms the static
one in both datasets. This fact highlights the significant added
value of incorporating temporal information in the global 3D
representation. Additionally, it can be observed that the use
of the composite voxel grids V Gcot is advantageous compared
with when using the voxel grids V Gt. The latter implies that
superimposing information from multiple frames during the
descriptor extraction procedure can lead to more discriminative
shape representations. Moreover, the proposed temporal-shape
descriptor is also shown to outperform the temporal-shape
method of [34]. This denotes the increased efficiency of the
frequency domain analysis on top of the per-frame extracted
shape descriptors in capturing and modeling the human action
dynamics, compared with the case of estimating the self-
similarity matrix of the same descriptors and applying time
filtering techniques. It must be noted that a comparative
evaluation of the proposed global 3D flow method has not
been included, due to the following facts: a) the great majority
of the global 3D flow descriptors of the literature employ
simple global-level histogram representations (i.e. without
considering the spatial distribution of the flow vectors), like
in [30] [32]; hence, they lead to significantly lower action
recognition performance compared with the proposed global
3D flow descriptor (similar observations with the comparison
of the proposed local-level 3D flow descriptor and the HOF3D
one in Section VI-B). b) the methods of [28] and [31]
include spatial information in the estimated global 3D flow
representation. However, these methods were also not included
in the conducted comparative evaluation. This is due to the
method of [28] being view-dependant, since it employs a

TABLE V
GLOBAL FLOW DESCRIPTOR PARAMETER SELECTION

Parameters Accuracy
K=3, Λ=3, bψ=6, bo=3 75.44%
K=4, Λ=4, bψ=6, bo=3 81.27%
K=5, Λ=5, bψ=6, bo=3 80.88%
K=4, Λ=4, bψ=6, bo=3 81.27%
K=4, Λ=4, bψ=4, bo=3 79.97%
K=4, Λ=4, bψ=6, bo=3 81.27%
K=4, Λ=4, bψ=6, bo=6 77.22%

static 3D space grid division that is defined according to the
single Kinect sensor that is assumed to be present; hence, the
comparison of the proposed global 3D flow descriptor with the
method of [28] would not be fair. The same fact (i.e. view-
variance) holds for the method of [31].

TABLE VI
TEMPORAL-SHAPE DESCRIPTOR PARAMETER SELECTION

Parameter P
Dataset 5 10 15 20
D1 76.53% 71.68% 68.11% 66.64%
D2 69.83% 66.12% 61.64% 57.82%

1) Parameter selection: Similarly to the case of local
descriptor behavior evaluation for different parameter value
selection (Section VI-B1), the behavior of the proposed global
flow and shape descriptors is detailed in this section. It must
be noted that in the followings experimental results are given
only for D1, while similar behavior of the proposed global-
level descriptors has been observed in D2. For D3 and D4, the
parameters selected for D1 were used again. In particular, the
performance accomplished by the application of the introduced
global descriptors is investigated with respect to the values of
the following key parameters:

• Parameters K, Λ, bψ , bo: K and Λ control the par-
titioning of the longitudinal and the polar axis, when
defining the ring-shaped areas Bκ,λ (Section IV-B1),
respectively. Additionally, bψ and bo define the number of
bins of the histograms calculated with respect to angles
ψ and o (Section IV-B1), respectively. In Table V, action
recognition results from the application of the proposed
global flow descriptor for different sets of values of
the aforementioned parameters are given. From the first
group of experimental results, it can be seen that the
ring-shape partitioning using K = 4 and Λ = 4 leads
to the best overall performance. Additionally, the second
group of experiments shows that using more bins in the
histogram representation with respect to angle ψ, which
corresponds to the angle between the horizontal projec-
tion of F̄3D

t (xg, yg, zg) and the projection of the vector
connecting the cylindrical center (xcg, ycg, zcg) with the
examined voxel position (xg, yg, zg) on the horizontal
xz plane, is advantageous. On the other hand, using a
decreased number of bins in the histogram representation
with respect to angle o, which corresponds to the angle of
F̄3D
t (xg, yg, zg) with the vertical axis, leads to increased

performance (third group of experiments).
• Parameter S: This corresponds to the dimensionality

of the global static shape descriptor that is used for
estimating the proposed global temporal-shape one (Sec-
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Fig. 8. Overall action recognition results for a) D1 and b) D2 datasets.

tion IV-B2). For the selected static ‘shape distribution’
descriptor [50], a 3D distance histogram of S = 20 bins
exhibited maximum recognition performance (indicated
as ‘global static shape’ descriptor in Fig. 7); greater
values of S led to a gradual decrease in the overall action
recognition rate.

• Parameter H: This adjusts the length of the shape descrip-
tor vector sequence qh (Section IV-B2). In the current
implementation, H was set equal to 20, which is close
to the average action segment duration in frames in the
employed datasets.

• Parameter P : This defines the number of selected DCT
coefficients to be used in the produced global shape repre-
sentation (Section IV-B2). The performance obtained by
the application of the proposed temporal-shape descriptor
for different values of P is given for both datasets in
Table VI. From the presented results, it can be seen that
the best performance is achieved when only relatively few
frequency coefficients are used (i.e. P = 5); these are
shown to be adequate for accomplishing a good balance
between capturing sufficient temporal information and
maintaining the dimensionality of the overall descriptor
low. To this end, the dimensionality of the proposed
global temporal-shape descriptor is this work is equal to
S · P = 20 · 5 = 100.

D. Overall approach evaluation

Experimental results from the application of all proposed
descriptors and their combination, as well as comparison with
literature approaches, are reported in this section. In Fig. 8
and Tables VII-X, quantitative results in terms of the estimated
recognition rates and overall accuracy are given for the intro-
duced local/global flow/shape descriptors (for D3 and D4 only
overall performance is reported). From the presented results, it
can be seen that generally the global descriptors lead to higher
recognition rates than the local ones. This observation implies
that global-level representations are more discriminative and
provide better modelling of the action dynamics than the local
ones. Global descriptors are advantageous for a wide set of
actions, including local hand movements (e.g. ‘Knocking the
door’, ‘Throwing and punching’) as well as more extensive
whole-body movements (like ‘Push away’ and ‘Golf drive’) in
D1 and D2. Overall, the proposed global flow descriptor leads
to the best recognition performance. However, the overall pro-
posed approach (which consists of simple concatenation of all

computed descriptors in a single feature vector) accomplishes
to achieve increased performance, compared with all cases of
using each individual descriptor alone. The latter demonstrates
the complementarity of the proposed descriptors.

In Tables VII-X, the proposed approach is comparatively
evaluated with numerous methods of the literature and it is
shown to exhibit state-of-art performance in most cases (i.e. 3
out of 4 employed datasets). Generally, literature approaches
can be divided into the following main categories, with respect
to the type of information that they utilize for realizing 3D
action recognition: surface, flow and skeleton-tracking ones.

From the presented results, it is shown that surface methods
(either using only pure depth information, like the proposed
temporal-shape descriptor, or also taking into account surface
normal vectors, like the methods of [53] and [54]) exhibit
satisfactory results across different datasets. Approaches of
this category mainly aim at capturing the global posture of
the performing subjects and through different methodologies
(e.g. frequency domain analysis in the proposed temporal-
shape descriptor, estimation of ‘extended’ normal vectors in
the 4D space in [53] [54], etc.) to encode also temporal
information about the action dynamics. Common characteristic
of all methods is that they take into account all available points
belonging to the human silhouette and assign them equal im-
portance. Concerning the particular methods of [53] and [54],
they focus on exploiting only the orientation of the calculated
normal vectors; hence, they model local surface characteristics
(including information about the observed motion), while
however neglecting the magnitude of motion. Additionally,
since both aforementioned methods do not incorporate any
particular consideration for tackling the problem of view
variance, they present a significant performance decrease for
the ‘cross-view’ evaluation scenario (i.e. when training and test
is realized under different viewing perspectives of the same
actions) in D3; such drawback is not present for the proposed
shape descriptors.

Flow methods, like the proposed global flow descriptor, take
into account both surface and RGB information, and provide a
detailed representation of the action dynamics. They are shown
to exhibit increased recognition performance, provided that
a sufficient number of flow vectors is available for exploit-
ing the full expressiveness capabilities of the corresponding
descriptors. These methods perform at the signal level (flow
field) and for their application require a pre-processing step of
flow calculation. The proposed global flow descriptor exhibits
recognition performance competitive to the state-of-art in most
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TABLE VII
COMPARATIVE EVALUATION IN DATASET D1

Method Accuracy
Local shape 48.40%
Local flow 49.00%

Global shape 76.53%
Global flow 81.27%

Proposed approach 86.78%
Method of [20] 66.62%

TABLE VIII
COMPARATIVE EVALUATION IN DATASET D2

Method Accuracy
Local shape 70.09%
Local flow 66.81%

Global shape 69.83%
Global flow 78.99%

Proposed approach 82.26%
Method of [20] 76.03%
Method of [22] 79.78%
Method of [55] 77.43%

datasets, except from D3 (as it will be discussed in the
sequel). In particular, the proposed global flow descriptor
outperforms all surface methods (proposed shape descriptors,
HON4D [54], ‘super normal vector’ [53]), mainly due to
exploiting more accurate/fine-grained information (i.e. both the
direction and the magnitude of motion at every point of the
human silhouette) and focusing only on points where motion
is observed (also assigning varying importance to every point,
based on the magnitude of the corresponding flow vector).
Global flow performance is inferior compared to the state-of-
art in D3, due to the particular characteristics of this specific
dataset, where all performing human subjects are positioned at
a relatively increased distance from the capturing medium. As
a consequence, the changes in the subjects’ silhouette surface
as well as the exhibited human motion is more difficult to
be efficiently captured and modeled. In order to make this
difference in the characteristics between the datasets more
clear, it is observed that for most actions in D3 only a set of
approximately ∼ 5K motion vectors in total are estimated for
every frame, while in D1 (where the global flow descriptor
shows the best performance compared with the state-of-art)
this number approaches the value of ∼ 20K on average.

Skeleton-tracking approaches, which make extensive use
of domain knowledge and rely on the prior application of a
human joint detector, typically employ straightforward rep-
resentations of the human posture. Their main drawback is
that their efficiency largely relies on the robustness of the
employed skeleton tracker. Most literature approaches for 3D
human action recognition belong to this category and have also
been evaluated in the employed datasets, including the works
of [20] in D1, [20] [22] [55] in D2, [56] [9] [57] [8] [58] [7]
in D3 and [18] [59] [60] in D4. From the presented results,
it can be seen that skeleton-tracking approaches achieve high
recognition rates in all datasets. Especially in D3, skeleton-
tracking methods are shown to be advantageous, compared
with other unimodal approaches. This suggests that skeleton-
tracking methods are advantageous when the silhouettes of
the performing subjects are captured in lower resolution (e.g.
when the performing subject is positioned in a relatively

TABLE IX
COMPARATIVE EVALUATION∗ IN DATASET D3

Cross-subject Cross-view
Method Accuracy Accuracy

Local shape 32.49% 35.11%
Local flow 34.33% 37.42%

Global shape 46.24% 50.39%
Global flow 48.09% 52.44%

Proposed approach 58.48% 66.59%

HOG2 [56] 32.24% 22.27%
Super Normal Vector [53] 31.82% 13.61%

HON4D [54] 30.56% 7.26%
Lie Group [9] 50.08% 52.76%

Skeletal Quads [57] 38.62% 41.36%
FTP Dynamic Skeletons [8] 60.23% 65.22%

HBRNN-L [58] 59.07% 63.97%
2 Layer RNN [7] 56.29% 64.09%
2 Layer LSTM [7] 60.69% 67.29%
2 Layer P-LSTM [7] 62.93% 70.27%

∗ results of literature methods are provided as reported in [7]

TABLE X
COMPARATIVE EVALUATION IN DATASET D4

Method Accuracy
Local shape 76.00%
Local flow 73.50%

Global shape 81.00%
Global flow 89.00%

Proposed approach 93.00%
Histogram of 3D Joints [18] 90.92%

Grassmann Manifold [59] 88.50%
Riemannian Manifold [60] 91.50%

greater distance from the capturing sensor). However, when
a sufficiently large number of motion vectors are available
(e.g. in D1), skeleton-tracking methods are outperformed by
flow ones, as discussed above.

From the results presented in Tables VII-X, it can be
seen that the overall proposed approach, which combines
local/global flow/shape descriptors, outperforms most litera-
ture methods and exhibits state-of-art performance in three
out of the four employed datasets. Concerning comparison
with the recent data-driven approaches in the computer vision
field, the so called ‘Deep Learning (DL)’ approaches, results
of the methods described in [58] and [7] are reported in
Table IX. From the presented results, it can be seen that
the overall proposed approach exhibits competitive recognition
rates. It needs to be reminded, though, that skeleton-tracking
approaches, including the DL methods described in [58] and
[7], are favored in D3, as already discussed.

E. Time performance

Having examined the action recognition performance of the
proposed descriptors in the previous sub-sections, the time per-
formance of the individual parts of the developed framework
are investigated in details here. It must be highlighted that
during the development of the proposed framework no partic-
ular attention was given on time performance-related issues,
i.e. emphasis was primarily put on investigating and compar-
atively evaluating the recognition performance achieved by
exploiting different information types (namely local/global
3D flow/shape information). In other words, significant time
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(a) (b)
Fig. 9. Time performance of a) individual parts of the proposed framework and b) individual descriptors per action type.

performance improvements may be obtained with negligible
or no variation in the corresponding recognition behavior, as
it will become clear from the following discussion.

In Fig. 9a), the average time performance of the key in-
formation processing components of the proposed framework
(depicted in Fig. 1) is given in terms of the calculated frames
per second (fps) processing rate that has been measured
in D1. From the presented results, it can be seen that the
adopted 3D reconstruction algorithm, which generates meshes
comprising approximately ∼ 280K triangles, exhibits the
highest processing rate. This is mainly due to the GPU-based
implementation of the algorithm of [14] that is used in this
work, as opposed to all remaining framework parts that are
implemented in CPU. On the other hand, the 3D flow field
calculation constitutes the most time consuming step, largely
due to the selected 2D optical flow algorithm of [38] (Section
III-B) that is applied on frames of dimension 640x480 pixels.
However, significantly more time efficient optical flow algo-
rithms can be used without significant decrease in the quality
of the computed motion fields [61]. Implementations resulting
in high 3D flow processing rates have also been reported
(Section II-A). Additionally, the observed STIPs detection
rate is measured for 3D grids comprising approximately 6.7
million voxels in total. Regarding the time efficiency of the
proposed descriptors, the local flow one presents the lowest
fps rate, which is mainly due to the increased computations
that are required at every individual STIP position. Addi-
tionally, the extraction time of the proposed local and global
shape descriptors for action recognition is mainly controlled
by the computational complexity of the corresponding static
3D shape descriptors that are involved in their computation
(Sections IV-A2 and IV-B2); the methods of [43] and [50]
that have been used, respectively, were reported to present a
good compromise between recognition performance and time
complexity. Notably, the global flow descriptor (i.e. the best
performing one among the introduced descriptors, as indicated
in Section VI-D) also exhibits the best time performance. The
latter has emerged as a consequence of its straight-forward
computation (Section IV-B1).

Given the fact that the computational complexity of all pre-
processing steps (namely 3D reconstruction, 3D flow estima-
tion, STIPs detection) is not affected by the particular type of
the observed human action, the average time performance of
only the proposed descriptors per action type are reported in
Fig. 9b). From the presented results, it can be seen that for
the case of the local flow descriptor the very low processing

rates are maintained for all action types. Additionally, for
the global shape descriptor, the processing rate presents small
variations among the different actions, mainly due to the fact
that for the employed static 3D shape descriptor of [50] a
constant number of points was used for its computation for
each individual frame. On the other hand, the global flow
descriptor exhibits the best performance for actions that do
not involve extensive body movements (i.e. estimation of a
relatively reduced total number of motion vectors), like actions
‘Clapping’ and ‘Push away’. Moreover, the processing rate of
the local shape descriptor (which is in principle determined
by the total number of detected STIPs) exhibits its highest
values for actions with not so rapid and intense changes in the
shape of the performing subjects, e.g. actions ‘Hand waving’,
‘Knocking the door’ and ‘Golf putt’. It needs to be mentioned
that all reported processing rates were measured using a PC
with Intel i7 processor at 3.5 GHz and a total of 16 GB RAM,
while the capturing rate in D1 is equal to 30 fps (i.e. the
standard Kinect I frame rate).

VII. CONCLUSIONS

In this work, the problem of human action recognition
using 3D reconstruction data was examined in detail and
novel local/global 3D flow/shape descriptors were introduced.
Additionally, comparative evaluation with multiple literature
methods in different public datasets was provided, where
the proposed approach was shown to be advantageous in
most cases. Based on the conducted study, the following key
conclusions can be drawn:

i) All proposed descriptors are experimentally shown to
have a complementary nature and to contribute towards an
increased overall recognition performance.

ii) Global descriptors provide more discriminant action rep-
resentations than local ones, with the performance difference
to be greater when higher quality voxel grids and 3D flow
fields are available; the proposed global 3D flow descriptor
achieves the best overall results in all datasets.

iii) Concerning time performance issues, global descriptors
are advantageous, with global 3D flow, i.e. the best performing
descriptor in terms of recognition accuracy, to exhibit the
highest processing rate.

iv) Combining points (ii) and (iii), if the maximum overall
recognition performance is not the sole criterion for building
a 3D action recognition system, using only global descriptors
is the most efficient solution, since they combine increased
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recognition performance with high processing rates. In case
of significant lack of computational resources, only the use of
global 3D flow is suggested.

v) Concerning the per action type recognition performance,
3D flow is more efficient for modeling actions that incorporate
more fine-grained body/body-part movements, while 3D shape
is advantageous for actions with more extensive and distinctive
whole body postures.

vi) Regarding the per action type time performance, actions
that do not involve extensive body movements lead to higher
processing rates the global flow and local shape descriptors,
while the local flow and global shape ones exhibit relatively
small variations in performance.

vii) With respect to the type of information that is used
for realizing 3D action recognition, it is shown that surface
methods exhibit satisfactory results across different experi-
mental settings. Additionally, flow methods provide a detailed
representation of the action dynamics and exhibit increased
performance, provided that a sufficient number of flow vectors
is available. On the other hand, skeleton-tracking approaches
are shown to be advantageous when the silhouettes of the
performing subjects are captured in lower resolution.

viii) Based on point (vii), it can be claimed that flow meth-
ods are more appropriate when fine-grained motion analysis
is required and high-quality capturing is guaranteed (e.g. in
security, sports or rehabilitation applications). On the other
hand, in case of loose capturing settings, skeleton-tracking
approaches are advantageous.

ix) A truly robust system in the general case should effi-
ciently and adaptively combine all aforementioned information
types (surface, flow, skeleton-tracking).

x) Concerning future research directions, the increased
potentials of the 3D flow information stream could reasonably
be combined with the recent advances in the data-driven ‘Deep
Learning’ community. In particular, Convolutional Neural Net-
works (CNNs) could be employed for estimating discriminant
features along the spatial dimensions of the flow field; current
‘Deep Learning’ methods only utilize Recurrent Neural Net-
works (RNNs) on top of skeleton-tracking data [7] [58], in
order to model correlations in the temporal dimension. Addi-
tionally, a composite CNN-RNN architecture could potentially
handle the challenge of multi-modal information fusion.
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