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Abstract—Automatic segmentation of deep brain structures,
such as the hippocampus (HC), in MR images has attracted
considerable scientific attention due to the widespread use of MRI
and to the principal role of some structures in various mental
disorders. In the literature, there exists a substantial amount of
work relying on deformable models incorporating prior knowl-
edge about structures’ anatomy and shape information. However,
shape priors capture global shape characteristics and thus fail to
model boundaries of varying properties; hippocampus’ bound-
aries present rich, poor and missing gradient regions. On top of
that, shape prior knowledge is blended with image information
in the evolution process, through global weighting of the two
terms, again neglecting the spatially varying boundary properties,
causing segmentation faults. An innovative method is hereby
presented that aims to achieve highly accurate HC segmentation
in MR images, based on the modeling of boundary properties at
each anatomical location and the inclusion of appropriate image
information for each of those, within an ACM framework. Hence,
blending of image information and prior knowledge is based on a
local weighting map, which mixes gradient information, regional
and whole brain statistical information with a multi-atlas based
spatial distribution map of the structure’s labels. Experimental
results on three different datasets demonstrate the efficacy and
accuracy of the proposed method.

Index Terms—Hippocampus segmentation, brain MRI, ACM,
prior knowledge, local weighting scheme, multi-atlas.

I. INTRODUCTION

A ccurate and reliable segmentation of medial temporal
lobe structures, such as the hippocampus (HC), from MR

images is considered a key requirement for the assessment,
treatment and follow-up of various mental disorders [24],
including Major Depressive Disorder (MDD), Post-Traumatic
Stress Disorder (PTSD), schizophrenia (SD), Alzheimer’s Dis-
ease, Bipolar disorder (BD), etc. HC is heavily investigated,
primarily due its role in memory and contextualization. It has
been found to have a key role in the neural mechanisms of
major psychiatric diseases [12], [36]. Scientific literature on
this topic underlines the involvement of HC in the pathogen-
esis of SD and BD [49], supporting that altered volume and
connectivity of these specific areas may represent a specific
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Fig. 1. Sagittal slice of a brain MRI. The white box encloses the HC-
amygdala (AG) complex, while the blue and red contours depict the HC and
AG boundaries respectively.

endophenotype [10]. Volume deficits of HC have been reported
also in first-episode SD patients and in some non-psychotic
relatives of SD probands [47].

Morphological analysis and shape comparisons of HC from
healthy and diseased subjects would indicate abnormal de-
formations, thus leading to possible biomarker identification,
disease prognosis and diagnosis, and optimum treatment iden-
tification. Automatic segmentation offers reasonable promises,
but requires overcoming the inherent difficulties of medi-
cal imaging: noise, limited resolution and partial volume
effect, resulting in weak boundaries between neighboring
structures, especially when they are of the same tissue type
(i.e. gray or white matter). Such an example is the case
of the hippocampus-amygdala complex, where the imaging
resolution is not sufficient to depict the border between them,
as Fig. 1 shows. Because of the above and its morphology, HC
is considered as a very challenging structure to be segmented,
given also that it is among the structures with the lower
segmentation accuracy reported in various works (e.g. [4], [9],
[26], [35], [43]). Based on the aforementioned, the medical
importance of HC in neurodegeneration and the challenge in
segmenting it, a lot of works ([17], [18], [19], [23], [31],
[34], [38]), and workshops [1], focus only on the accurate
and automatic HC segmentation.

Previous work

Various methods for automatic segmentation of challenging
brain structures have been proposed so far. These methods
are broadly divided into three major categories: i) the atlas
or multi-atlas techniques, ii) methods based on deformable
models, known as Active Shape Models (ASMs) and Active
Contour Models (ACMs) depending on whether they incorpo-
rate shape-prior information or not, respectively, and iii) the
Active Appearance Models (AAMs), an extension of ASMs.
There are methods, not directly classified on these categories,
such as [48] that uses a tree of local feature based classifiers
to assign a label to each voxel and then apply a shape prior on
the results, and [38] where graph cuts are utilized to minimize
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an energy term that includes both intensity and prior terms,
which are based on voxel classification and atlas registration.

Atlas-based methods are well-established in medical image
segmentation. Given one or multiple atlases, a segmentation of
a new, test image can be produced, through label propagation.
Non-rigid registration of the atlas(es) at the target image is per-
formed according to some similarity measure. Segmentation
is subsequently performed by applying this transformation on
the labeled image(s) with the use of the calculated warp field.
In the multi-atlas case, there is the extra step of combining
the transformed labeled images (usually through a similarity
score), to offer the test image’s labels. There are various atlas-
based approaches available, [28], [4], [34], [19], [35], [5]
whose differences are basically on how to evaluate the accurate
registration and on how to perform the fusion of the multiple
atlases. A recent enhancement of the label propagation con-
cept, in an effort to avoid the inherent computational cost of
the non-rigid registrations, is offered by [23], [43] through
patch-based approaches for fusing the label images. Other
attempts include fusing the multi-atlas concept with intensity
classification and nearest neighbor connectivity [44], with
intensity modeling [39], or with multi-scale algorithms that use
graph representation [3]. The recent MICCAI 2012 “Workshop
on Multi-Atlas Labeling” [2], offered an updated evaluation
of multi-atlas techniques for the task of brain segmentation,
primarily focusing on variations of the label fusion task. As it
appears, for the task of HC segmentation the winning concepts
are the joint label fusion, especially combined with corrective
learning, as proposed by Wang et al. [51], and the non-local
STAPLE proposed by Asman et al. [6]. Detailed evaluation
results on this challenge and the outcomes of the proposed
method on it, are given in the experimental section of this
paper.

ACMs are based on the evolution of a curve or surface
according to the intensities’ statistical information (region-
based ACM) [16] or the image gradients (edge-based ACM)
[15] in order to divide the image into meaningful parts.
Level-set based ACMs have become very popular, as they
can overcome numerical instabilities, while are capable of
handling topological changes during evolution. Despite their
popularity, by being solely dependent on information extracted
from the image, ACMs have been proven insufficient for chal-
lenging applications [13]. To overcome this, prior knowledge
restrictions can be incorporated. In [17], [18] prior knowledge
is structure specific (based on anatomical descriptions of topol-
ogy, position, distances and their relationships), defined by
neuroanatomical landmarks in a training set. This anatomical
knowledge is then modeled in the energy guiding the deforma-
tion process. In other ASM based approaches, a statistical prior
on shape variations from a training set is built by means of
Principal Components Analysis (PCA) and incorporated into
the segmentation framework to restrain the evolving contour.
The first attempt was reported in [20], where shapes were
represented by point distribution models, while in [37] signed
distance functions were utilized in order to be more robust to
misalignments. Later this concept was also extended in [13],
where the shape prior was integrated with the Mumford-Shah
functional. However, the PCA based statistical prior used in

these works imposes global shape constraints. In [52], apart
from the shape prior, a neighborhood prior is also modeled,
to accommodate the influence between neighboring structures.
Readers are referred to [29] for a more thorough analysis on
ways for statistical shape modeling of prior knowledge.

ASMs have further been extended to AAMs, which were
firstly introduced by Edwards et al. [25] and later extended by
Cootes et al. [21], [22]. The concept of AAMs is to model
not only the shape prior, but also a texture prior. PCA is
used to construct the linear subspaces that model the variation
of both shape and texture information in a given population.
Segmentation is performed by finding the optimal projection
parameters, through matching the synthesized image produced
by those parameters, with the test image. Recent advances in
AAM-based techniques include multi-band AAMs, where the
appearance of derived features is used apart from intensity
[46], AAM modeling in combination with patch-based label
fusion [30], and the use of level-sets [31], [32], which help
to overcome the shortcomings of landmark-based evolution.
The major advantage of AAMs is the very light computational
cost, however it has been argued in [8] that AAM by being
a local search technique requires good initialization, and thus
the authors propose the inclusion of a graph-based matching
to improve the initialization stage of the algorithm. A more
detailed discussion on AAMs can be found in [27].

The aforementioned techniques, and their descendants, pri-
marily focus on different ways of capturing prior knowl-
edge and incorporating it into the segmentation framework.
Furthermore, modeling of the varying properties of a struc-
ture’s boundary is of significant importance. Hippocampus’
boundaries present rich, poor and missing gradient regions.
Appropriate modeling of such knowledge can be beneficial
for its segmentation. Moreover, in most approaches prior
knowledge is blended with image information through global
weighting of the two terms, causing segmentation faults. In
an effort to model the boundary’s varying properties, we have
proposed in [53] a learning technique to recognize which
anatomical locations of the boundaries offer sufficient image
information, and to construct a local weighting map, called
Gradient Distribution on Boundary (GDB). This map serves
for appropriate blending of image and prior information (prior
information is modeled through a spatial distribution map of
the labels given a training set) during an ACM evolution,
i.e. GDB defines at a voxel level, where and at which extent
image and/or prior information should be trusted. This concept
was recently extended in [54], where GDB became adaptive
(AGDB), based on the ACM evolving contour.

In this paper, we tried to make GDB more generic, in order
to avoid continuously registering it to the evolving contour,
as AGDB does, yet without sacrificing its contribution to the
segmentation task. Hence, we extended the nature of GDB;
initially, GDB was the local balancer between two energy
terms, but the inclusion of more than two types of energy
terms led us to construct a three-phase GDB (3GDB), having
one phase for the strong edge boundary parts, a second one
for the blurred/noisy boundary parts, and a third one for the
missing edge boundary parts. In short, the proposed method
is an ACM method on top of the multi-atlas concept. It
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Fig. 2. Overall diagram of the proposed method; the training phase presented on the left can be roughly divided into three steps (i) non-rigid registration
of the training MRIs to the target MRI and application of the resulting transformation to the corresponding labeled training images (Li), (ii) correction of
the registered atlases by the use of the target’s estimated gray matter produced by a tri-segmentation algorithm (G), and (iii) construction of the 3GDB and
the Spatial Distribution Map (L), which incorporate prior knowledge about the varying HC boundary properties and the spatial distribution of hippocampal
labels, respectively, using the corrected atlases. The segmentation procedure presented on the right refers to the level-set evolution step. Region information,
gradient information, whole brain statistics and prior knowledge about the distribution of labels are blended into a common ACM scheme by the use of the
3GDB in order to drive the level-set evolution.

extracts and models prior information in a twofold way, i.e.
a spatial distribution map and a boundary properties map
that can both be straightforwardly incorporated into a well
defined ACM framework. 3GDB tries to optimally blend three
different types of image information with the prior informa-
tion. More precisely, the main contributions offered are: i) the
incorporation of three different types of image information
in an effort to better describe the various properties of the
desired structures, i.e. whole brain and regional statistical
information, and gradient information, ii) a multi-atlas based
prior knowledge corrected by the test image, to both initiate
the active contour and to incorporate anatomical information
into the segmentation procedure, iii) a novel way of capturing
prior knowledge about the varying boundary properties of
the structures, i.e. the development of 3GDB, and iv) a new
dataset of manual segmentations is offered to the rest of
the community, in an effort to promote common datasets
for experimentation and fair comparisons among the existing
methods.

The rest of the paper is organized as follows: section
II describes the proposed framework, and more specifically
subsection II-C describes how 3GDB is constructed, sub-
section II-D how it is used to drive the contour evolution,
while subsection II-E describes the four energy terms used.
Experimental results and comparisons are presented in section
III, and finally conclusions are drawn in section IV.

II. PROPOSED METHOD

Fig. 2 depicts the overall diagram and the conceptual flow
of the proposed methodology. In a nutshell, the proposed
method is an ACM method, whose energy to be minimized
consists of four energy terms blended by means of 3GDB, on
top of the multi-atlas concept. Thus, it starts with the multi-
atlas methodology to build prior knowledge, construct 3DGB
and then an ACM stage follows, that takes into account the
varying boundary properties and both local and global image
information, in order to refine the multi-atlas output.

A. Multi-atlas
Consider a set of i = 1, ..., N training images and their cor-

responding labeled images Li, i = 1, ..., N , where Li(v) = 1
with v = (x, y, z) denoting the coordinates of a voxel, for
voxels that belong to HC and Li(v) = 0, otherwise. Each
image in the training set is considered to be an atlas and
is non-rigidly registered to the test image I . Registration is
performed using the symmetric normalization methodology
(SyN) [7], from the ANTs toolkit, which is also used to
calculate the similarity metric si, which is the cross correlation
value between the registered anatomical image and the target
image. For the calculation of the similarity metric the whole
MR images are used rather than a region of interest.

In order to accommodate for registration errors and improve
the reliability of the registered atlases, statistics of the whole
brain, regarding the tissue distribution of the target image are
used. Towards this, a binary map (G) of the gray matter,
with 1 indicating a gray matter voxel, is produced by the
use of a tissue segmentation algorithm (tri-segmentation). G is
referred to as target’s estimated gray matter in the rest of the
document. The tri-segmentation, classifies each voxel into the
three tissue types: cerebrospinal fluid, gray matter and white
matter. For this purpose, skull-stripped images, produced by
means of BET [45], were used as input to the FAST software
tool. Both tools are part of the FSL software suite1. The
segmentation algorithm used by FAST is based on a hidden
Markov random field (HMRF) model, which is combined with
an expectation-maximization (EM) algorithm in order to solve
the maximum likelihood estimation of the model parameters
[55]. Considering HC as a gray matter structure, G is used to
exclude non-gray matter parts from the registered atlases. This
way, the atlases AtlasLi are produced, which are warped to
the space of the target image and corrected by means of G.

Following registration and correction of all label images of
the training set, the multi-atlas based Signed Distribution Map

1http://www.fmrib.ox.ac.uk/fsl/



TRANSACTIONS ON BIOMEDICAL ENGINEERING 4

(SDM) is calculated through a weighted averaging and stored
in L as:

L =
∑

i=1,..,N

si ·AtlasLi (1)

where all si have been normalized so that
∑

i=1,..,N

si = 1. Thus,

L offers the labels’ distribution, i.e. how likely a voxel v
belongs to the desired structure.

B. 3GDB based ACM on top of multi-atlas

The ACM energy to be minimized contains four energy
terms in total. The first three are image terms, which contain
information extracted from the test image itself, while the
fourth term is the prior term, containing information extracted
from a training set.

The first image term is the edge term (EE), whose purpose
is to attract the segmentation onto evident boundaries, on
regions where they do exist. It is modeled as initially proposed
by Caselles et al. in [15].

The second image term is the region term (ER), modeled as
in [16], which tries to create two regions (the inner and outer)
of common intensity statistics, i.e. a homogeneous region with
low variance, contrasting to its surroundings that have different
mean value. However, in a T1-weighted brain MR image gray
matter typically has lower intensity levels than white matter,
but higher levels than cerebrospinal fluid (CSF). As the region
term is trying to separate between two regions, it separates the
white matter regions from the rest and falsely groups the lower
levels containing both gray matter and CSF.

To overcome the latter, the third image term (EG) is
introduced, which acts competitively with the second term.
This term is based on whole brain statistics, and classifies
each voxel to CSF, gray, or white matter and it is modeled
as the energy term of a region based level set applied on a
slightly smoothed - to accommodate for classification errors-
version of G (Gs). Thus, the purpose of the third term is to
constrain the evolution to the gray matter, since HC belongs to
it, and to act competitively with the second term (the second
term takes into account local information, while the third term
whole brain information).

The fourth term is the prior term (EP ), which constrains
the evolution on the allowable space of HC. The prior term
is again modeled as the energy term of a region based level-
set applied on SDM (L). Region-based level sets were again
chosen due to the absence of edges in this map.

The need of having those four energy terms arises from
the challenging nature of HC, and each of those terms has
a specific role. The HC has parts with strong edges, where
the gradient term becomes useful, has other parts with weak
boundaries, on which the region term would correctly guide
the segmentation, and has parts with unrecognizable bound-
aries, where the prior term takes the lead and prevents contour
leakage. The whole brain term’s role is to take advantage of the
more robust whole brain statistics and correct inefficiencies of
the region-term, preventing it from leakage to darker voxels.

C. Tri-phase Gradient Distribution on the Boundary (3GDB)
3GDB’s role is the efficient blending of the energy terms.

3GDB is a threefold weighting map that has equal dimensions
with the image, i.e. N1×N2×N3× 3 dimension (Nk are the
dimensions of the MR image). 3GDB assigns to each voxel
a specific weighting factor, defining the contribution of each
update term to the contour evolution, at a voxel level. 3GDB
defines the density of the gradient values on the HC boundary,
thus which parts of the boundary demonstrate sufficient image
information, that one should trust. Hence, on the parts with
only some image information, 3GDB passes gradually the
control of the contour evolution to the region terms, while
on the parts with insufficient information it is passed on the
prior term, in order to constrain it in the allowable space.

Fig. 3 provides an illustration of the construction of 3GDB,
while the pseudo-code in Algorithm 1 provides further insights
on the 3GDB extraction. More specifically, the i− th training
image is non-rigidly registered to the target, the transformation
is applied on the label image, which is then corrected by
the target’s estimated gray matter image (G), as mentioned
in the previous subsection. The boundary of the structure,
as suggested by the corrected atlas, is extracted. The Canny
edge detector [14] is applied on the target twice, with two
different thresholds, once to compute only strong edges, and
the other to compute both strong and weak (but existing)
edges. The Canny results are binary intersected with the
estimated structure’s boundary, and the one is subtracted from
the other. Note that in order to define the thresholds used
to determine strong edges, Matlab’s automatic approach was
used2. Subsequently, to extract the weak edges, the high
threshold that Matlab defined for the previous case was halved,
to produce reasonable weak edges. The weak edges were
subsequently defined by subtracting the strong edges from the
weak and strong edges. This way we identify the parts of the
structure’s boundary that have significant, medium or missing
gradient information, which are stored in 3GDBj , i.e. the first
phase (A1j) captures the boundary parts with strong gradients
(as defined by the first Canny output), the second phase (A2j)
captures the boundary parts with medium strength gradients
(defined by subtracting the second Canny result from the first),
while the third one (A3j) the parts with missing boundaries
(the boundary parts where none of the Canny outputs has
identified as edge). Before this operation, dilation with a cubic
structuring element of size 3x3x3 was applied to accommodate
for the discrepancies between the Canny’s outputs (Fig. 3(c,
d)) and the atlas’ HC corrected boundary (Fig. 3(b)). The
resulting phases (A1j , A2j , A3j) of 3GDBj are averaged over
the training population, to produce three grayscale 3D images
i.e. A1, A2, A3, where A1 + A2 + A3 = 1, which compose
the 3GDB map.

D. 3GDB based update of ACM
Based on the level set analysis of [42], having an image

I ∈ R3 , an evolving curve C in the image domain Ω ∈ R3 is
defined implicitly, and is represented as the zero level set of
a signed distance function φ : R3 → Ω

2http://www.mathworks.com/help/images/ref/edge.html
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Data: A test image I and N atlases with their label images Li
for every atlas image do

1. register the atlas to I (→ Fig. 3(a));
2. apply the resulting transformation to Li;
3. intersect binary AtlasLi with the gray matter of I;
4. extract the “corrected” structure’s mask from step 3, and its
boundary (→ Fig. 3(b));
5. apply the Canny edge detector to the corrected AtlasLi to
extract strong edges (→ Fig. 3(c));
6. apply the Canny edge detector to the corrected AtlasLi with a
lower threshold, to extract both strong and weak edges (→ Fig.
3(d));
7. dilate the output of steps 5 and 6, find their intersections with
the boundary of step 4, and subtract them from each other (→ Fig.
3(e)), to reveal the boundary parts with strong, weak and missing
edges;

end
Averaging the output of step 7 over the training set;
Result: The 3GDB (Fig. 3(f)).

Algorithm 1: Extraction of 3GDB.

(a) (b) (c) (d) (e) (f)
Fig. 3. (a) A registered atlas, (b) the registered atlas’ HC boundary, after
correcting it with the target’s estimated gray matter, (c) the Canny edge result
of (a) with a high threshold, (d) the weak gradient edges of (a), produced by
binary subtracting (c) from the Canny edge result of (a) with a low threshold,
(e) the high-gradient (blue) and medium-gradient (red) parts of (b), (f) the
averaged over all training population three phase map 3GDB for a specific
subject, after dilation, where blue depicts the regions with trustworthy gradient
information, the orange to red regions depict the medium gradient information
and pink the regions where prior knowledge is leading.

C = {v ∈ Ω | φ(v) = 0} (2)

C partitions Ω into the inside to C set Ω1, where φ(v) < 0,
and to the outside set Ω2, in which φ(v) > 0.

Given 3GDB, and its three phases A1, A2, and A3, the
contour update equation reads:
∂φ

∂t
= A1 ◦

∂φEE

∂t
+A2 ◦

[
∂φER

∂t
+
∂φEG

∂t

]
+A3 ◦

∂φEP

∂t
(3)

where the operation ◦ denotes the Hadamard product.

E. ACM Energy Terms

1) Edge term (EE): Based on the Geodesic Active Con-
tours model (GAC) [15], contour evolution is regulated by the
edge stopping function g, terminating it once high gradient
values are detected:

EE(M) =

∫
Ω

g(v)|∇φ(v)|dv (4)

The level set update term of contour φ based on EE reads:
∂φEE

∂t
= g|∇(φ)|(div

(
∇φ
|∇φ|

)
+ α) +∇g · ∇φ (5)

where α is the balloon force that controls shrinking or expand-
ing of the contour. The edge stopping function used is defined
as in [15] by:

g(|∇(I)|) =
1

1 + |∇Gσ ∗ I|
(6)

where Gσ stands for the Gaussian convolution kernel of
size 3x3x3 and standard deviation 0.5. The curvature of the
evolving curve div

(
∇φ
|∇φ|

)
acts as a regularizer for the level

set by making it smooth during evolution.

2) Region term (ER): The region-based term was modeled
according to the well known Chan-Vese model [16], where
for a given image I ∈ Ω, the energy functional ER to be
minimized is formulated as:

ER(M) = λI1

∫
Ω1

|I(v)− cI1|2dv + λI2

∫
Ω2

|I(v)− cI2|2dv (7)

where v ∈ Ω, cI1, cI2 are the average intensities of I in Ω1 and
Ω2 respectively, while λI1, λI2 are balancing factors between
the properties of interior and exterior regions. The contour
update equation of φ based on minimizing ER reads:

∂φER

∂t
= δε(φ)

[(
µ div

( ∇φ
|∇φ|

)
− ν−

− λI1(I − cI1)2 + λI2(I − cI2)2

)]
(8)

where µdiv
(
∇φ
|∇φ|

)
is a regularization term added to control

contour’s smoothness by allowing evolution based on the
curvature and thus enforcing the smoothness of the contour, ν
controls the propagation speed, and δε(φ) is the Dirac function.

3) Gray matter term (EG): The purpose of this term is the
inclusion of information that is based on whole brain features,
indicating which voxels are likely to be included in the desired
structures and which are not. To do so, a smoothed version of
G (Gs), to accommodate for any small tri-segmentation error,
is produced by using a Gaussian convolution kernel of size
3x3x3 and standard deviation 0.5. The same level-set contour
evolved in I is also evolved in Gs, simultaneously. Having no
interest on the edges of Gs (which have been smoothed), but
rather on keeping the evolving contour inside the gray matter
region, the Chan-Vese model is applied on Gs:

EG(M) = λGs
1

∫
Ω1

|Gs(v)−cGs
1 |

2dv+λGs
2

∫
Ω2

|Gs(v)−cGs
2 |

2dv

(9)
where again cGs

1 , cGs
2 , λGs

1 and λGs
2 have the same nature as

the ones in equation (7), while the update equation is similar
with (8).

4) Prior term (EP ): In order to derive the formulation of
the prior energy term, the same level-set contour evolved in
I and Gs is also evolved in L, simultaneously. Since L is an
image with very smooth transitions, its energy term is again
modeled through the Chan-Vese model, thus becoming:

EP (M) = λL1

∫
Ω1

|L(v)− cL1 |2dv+λL2

∫
Ω2

|L(v)− cL2 |2dv (10)

where cL1 , cL2 , λL1 and λL2 have again the same nature as the
ones in (7) and the update equation is similar with (8).

Thus, given the above, equation (3) reads:
∂φ

∂t
=A1 ◦

[
g|∇(φ)|(div

( ∇φ
|∇φ|

)
+ α) +∇g · ∇φ

]
+

+ δε(φ)

[
(2A2 +A3) ◦

(
µ div

( ∇φ
|∇φ|

)
− ν
)
−

−A2 ◦
(
λI1(I − cI1)2 − λI2(I − cI2)2

)
−

−A2 ◦
(
λGs

1 (Gs − cGs
1 )2 − λGs

2 (Gs − cGs
2 )2

)
−

−A3 ◦
(
λL1 (L− cL1 )2 − λL2 (L− cL2 )2

)]
(11)

where the balancing factors of the interior and exterior regions
for images G and L, for which both the interior and the
exterior regions have uniform intensities, were set to be equal
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(λGs
1 = λGs

2 = λL1 = λL2 = 1). In the case of the
image I, given that the foreground is quite uniform while the
background is quite varying, proper segmentation (in order
to ignore the background information) requires λI1 >> λI2.
After experimentation λI1 = 1, λI2 = 0 were set respectively.
The remaining parameters were experimentally tuned and the
values used were: µ = 0.0001, ν = −0.01, α = −1.5.

Initialization of φ is provided by the Spatial Distribution
Map; the most likely voxels to belong to the HC as offered
by L (i.e. SDM’S voxels with maximum values), are used as
seeding region.

F. Incorporating sophisticated fusion

Obviously, our methodology strongly depends on the multi-
atlas concept and the fusion that involves. Fusion is used
both in the extraction of the prior term and in the 3GDB
calculation. In both cases, the simple and straightforward
weighted averaging was used, based on the cross correlation
of the target and each atlas. However, significant efforts and
improvements in the field of label fusion on top of multi-
atlas have been achieved in the last years. Therefore, in
our methodology we have incorporated the joint label fusion
strategy [50] (the authors are kindly offering their code3),
substituting the simple weighted average both in equation (1)
and in 3GDB calculation. The joint label fusion strategy is
based on estimating the joint probability of two atlases making
a segmentation error at a voxel, modeling this way the pairwise
dependency between atlases, in an effort to minimize the total
expectation of labeling error.

This way we are able to compare our contribution against
fusion techniques and show that our methodology can act
supplementary to sophisticated fusion concepts, leading to
enhanced results.

III. EXPERIMENTS

A. Datasets

Our experimentation dataset, on which we built our method-
ology, consists of 23 brain MR images, randomly selected
from the OASIS repository [41], with the constraint to cover
uniformly the whole age span. The OASIS repository offers
a large number of 1.5T T1-weighted MR images of very
high quality with reduced noise levels, since four scans have
been collected from each individual and are averaged. The
images are accompanied by demographic information and
Clinical Dementia Rating (CDR), but not by ground-truth
segmentations. Thus a professional radiologist has offered us
his manual HC delineations, which are offered publicly4.

To further demonstrate the efficiency of our method, we
experimented with the publicly available dataset of IBSR,
consisting of 18 manually segmented MRIs, and the dataset
offered by the challenge conducted in the recent “Workshop
on Multi-Atlas Labeling”, held during MICCAI 2012 [2].
The OASIS-MICCAI dataset is another subset of the OASIS

3http://www.nitrc.org/projects/picsl malf/
4http://vcl.iti.gr/hippocampus-segmentation/

Method Dice Description
µ± σ

3GDB Joint 0.86 ± 0.04 3GDB based ACM, joint label fusion
3GDB 0.85 ± 0.04 3GDB based ACM, weighted average

fusion
ACM Joint 0.85 ± 0.04 ACM without any local blending,

joint label fusion
Multi-atlas Joint 0.84 ± 0.04 Multi-atlas, joint label fusion
3GDB NO 0.84 ± 0.07 3GDB based ACM, weighted average

fusion, no gray matter correction
ACM 0.83 ± 0.05 ACM without any local blending,

weighted average fusion
Multi-atlas 0.82 ± 0.04 Multi-atlas, weighted average fusion
ACM NO 0.82 ± 0.08 ACM without any local blending,

weighted average fusion,
no gray matter correction

3GDB NO2 0.82 ± 0.08 3GDB based ACM, weighted average
fusion, no gray matter correction
no gray matter term in ACM

Multi-atlas NO 0.80 ± 0.08 Multi-atlas, weighted average
fusion, no gray matter correction

Babalola et al. [8] 0.77 ± 0.07 AAM method

TABLE I
OASIS SUBSET: RESULTS USING THE MEAN DICE COEFFICIENT.

repository, which contains 15 MRIs for training purposes and
20 MRIs (coming from 15 individuals) for testing.

Segmentation performance is evaluated with the broadly-
used Dice coefficient (D), which measures set agreement: let
H be the actual volume of a structure, and Ĥ the segmentation
result, then D equals:

D =
2|Ĥ ∩H|
|Ĥ|+ |H|

=
2 · Pr ·Re
Pr +Re

=
2 · TP

(FP + TP ) + (TP + FN)
, D ∈ [0, 1] (12)

where TP , FP and FN correspond to True Positive, False
Positive and False Negative sets, respectively, while Pr and
Re refer to Precision and Recall. A value of D = 0 indicates
no overlap between the actual and estimated volume, while a
value of D = 1 indicates perfect agreement.

B. Experiments on the OASIS dataset

To evaluate the efficiency of our methodology, the results
of the very recent method from [8] (who kindly provide their
implementation publicly) on this dataset are presented. The
implementation of [8] includes its own training procedure with
another dataset. In this work it was applied for testing, as
is, in each of the OASIS MRIs, which does not allow for
a straightforward comparison, but rather to be used as an
indication on what sort of Dice coefficient values one should
expect on it.

A series of experiments were conducted, to evaluate the
behavior of our method, which are reported in Table I. Firstly,
we produced segmentations without any local weighting map
to blend the energy terms (abbreviated as ACM). As expected
the concept of the local blending of the energy terms enhances
the segmentation accuracy (Case A comparisons in Table II),
by approximately 2% of Dice value in all cases with decreased
standard deviation, showing that the sophisticated combination
of the energy terms does enhance the segmentation perfor-
mance. One-tailed paired t-tests were also performed to test
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Case Method Compared with p-value
3GDB No ACM No 1.5x10−4

A 3GDB ACM 2.3x10−4

3GDB Joint ACM Joint 2.0x10−4

Multi-atlas Multi-atlas No 7.0x10−3

B 3GDB 3GDB No 5.0x10−2

ACM ACM No 2.0x10−1

3GDB No Multi-atlas No 1.0x10−5

C 3GDB Multi-atlas 1.0x10−4

3GDB Joint Multi-atlas Joint 7.0x10−5

TABLE II
OASIS SUBSET: ONE-TAILED PAIRED T-TESTS WERE PERFORMED TO

TEST FOR STATISTICALLY SIGNIFICANT IMPROVEMENTS.

the statistical significance of the offered improvements (Table
II). As it can be seen, the p-values are smaller than 0.05 in all
cases indicating statistical significance for the 2% performance
increase.

Furthermore, we tested the contribution of the gray matter
based correction on the multi-atlas (Case B comparisons),
which is more than 1% in all cases, while the dispersion of the
results is smaller in all cases. The corresponding one-tailed p-
values are shown in Table II. Apart from correcting registration
errors, we believe that in this dataset the gray matter correction
tries to exclude from HC the CSF voxels contained in slightly
inaccurate manual segmentations as shown in Fig. 4 (there is a
3% of HC voxels mismatch between the manual segmentations
and the FSL/FAST output). In addition, the gray matter
information contributes in the complete pipeline not only in
performing the gray matter correction of the registered atlases,
but also in the level set evolution, by introducing the gray
matter term, that tries to restrict the evolution within the gray
matter. To visualize the contribution of the gray matter energy
term (EG), Fig. 5 shows how it helps to exclude dark voxels,
which ER falsely introduces and EP falsely agrees, as they do
lie in highly probable regions. Hence, taking into account both
global and regional information, benefits the segmentation
performance. To define its overall impact on the proposed
methodology, an experiment without using the gray matter
neither for the gray matter correction, nor during the level-set
evolution was conducted (3GDB NO2). The resulting Dice
coefficient is 0.82 whereas including the gray matter (3GDB)
the corresponding Dice coefficient reaches to 0.85 (one-
tailed p-value comparing 3GDB NO2 with 3GDB is equal
to 0.0047). This fact demonstrates the statistically significant
positive effect of the inclusion of information regarding gray
matter distribution in the proposed pipeline.

Moreover, we can observe the contribution of the 3GDB
based ACM on top of the multi-atlas (Case C comparisons),
which is more than 2% in all cases, and is not decreased
regardless of how good the multi-atlas output is (through gray
matter correction and/or joint label fusion). In addition, the
improvement is statistically significant in all cases (Table II).
Finally, the proposed overall contribution can be derived by
comparing 3GDB vs Multi-atlas NO, which is of 5% and half
σ values, or 3GDB Joint vs Multi-atlas NO when the joint
label fusion is included, which offers 6% (σ = 0.04 instead
of σ = 0.08).

Fig. 6 shows comparison plots of 3GDB Joint method,

Fig. 4. Errors in the ground-truth contours in two cases (MR slice and the
corresponding segmented tissues). On the images depicting the segmented
tissues, white, light gray and dark gray depict white matter, gray matter and
CSF respectively. The green contours depict the ground-truth boundary and
the red arrows point to regions where cerebrospinal fluids were erroneously
included in the hippocampal mask by the expert.

Fig. 5. Segmentation results on a sagittal slice, visualizing the benefit of
including EG. The green contour depicts the ground-truth, while the red the
segmentation result excluding (left) and including (middle) EG, respectively.
On the right, the middle result is overplotted on Gs.

MA Joint method, ACM Joint and the AAM method of
Babalola et al. [8], on every subject of the dataset, using four
different metrics: the Hausdorff distance, the average undi-
rected distance, the precision vs recall diagram and the Dice
coefficient. The subjects are ranked according to ascending
ground-truth HC volume, while the age of each subject and
its corresponding CDR are also presented to provide an insight
to the effect of volume, age and/or CDR on the segmentation
accuracy. From the plot, only for the AAM method can
be observed a clear bias towards performing worst in small
size hippocampi. Furthermore, the agreement between the
manually and automatically segmented volumes by means of
the four methods was studied. Towards this, the Bland-Altman
plots are also presented in the same figure, which allow the
observation of the mean difference and the limits of agreement
between automatically and manually segmented volumes as
well as the spread of automatic-manual volume differences.
The plots show that all four methods have similar width of
agreement, but quite different mean values. More specifically,
no significant bias between 3GDB Joint and the manually
segmented volumes can be seen, although a light tendency
to overestimate small and medium sized hippocampi and to
underestimate larger ones can be observed. A similar behavior
can be observed for ACM Joint method, but at the same time
ACM Joint presents a signed difference mean that is different
from zero, which is not true in the case of the 3GDB Joint
method. The Bland-Altman plot comparing the ground-truth
volumes and the ones obtained by Multi-atlas Joint method
shows an important underestimation bias, while for the AAM
method of [8] a high overestimation bias can be noticed. These
findings demonstrate that the 3GDB Joint estimated volumes
are closer to the true ones than the ones traced by the other
automated methods.

Segmentation illustrations on two cases are also offered in
Fig. 7, and the 3D reconstruction of the mean HC along with
the errors of the four methods. Analyzing the results, it can
be observed that the region around the CA1 part of the HC
head is more susceptible to large errors for all methods apart
from the AAM method in which case the error is spread
out over the whole HC body. It is worth noticing that the
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Method A% B%

3GDB Joint 43% 9.6%
MA Joint 29% 8.6%

ACM Joint 37% 8.7%
AAM 45% 3.2%

Fig. 6. OASIS subset: Comparison of 3GDB Joint, Multi-atlas Joint, ACM Joint and the AAM method of [8], using four metrics, and the corresponding
Bland-Altman plots. The optimum position in the Precision-Recall space is the upper right corner (1, 1), towards which the 3GDB Joint asterisks have a
clear tendency. On the Dice similarity index plot, the Clinical Dementia Rating (CDR) of each subject is represented by the use of colored asterisks (red
asterisk stands for CDR=1, green for CDR=0.5 while blue for CDR=0). Furthermore, the age of each subject appears in a bounding box above the subject’s
corresponding asterisk indicating his/her CDR. Subjects are ranked by ascending ground-truth HC volume. The table on the right provides: A% the percentage
of error voxels that are adjacent to the boundary, and B% the percentage of the error voxels for which the manual segmentation and FSL/FAST disagree. The
figures suggest that the majority of the error voxels in all methods are not adjacent to the HC boundary, while the error that corresponds to the suspicious
regions of erroneous manual segmentation is small, for all four cases.

Fig. 7. OASIS subset: Visualizing results, on a sagittal slice and the
corresponding 3D reconstruction of the segmented HC by means of the
3GDB Joint (top row), the Multi-atlas Joint method (second row), the
ACM Joint method (third row) and the AAM method of [8] (bottom row)
on case 17 (left column), case 2 (middle), and the mean 3D reconstruction
over the dataset (right). Pink and light green correspond to False Positives
and False Negatives voxels, respectively, while red, white, yellow and blue
highlight True Positives of the proposed method, the Multi-atlas Joint method,
the ACM Joint method and the AAM method, respectively. The proposed
method has an apparent efficiency on the HC-CSF borders, due to the inclusion
of EG.

Multi-atlas Joint method presents more False Negatives than
3GDB Joint and ACM Joint methods, which present a more
similar behavior, with more concentrated error in the identified
region. Furthermore, 3GDB Joint compared to ACM Joint
method has mainly less False Negatives, but also less False
Positives.

C. Comparisons on the IBSR dataset

On the IBSR dataset several other methods have published
their performance during the last years, and the common
metric among all is the Dice coefficient, thus a straightforward
comparison becomes available, given that for our results the

leave-one-out procedure was followed, using only the IBSR
dataset. Those methods are primarily multi-atlas based that
make use of other concepts on top of the multi-atlas. There
is also a method with the very recent concept of patch-based
modeling [43], and the well known FreeSurfer algorithm [26].
The results provided in Table III indicate the accuracy of the
proposed method, as it produces the best published results for
the task of HC segmentation.

From Table III, one can conclude the following. The en-
hancements of the gray matter correction in this case (compar-
ing cases Multi-atlas vs Multi-atlas NO) are minimal. The fact
that the improvement is minimal, contrasting with the one in
the OASIS subset, is due to the low imaging quality in IBSR,
resulting in inaccurate FSL estimations of the gray matter.
Using manually segmented gray matter masks (provided also
by IBSR), instead of estimated gray matter with the use of
FSL, the Multi-atlas (using the gray matter correction) and the
proposed 3GDB Joint methods reach segmentation accuracy
of 0.88 and 0.89, instead of 0.83 and 0.87 when using the
estimated gray matter, respectively. This result further shows
that even with the most accurate gray matter estimate, there is
still information that the 3GDB based ACM can exploit on top
of the multi-atlas result. To further clarify the meaning of erro-
neous gray matter segmentation, it should be noted that 100%
of the MR voxels of the manually segmented hippocampi
belong to the gray matter according to IBSR ground-truth
gray matter masks, whereas based on FSL estimation of gray
matter, only the 78.19% belong to it. As a result, a number of
HC voxels have been erroneously excluded from it during the
step of gray matter correction when using the FSL-based gray
matter. However, the proposed 3GDB based method still offers
improvements, even by using this poor estimate. This finding
suggests that utilization of gray matter correction could indeed



TRANSACTIONS ON BIOMEDICAL ENGINEERING 9

Method Dice Description
µ± σ

3GDB Joint 0.87 ± 0.02 3GDB based ACM, joint label fusion
ACM Joint 0.86 ± 0.02 ACM without any local blending,

joint label fusion
Multi-atlas Joint 0.85 ± 0.02 Multi-atlas, joint label fusion
3GDB 0.84 ± 0.03 3GDB based ACM, weighted average

fusion
Multi-atlas 0.83 ± 0.02 Multi-atlas, weighted average fusion
Multi-atlas NO 0.83 ± 0.03 Multi-atlas, weighted average fusion,

no gray matter correction
Rousseau et al. [43] 0.83 Patch-based labelling
Lötjönen et al. [39] 0.81 Multi-atlas & intensity modeling
Sdika [44] 0.81 Multi-atlas & intensity classification
Khan et al. [35] 0.76 ± 0.03 Multi-structure registration

& atlas correction
Artaech. et al. [5] 0.75 Multi-atlas with multiple

combination strategies
Akselrod et al. [3] 0.69 Multi-scale segmentation with

multi-atlas based prior
Fischl et al. [26] 0.75 ± 0.02 FreeSurfer

TABLE III
IBSR DATASET: COMPARISON RESULTS USING THE MEAN DICE

COEFFICIENT (µ) AND THE CORRESPONDING STANDARD DEVIATION (σ)
WHERE AVAILABLE.

Method Compared with p-value
3GDB Multi-atlas 5x10−4

3GDB Joint Multi-Atlas Joint 6x10−9

3GDB Joint ACM Joint 1x10−7

Multi-atlas Multi-atlas No 6x10−4

TABLE IV
IBSR DATASET: STATISTICAL SIGNIFICANCE OF THE IMPROVEMENT;

P-VALUES FROM PAIRED ONE-TAILED T-TESTS ARE REPORTED.

be beneficial for the task of segmentation, as long as the gray
matter estimation is relatively reliable.

Furthermore, the contribution of the local weighting scheme
(comparing 3GDB Joint vs ACM Joint) is about 1.5% and it
has been proved statistically significant (Table IV).

The overall 3GDB based ACM on top of multi-atlas
(comparing 3GDB vs Multi-atlas, and 3GDB Joint vs Multi-
atlas Joint) offers statistically significant enhancements vary-
ing around 1.5-2.5% (Table IV), demonstrating a clear con-
tribution of the proposed concept, which outperforms the
previously best result of Rousseau et al. [43] about 4%.

D. Comparisons on the OASIS-MICCAI dataset

Twelve different groups submitted their works in the chal-
lenge carried out at the MICCAI 2012 workshop [2], offering
25 different implementations in total. From the published
segmentation masks, we were able to extract the HC segmen-
tation results and compute the corresponding Dice coefficients,
which are reported in Table V and in Fig. 8. In order to have
a fair ranking, we are using three decimal values, since the
differences among the four highly ranked methods are below
1%. The challenge assessed a number of multi-atlas methods,
with the differences among them primarily to be on the fusion
technique they utilize. Around half of the implementations
(including the 3 highly ranked) were using for the task of
non-rigid registration the ANTs toolkit, thus a fair comparison
with our results is available, in terms of the contributions on
top of the multi-atlas.
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Fig. 8. OASIS-MICCAI dataset: Segmentation results in Dice based boxplot
format, where the red dashes correspond to median values, while the blue
asterisks to the mean values.

Method Dice
µ± σ

1. 3GDB Joint (case iv) 0.870 ± 0.020
2. ‘PICSL BC’ 0.869 ± 0.020
3. ‘NonLocalSTAPLE’ 0.866 ± 0.024
4. ‘PICSL Joint - Multi-atlas Joint’ (case iii) 0.862 ± 0.026
5. ‘MALP EM’ 0.860 ± 0.020
7. ‘CIS JHU’ 0.851 ± 0.022
8. ‘maper’ 0.849 ± 0.031
9. ‘BIC-IPL-HR’ 0.846 ± 0.018
10. 3GDB (case ii) 0.846 ± 0.038
11. ‘SpatialSTAPLE’ 0.846 ± 0.018
12. ‘CRL Weighted STAPLE ANTS+Baloo’ 0.843 ± 0.038
13. ‘DISPATCH’ 0.841 ± 0.036
14. ‘STEPS’ 0.841 ± 0.038
15. ‘CRL Weighted STAPLE ANTS’ 0.840 ± 0.036
16. ‘SBIA SimMSVoting’ 0.840 ± 0.043
17. ‘SBIA SimRank+NormMS’ 0.839 ± 0.038
18. ‘CRL MV ANTS’ 0.839 ± 0.036
19. ‘SBIA BrainROIMaps MV IntCorr’ 0.838 ± 0.037
20. ‘CRL STAPLE ANTS’ 0.838 ± 0.037
21. ‘CRL MV ANTS+Baloo’ 0.837 ± 0.041
22. ‘CRL STAPLE ANTS+Baloo’ 0.837 ± 0.042
23. ‘BIC-IPL’ 0.837 ± 0.022
24. ‘SBIA BrainROIMaps JaccDet IntCorr’ 0.837 ± 0.037
25. ‘SBIA SimRank+NormMS+WtROI’ 0.836 ± 0.041
26. Multi-atlas (case i) 0.833 ± 0.032
27. ‘UNC NIRAL’ 0.830 ± 0.034
28. ‘CRL Probabilistic STAPLE ANTS’ 0.828 ± 0.038
29. ‘CRL Probabilistic STAPLE ANTS+Baloo’ 0.827 ± 0.044

TABLE V
OASIS-MICCAI SUBSET: RESULTS USING THE MEAN DICE COEFFICIENT.

p-values 3GDB Joint PICSL BC NonLocalSTAPLE PICSL Joint MALP EM

3GDB Joint − 0.8435 0.0325 0.0003 7x10−8

PICSL BC 0.8435 − 0.0610 0.0005 4x10−7

NonLocalSTAPLE 0.0325 0.0610 − 0.0057 0.0090
PICSL Joint 0.0003 0.0005 0.0057 − 0.5066
MALP EM 7x10−8 4x10−7 0.0090 0.5066 −

TABLE VI
OASIS-MICCAI SUBSET: PAIRED TWO-TAILED T-TESTS WERE

PERFORMED TO TEST FOR STATISTICALLY SIGNIFICANT DIFFERENCES
BETWEEN THE FIVE TOP RATED METHODS AS PRESENTED IN TABLE V.
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Fig. 9. OASIS-MICCAI subset: Comparison of the four top ranked methods, as presented in table V, on four metrics, and the corresponding Bland-Altman
plots. Subjects are ranked by ascending ground-truth HC volume and their ages are provided in bounding boxes. Note that in the OASIS-MICCAI subset, the
Clinical Dementia Rating (CDR) for all subjects is 0 or not provided by OASIS (young subjects), except for subject 16 which has CDR=0.5.

In order to compare our methodology with the published
results and show our contribution, we used the same experi-
mentation protocol with the challenge, and we have performed
on this dataset four different experiments: (i) our implemen-
tation of the multi-atlas scheme based on the ANTs non-rigid
registration, fusing the atlases based on the cross-correlation
ANTS is providing (abbreviated as Multi-atlas), (ii) our 3GDB
based ACM on top of (i) (3GDB), (iii) the ANTs based multi-
atlas using the joint label fusion of [50] (Multi-atlas Joint),
and (iv) our 3GDB based ACM on top of (iii) (3GDB Joint). It
should be noted that the ‘PICSL Joint’ and Multi-atlas Joint
methods are actually the same method. The only difference
between them is that the first was implemented by the authors
of ‘PICSL Joint’, whereas the latter is our reproduction of that
method, using the publicly available tools of ANTs toolkit and
joint label fusion. Since both produce identical results, in all
tables and figures, we refer to Multi-atlas Joint along with
‘PICSL Joint’ as PICSL Joint- Multi-Atlas Joint.

Comparing case (ii) to (i), and case (iv) to (iii) shows that
the proposed 3GDB based ACM offers a constant and statis-
tically significant amount of enhancement of above 1% (one-
tailed p-values are equal to 3.6x10−8 and 1.9x10−4, respec-
tively). That verifies the findings in the previous datasets, and
means that the 3GDB based ACM exploits more information
than the multi-atlas and the fusion scheme, regardless of how
sophisticated the fusion scheme is.

Furthermore, paired two-tailed t-tests (Table VI) were used
to test for significantly different means among the five top
ranked methods. As demonstrated in the table, when compar-
ing each method to its predecessor based on Dice Coefficient,
the resulting outcomes did not have statistically significant
differences. Significant differences were, however, observed
when comparing each method to one that was placed at least
two places further down the list.

In this dataset, results of the gray matter correction are
not presented, as we noticed that it does not help improving
the performance. In the OASIS-MICCAI dataset, the manual

segmentation protocol used suggests the inclusion of white
matter in HC (i.e. alveus and fimbria). Thus, inevitably, the
gray matter correction cannot offer improvements in this
dataset. On the contrary, the HC manual segmentation protocol
in the OASIS and IBSR datasets defines HC as a homogenous
gray matter structure.

Fig. 9 presents comparison plots between the four top
ranked methods on every subject of the OASIS-MICCAI
dataset by means of the four different metrics as in Fig. 6.
All methods present a light tendency to perform better with
medium and larger HC rather than with small sized ones.
In the same figure, the Bland-Altman plots are provided,
showing the agreement between the segmented and manually
traced volumes. The plots demonstrate difference means close
to zero and almost symmetric distribution around zero for
3GDB Joint and PICSL BC methods. Both methods therefore
present no significant bias. A small overestimation bias is ob-
served in the case of NonLocalSTAPLE and PICL Joint meth-
ods. It is worth noticing that among all methods the spread
of the automatic-manual volume differences for 3GDB Joint
is smaller than for the others methods. This fact indicates
automatically segmented volumes closer to the manually seg-
mented ones when using 3GDB Joint method.

E. Execution time

The overall proposed pipeline requires (i) 2 hours per train-
ing image for the task of the non-rigid registration, using ANTs
toolkit, (ii) almost an hour for the joint label fusion of the
registered atlases, using the PICSL Multi-Atlas Segmentation
Tool, (iii) 30 minutes on average to build 3GDB and, (iv)
few to forty minutes for the ACM evolution, which varies
due to the speed of the level set convergence, in an Intel
Core i7 3.40Ghz computer, 16GB RAM. Note that cropped
MR volumes were used for 3GDB construction and ACM
evolution to speed up the procedure, while whole brain MR
volumes were used for the tasks of non-rigid registration and
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joint label fusion in order to achieve better accuracy. Thus,
utilization of the proposed 3GDB concept increases slightly
the computational time compared to Multi-Atlas Joint (our
contribution requires on average 45 minutes on top of the
Multi-atlas Joint, which is around 3% of the total time, when
using 10 training images).

IV. CONCLUSIONS

This work proposes an ACM method on top of the multi-
atlas concept. The method is based on the use of local blending
of four specific energy terms for segmenting the challenging
deep brain structure of HC. The novel local weighting scheme
proposed intends to imitate the human expert segmentation
thinking, on where and at which extent to trust image infor-
mation (and which kind of it) and experience, while dealing
with the multivariate nature of brain MR images. The pro-
posed concept for modeling the varying boundary properties
and subsequently choose among and blend different kind of
information at a local level, can potentially be applied to other
cases of similar nature, regarding the imaging properties and
information, such as structures with multivariate surroundings,
whose boundary demonstrates varying gradients (from very
rich to even missing) at specific anatomical locations. Ex-
periments verify the appropriateness of the specific energy
terms and their local blending, since the proposed method
produces better results than other state of the art methods
in three datasets, one of which was used for evaluation
purposes of different algorithms in a very recent segmentation
challenge. Moreover, experiments verify the appropriateness of
our methodology to be used on top of any multi-atlas and label
fusion scheme, as it exploits structure specific information in
a different way. The proposed method benefits from fusion,
and acts complementary to it, as it systematically increases
the segmentation accuracy.

The algorithm’s most time consuming part is the non-rigid
registration. Future extensions of this work would include a
shift towards the patch based approaches ([23], [43]), while a
very interesting idea would be to combine our concept with
the bias correction concept.

Another interesting point is the fact that the method was
initially designed taking into consideration manual segmenta-
tion protocols that define HC as a homogenous gray matter
structure. In our OASIS subset, the manual segmentation
protocol is a close variant of the protocol used in the study
of [40] and considers HC as a gray matter structure. The
volumetric comparisons in the IBSR dataset using the ground-
truth segmentations of the gray matter and HC, have revealed
that according to the used manual protocol 100% of HC
is regarded as gray matter in the dataset. Currently, it is a
matter of discussion and research to conclude to a common
protocol that should, or not, include non-gray matter parts in
the hippocampal region. The thin white matter layers of alveus
and fimbria are the only non-gray matter parts that might
be included, depending on the manual segmentation protocol
([33], [11]). Such a manual segmentation protocol is used in
the OASIS-MICCAI subset.

Although the gray matter correction step apparently could
not offer improvements in the OASIS-MICCAI subset due

to the difference in the manual segmentation protocol, the
proposed method has been proved efficient, even in the
OASIS-MICCAI dataset and it compared favorably to the
other very recent methods. This fact proves the applicability of
the proposed method in both manual segmentation protocols.
However, given that our motivation of utilizing the gray
matter information was to exclude the CSF voxels, rather than
the white matter parts, future work will focus on replacing
the gray matter term with a combined gray-white matter, to
accommodate for the manual protocols that include white
matter in HC. Another alternative could be to identify within
3GDB the white matter borders and assign in those regions of
3GDB high weights to the prior term (which will be voting to
include alveus and fimbria, as they exist also in the training
set).

Concluding, given the role and importance of HC in many
brain disorders, any statistical significant improvements in
terms of segmentation accuracy might prove valuable, as it
could lead to more reliable and more detailed biomarker iden-
tification. The proposed method by offering highly accurate
HC segmentations in three different datasets (even in one with
a different definition of hippocampus than the one taken into
account for our method), poses a good candidate to be used
in large-scale experimentation, for establishing HC volumetry
as a disease biomarker.

ACKNOWLEDGMENT

The authors would like to thank the IBSR and the OASIS
teams for providing us with their datasets. We would also
like to give special thanks to Angelos Baltatzidis M.D.,
Radiologist for providing us with the manual segmentations
of the selected OASIS MRIs. Furthermore, for the OASIS-
MICCAI segmentations we would like to thank the workshop
organizers, Prof. Bennett Landman and Prof. Simon Warfield,
and Neuromorphometrics, Inc.

REFERENCES

[1] “CAPH’08: Workshop on the Computational Anatomy and Physiology of
the Hippocampus”, in Medical Image Computing and Computer Assisted
Intervention (MICCAI), 2008 (http://picsl.upenn.edu/caph08/).

[2] “Workshop on Multi-Atlas Labeling”, in Medical Image Computing
and Computer Assisted Intervention (MICCAI), 2012 (https://masi.vuse.
vanderbilt.edu/workshop2012/index.php/Main Page).

[3] A. Akselrod-Ballin, M. Galun, J.M. Gomori, A. Brandt, R. Basri, “Prior
knowledge driven multiscale segmentation of brain MRI”, Medical Image
Computing and Computer-Assisted Intervention (MICCAI), vol. 10, 2007.

[4] P. Aljabar, R.A. Heckemann, A. Hammers, J.V. Hajnal, D. Rueckert,
“Multi-atlas based segmentation of brain images: atlas selection and its
effect on accuracy”, NeuroImage, vol. 46, pp. 726-738, 2009.

[5] X. Artaechevarria, A. Munoz-Barrutia, C. Ortiz-de-Solorzano, “Combi-
nation strategies in multi-atlas image segmentation: Application to brain
MR data”, IEEE Trans. on Med. Imaging, vol. 28(8), 2009.

[6] A. J. Asman, and B. A. Landman, “Multi-AtlasSegmentation using Non-
Local STAPLE”, MICCAI Workshop on Multi-Atlas Labeling, 2012.

[7] B. B. Avants, C. L. Epstein, M. Grossman, J. C. Gee, “Symmetric
diffeomorphic image registration with cross-correlation: Evaluating au-
tomated labeling of elderly and neurodegenerative brain”, Medical Image
Analysis, vol. 12(1), pp. 26-41, 2008.

[8] K. Babalola, T. Cootes, “Using parts and geometry models to initialise
Active Appearance Models for automated segmentation of 3D medical
images”, IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, pp. 1069-1072, 2010.



TRANSACTIONS ON BIOMEDICAL ENGINEERING 12

[9] K. Babalola, B. Patenaude, P. Aljabar, J. Schnabel, D. Kennedy, W. Crum,
S, Smith, T. Cootes, M. Jenkinson, and D. Rueckert, “An evaluation of
four automatic methods of segmenting the subcortical structures in the
brain”, Neuroimage, vol. 47(4), pp. 1435-1447, 2009.

[10] H. P. Blumberg, J. Kaufman, A. Martin, R. Whiteman, J. H. Zhang, J.
C. Gore, “Amygdala and hippocampal volumes in adolescents and adults
with bipolar disorder”, Archives of General Psychiatry, vol. 60(12), 2003.

[11] M. Boccardi, M. Bocchetta, R. Ganzola, N. Robitaille, A. Redolfi, S.
Duchesne, C. J. Jack, G.B. Frisoni, EADC-ADNI Working Group on The
Harmonized Protocol for Hippocampal Volumetry and for the Alzheimer’s
Disease Neuroimaging Initiative, “Operationalizing protocol differences
for EADC-ADNI manual hippocampal segmentation”, Alzheimer’s &
Dementia, 2012.

[12] P. Brambilla, J. P. Hatch, J. C. Soares, “Limbic changes identified by
imaging in bipolar patients”, Current Psychiatry Reports, vol. 10(6), 2008.

[13] X. Bresson, P. Vandergheynst, J. P. Thiran , “A Variational Model
for Object Segmentation Using Boundary Information and Shape Prior
Driven by the Mumford-Shah Functional”, Int. J. of Computer Vision,
vol. 68(2), pp. 145-162, 2006.

[14] J. Canny, “A Computational Approach to Edge Detection”, IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8(6), pp. 679-698, 1986.

[15] V. Caselles, R. Kimmel, G. Sapiro, “Geodesic active contours”, Int. J.
of Computer Vision, vol. 22(1), pp. 61-79, 1997.

[16] T. Chan and L. Vese, “Active contours without edges”, IEEE Transac-
tions on Image Processing, vol. 10, pp. 266-277, 2001.

[17] M. Chupin, A. R. Mukuna-Bantumbakulu, D. Hasboun, E. Bar-
dinet, S. Baillet, S. Kinkingnehun, L. Lemieux, B. Dubois, and L.
Camero,“Anatomically constrained region deformation for the automated
segmentation of the hippocampus and the amygdala: Method and vali-
dation on controls and patients with Alzheimer’s disease”, Neuroimage,
vol. 34(3), pp. 996-1019, 2007.

[18] M. Chupin, E. Gérardin, R. Cuingnet, C. Boutet, L. Lemieux, S.
Lehéricy, H. Benali, L. Garnero, and O. Colliot, “Fully automatic hip-
pocampus segmentation and classification in Alzheimer’s disease and
mild cognitive impairment applied on data from ADNI”, Hippocampus,
19(6), pp. 579-587, 2009.

[19] D. L. Collins and J. C. Pruessner, “Towards accurate, automatic seg-
mentation of the hippocampus and amygdala from MRI by augmenting
ANIMAL with a template library and label fusion”, NeuroImage, vol.
52(4), 2010.

[20] T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham, “Active shape
models-Their training and applications”, Computer Vision and Image
Understanding, vol. 61, pp. 38-59, 1995.

[21] T. F Cootes, D. G. Edward, C. J Taylor, “Active appearance model”,
Proc. of European Conference on Computing and Visualization, 1998.

[22] T. F. Cootes, D. J. Edwards, and C. J. Taylor, “Active Appearance
Models”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 23(6), 2001.
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