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Abstract—The exploration of the potential correlations of traffic conditions between roads in large urban networks, which is of pro-

found importance for achieving accurate traffic prediction, often implies high computational complexity due to the implicated network 

topology. Hence, focal methods are required for dealing with the urban network complexity, reducing the performance requirements 

that are associated to the classical network search techniques (e.g. Breadth First Search). This paper introduces a graph theory-based 

technique for managing spatial dependencies between roads of the same network. In particular, after representing the traffic network 

as a graph, the local neighbors of each road are extracted using Breadth First Search graph traversal algorithm, and also a lower com-

plexity variant of it. A Pearson product-moment correlation coefficient based metric is applied on the selected graph nodes for a pre-

scribed number of level sets of neighbors. In order to evaluate the impact of the new method to the traffic prediction accuracy 

achieved, the most correlated roads are used to build a STARIMA model taking also into account the possible time delays of traffic 

conditions between the inter-related roads. The proposed technique is benchmarked using traffic data from two different cities: Berlin 

(Germany) and Thessaloniki (Greece). Benchmark results indicate not only significant improvement on the computational time re-

quired for calculating traffic correlation metric values, but also reveal that a different variant works better in different network topol-

ogies, after comparison to third party approaches. 

  

Index Terms—Data processing, Graph theory, Time series analysis, Travel time prediction. 
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I. INTRODUCTION 

Nowadays optimizing the quality of transportation either for individuals or fleets of vehicles has emerged as an important need 

with significant social, economical and ecological impact, hence interest in developing intelligent transportation systems has 

grown significantly in respect to this. Predicting traffic, in terms of travel time, within multiple intervals ahead in urban networks 

is a challenging task with clear benefits, especially on the improvement of the accuracy of traveller information systems. 

In order to quantify traffic and apply travel time prediction techniques in a transportation network, appropriate measurable de-

scriptors or combinations of them are used as input data. Common traffic descriptors include traffic flow, density, occupancy 

etc., according to the source of input data, e.g. loop detectors provide occupancy measurements, whereas GPS-enabled devices 

provide speeds measurements, which are the traffic descriptors adopted in this paper. 

Based on previous evidence [1], it is clear that the traffic volume of a particular road is affected by traffic in neighboring roads 

in the same network. Hence the discovery of potential dependencies and subsequent correlations in terms of traffic related pa-

rameters among roads in the same network can result in better prediction accuracy. As urban networks are expanding, the size of 

the available and constantly monitored traffic data is growing. Hence, the calculation of potential correlations within data be-

comes computationally expensive. To this end, new techniques for sufficiently managing large volumes of available traffic data 

in reasonable time are required for enabling efficient travel time prediction capabilities. 

This paper presents a travel time prediction technique that deploys a novel algorithm for the reduction of the required time and 

the associated computational resources for the calculation of traffic dependencies in large volumes of traffic data. The approach 

is based on graph theory principles. In order to discover the aforementioned dependencies, the Coefficient of Determination 

(CoD) metric is computed, but only for a prescribed number of level-sets of neighbors. By applying a modified version of the 

Breadth First Search algorithm, not only the required time for computing the CoD is sufficiently reduced, but also the prediction 

accuracy is improved. 

In brief, the main contributions of this paper are: 

 The development of a new technique for the reduction of the time required to compute traffic correlations, between roads in 

big urban networks, by means of CoD. 

 The improvement of travel time prediction accuracy leveraging on the previous technique and the deployment of a novel time 

series spatiotemporal model. 

The rest of this paper is organized as follows. Section II reviews current research results associated with our work, whereas 

Section III gives a detailed description of the implemented model. Section IV presents the evaluation framework, introducing the 

two large volume datasets used for deploying and testing our model. The same section presents the benchmark traffic prediction 

algorithms, that were used for comparison to our model and presents the experimental results both in terms of prediction accura-
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cy and computational complexity. Finally, Section V concludes the paper, reviewing the main contributions and suggesting fu-

ture directions. 

II. RELATED WORK 

The profound importance of travel time (or traffic) prediction on the design of intelligent transportation systems has lead to the 

development of various techniques that can be basically classified into the following four major categories: naïve, parametric, 

non-parametric and hybrid. 

Naïve methods are characterized by the absence of any advanced mathematical model for the exploitation of traffic data. They 

are selected because of their minimum computational overhead and their ease of deployment, but they have significant draw-

backs with respect to the achieved accuracy. The most common approach in this category is the computation of the historical 

average (HA).  

Parametric techniques are based on specific models whose general structure has been defined in advance and only the exact 

values of a given set of parameters need to be determined. The learning procedure, through which these parameters are set is 

implemented heuristically on the basis of the available data that refer to the historical behavior of the system. The most common 

methods of this category are derived from time series analysis, i.e., Auto-Regressive Moving Average (ARMA), Auto-

Regressive Integrated Moving Average (ARIMA) and Space-Time Auto-Regressive Integrated Moving Average (STARIMA). 

Stathopoulos and Karlaftis [2] developed a parametric state-space approach in order to model traffic flow whereas, for the same 

purpose, Kamarianakis and Prastacos [3] developed a STARIMA model with robust behaviour. An extension to this system is 

described by Min and Wynter [4] who target at dealing with various shortcomings of the classical STARIMA, such as the sup-

posed stationarity of the system and the constant relationship among the neighboring links. The travel time prediction approach 

presented in this paper also falls into this category. 

On the other hand, the term ‘non-parametric’ is not used in order to indicate the absence of parameters, but rather to underline 

the fact that this category of travel time prediction techniques does not presuppose a particular model structure. Hence, both the 

exact model structure and its parameters need to be specified during the training phase of the model. Non-parametric techniques 

can be classified into two broad categories: model-based and memory-based. Model-based methods exploit the available histori-

cal data only during the training procedure, in order to build the model and define its parameters. After the model is built no ad-

ditional use of historical data is necessary. Common examples of model-based prediction techniques include Artificial Neural 

Networks (ANNs) [5], Random Forests (RFs) and Support Vector Machines (SVMs). Vlahogianni et al. [6] introduced the auto- 

and cross-correlated effect of traffic flow series in a neural network model [2] in the form of external information. The same ap-

proach was also adopted by various researchers that produced multi-step ahead predictions, like [7], [8] and [9] with acceptable 

levels of accuracy. Memory-based methods require retaining a database of historical samples, since besides training, the same 
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data is used for formulating the estimation of the model’s future states. The most prominent memory-based prediction method is 

non-parametric regression mainly represented by the k-Nearest Neighbor (kNN) technique. Smith and Demetsky [10] introduced 

the kNN technique and proved that it outperforms both the naïve method of historical average and the parametric ARIMA model 

in terms of robustness against variable datasets. However, Williams et al. [11] showed that the results obtained through Seasonal 

ARIMA modelling exceed the precision of the k-Nearest Neighbor technique. 

An important subset of traffic prediction techniques that has been expanded in the last years is the one that includes those al-

gorithms that explore and exploit spatiotemporal correlations between roads of an urban network in order to increase prediction 

accuracy. In this context, Asif et al. [12] proposed a methodology for mining the spatial and temporal prediction performance 

trends in large scale urban networks by using unsupervised learning techniques such as k-means clustering, Principal Component 

Analysis (PCA), and Self Organizing Maps (SOM). Similarly Mitrovic et al. [13] use matrix decomposition techniques to exploit 

correlations among roads. Initially using a Singular Value Decomposition (SVD) based technique [14] a subset of road segments 

from a traffic network is created. Using the training traffic dataset of the selected roads and that of the whole network a relation-

ship matrix is constructed and Support Vector Regression (SVR) models for the selected roads can be trained. At the evaluation 

step, travel time prediction is enabled only for the selected roads using the aforementioned SVR models, and the results are ex-

trapolated to the whole network using the prefabricated relationship matrix. Finally, Kamarianakis et al. [15] propose a regime-

switching space-time parametric approach, which leverages the Least Absolute Shrinkage and Selection Operator (LASSO), not 

only for solving an over-determined system of equations, but most importantly, for selecting the features of the model, i.e., those 

neighboring roads to select for predicting travel time of a specific road.  

Finally, noticeable research effort has been dedicated on the development of hybrid techniques, which exploit the advantages 

of both parametric and non-parametric ones. In this respect, Zhang [16] proposed a methodology that combines ARIMA and 

ANN processes. In brief, an ARIMA model is initially applied, in order to analyze the system's linear constituents and subse-

quently an ANN is deployed to model the residuals from the ARIMA model, which are expected to contain all the information of 

traffic data non-linearity. Eventually, the feedback from the ANN is provided as input for defining the error terms of the ARIMA 

model. Furthermore, methods like [17] which combines fuzzy logic and ANN in order to build a Non-linear Autoregressive 

Moving Average with exogenous inputs (NARMAX) model or Quek's et al. [18] Fuzzy ANN also seem promising. 

A key aspect of our work is the exploitation of graph theory tools and techniques for dealing with the computational complexi-

ty of traffic correlations exploration problem. Graphs serve as a mathematical model for network modelling and are used in many 

fields. As Easley and Kleinberg [19] pointed out, graphs can be used in order to model networks from several different fields 

such as: (i) communication networks, where nodes represent  computers and edges direct links, through which messages can be 

transmitted, (ii) social networks, where nodes represent people and edges social interactions between them, and so on. Among 
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other application domains, graph theory is used in transportation as well, where according to [20] a graph is called transportation 

network when it is used to model the transportation of a commodity from one place to another. According to [21] there are main-

ly two graph representations of an urban structure: the primary and the dual. The former is based on the relations between junc-

tions through their streets, where every node represents a junction and every edge a street or route between junctions. The latter 

describes the relationships between the roads of the network, in which every node represents a street and every edge a common 

point between any two streets. Both representations are used for analyzing complex urban networks [22][23]. 

III. OUR METHOD 

A. Traffic correlations 

The discovery of traffic correlations between roads in an urban network can result in better prediction accuracy. Usually, the 

correlations between roads are estimated in terms of proximity. In this context, a distance metric, e.g. the Euclidean distance, is 

used rendering the most correlated roads for a road of interest among those, which are closer to it. This concept is expanded in 

[1], where the correlations are estimated in terms of traffic status, rather than proximity. For example, the high traffic of a high-

way at current time can affect the traffic of other roads that do not abut to it, in the future. Such correlations are explored using a 

Pearson product-moment correlation coefficient-based metric known as Coefficient of Determination (CoD). The latter is applied 

between any pair of roads in the network resulting in “neighbors” that are not necessarily geographically close to each other, but 

share similar traffic patterns. CoD describes the correlation between the present (future) values of the traffic time series of a road 

of interest, and the past (present) values of the series of another road within the network. The CoD metric between two time se-

ries x and y at lag k is defined by the following equation: 

 2
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(1) 

 

CoD is computed for all pairs of roads (i, j) of the network (except of (i,i)). This process is extremely computationally expen-

sive for major urban networks with thousands of road segments. For example, for the downtown area of a medium sized urban 

traffic network with a few thousands of road segments and for one day period, the CoD computations may need more than 30 

hours to be completed on a dual core Intel i5 CPU at 3.33GHz with 4GB RAM. Although the process runs offline, the computa-

tional time is prohibitive considering that we use traffic time series that correspond to only one day of the whole traffic dataset 

and exploring only the central area of a large urban network. 
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B. Graph representation 

In order to deal with the computational complexity of the CoD computations, namely to reduce the computational time, the 

following principle is applied. 

Since every road of the network is either one way or bidirectional, the in and out roads for a road of interest are defined. The 

in roads are those that end to the start or end point of the road of interest, whereas the out roads are those that start from these 

points. The in roads import traffic at the road of interest, whereas the out roads export traffic (Fig. 1). Based on this concept the 

urban network is represented as a geometric directed graph, in which every node represents a road and every edge a straight in or 

out connection. In particular, there is an edge between two nodes A, B if and only if B represents an in or out road of A (and vice 

versa). 

1

2

3

Start 
Point

5

4

6

End 
Point

Road of 
interest (R)

In: 

• 1, 2 (end to Start Point)

• 6 (ends to End Point)

Out: 

• 3 (starts from Start Point)

• 4, 5 (start from End Point)  

Fig. 1. In and out roads 

 

 The adjacency matrix A of the graph is given in Table I. The non-zero elements in row i of the adjacency matrix represent the 

out connections to a road i and those in the respective column the in connections. It should be noted that roads that allow traffic 

in both directions are considered both in and out. Consequently, the corresponding adjacency matrix of the graph represents all 

the first order connections (neighbors) between roads in the network.  

 

TABLE I 

ADJACENCY MATRIX OF THE GRAPH 

    X  X 

X  X X    

X X  X    

X X X  X   

    X    

   X     
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The neighbors of a road (vertex) i at distance d (hops) can be found by accumulating all the neighboring vertices at distance d. 

These neighbors define an adjacency class which is by one smaller than distance d (adjacency class = d-1). It should be noted 

that adjacency class 0 (distance 1) for a specific vertex consists only of the vertex itself. The level sets of neighboring vertices 

are closely related to vertex i. Thus, CoD can be computed only for a prescribed number of level sets of neighbors, which are at 

maximum distance d from the vertex of interest. The neighbors at distance d can be computed by using the in roads, the out 

roads, or both, thus taking into account only the roads that redirect traffic to the road of interest, or the traffic is redirected to 

them from the road of interest, or both, respectively. The computation of the neighboring nodes is performed using a variant of 

the Breadth First Search (BFS) graph traversal algorithm (Fig. 3), which accumulates level sets of vertices up to the prescribed 

number. It should be noted that the BFS algorithm is one of the two most frequently used graph traversal algorithms in the litera-

ture due to its effectiveness. The other most used algorithm, i.e. Depth First Search (DFS), is not useful in this case because it 

searches the graph in depth and does not create a neighborhood of nodes as needed, but consecutive in depth connections of 

nodes. The process of accumulating neighboring vertices is schematically presented in Fig. 2.  

The Modified Breadth First Search (MBFS) algorithm accumulates the neighbors with respect to out rows. In order to accu-

mulate the neighboring vertices with respect to the in roads, the transpose adjacency matrix A
T
 is used. In the case where both in 

and out roads are needed the A+A
T
 is used as the adjacency matrix. The adjacency matrix A+A

T
 is not explicitly computed and 

stored, in order to reduce memory requirements, instead the rows of A and A
T
 are used to determine all the neighbors of a vertex. 

Thus, for the case of A+A
T
 adjacency matrix, step 6 should be replaced by { } { }T

v vB B A A   . 

Level Set 1

Level Set 2

Level Set 3

Level Set 4

 

Fig. 2. Neighboring vertices accumulation 
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Fig. 3. MBFS algorithm 

 

In step 6 of the MBFS algorithm where the union of sets is required, duplicate entries must be avoided. Thus, instead of accu-

mulating all neighbors and sorting out the duplicates and the already visited vertices, a structure containing a dense vector and a 

list is used. The vector is of length equal to the total number of vertices and is initialized to zero. The list retains the positions of 

the non-zero elements in the vector. The candidate vertices to join the set B are only accepted if their respective position in the 

vector is zero and they have not been accumulated in N (step 8) during a previous iteration. Thus the N set is also implemented 

using the same strategy. When the algorithm finishes, the neighboring vertices are copied to a vector with length equal to the 

number of neighbors corresponding to the ls level sets of the vertex u. As mentioned before, the neighboring vertices of a vertex 

u at distance one is the vertex u itself.  

The computational complexity of the MBFS algorithm can be defined as O(N∙(nnz(A)/N)
Ap

), where N is the number of nodes in 

the graph, nnz(A) is the number of non-zero elements of the adjacency matrix A of the graph and Ap the adjacency class until 

which neighbors are selected. This is O(aN), a > 1, which is significantly improved compared to the naïve O(N
2
). 

The memory requirements of the algorithm are limited to two dense vectors of order equal to the total number of vertices and 

two lists. The adjacency matrices are stored in the Matrix Market format [24]. Moreover, another double vector with size equal 

to the number of non-zero elements in the adjacency matrix is stored for future use, i.e. add weights to each road. Furthermore, 

since the adjacency matrices are sparse, the memory storage format used was the Compressed Sparse Row, which requires three 

vectors in order to store a sparse matrix [25]. 

C. Graph based Lag-STARIMA  

The presented travel time prediction algorithm, namely Graph based Lag STARIMA – GBLS, is based on the classic paramet-

ric traffic prediction model STARIMA. The latter is based on ARIMA(p, d, q) model that was first introduced in  [26] to predict 

the next values of a time series given its past values. The model takes into account the spatiotemporal relations between time 

series and is defined by (2): 
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(3) 

The parameters of the STARIMA model take into account the spatial and temporal lags of the multiple time series. Hence, k 

and l denote the temporal and spatial lag respectively, while φk,l and θk.l are the auto-regressive and moving average non-seasonal 

parameters. The neighboring matrix W is an N × N square matrix that contains the weights that generally define the spatial rela-

tionship of the terms. For instance, the weights wij, where i and j refer to two separate roads, might represent such metrics as the 

number of roads between i and j, the amount of public transportation available connecting the two roads, and even the flow rates 

upon these avenues. In the presented case, the W matrix is filled with values representing the traffic relationships between roads 

based on the CoD metric. Given two roads i and j, each element of the weight matrix W in the i-th row and j-th column is com-

puted as follows: 
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where Ml is the set with the largest CoDs for lag l. As in [1], two lag values were considered (for two time intervals before the 

current one, respectively) and the ten largest values of CoD for a specific lag are taken into account. Hence, the implemented 

model is formed as follows: 

   tttttTt ZWZWZZZZ 21211122011000 

 

(5) 

where Zt+l ( 0l ) represents speed with lag l, Wl is the traffic neighbor matrix of lag l and φtl are the parameters for roads of lag l 

at moment t. 

The above model takes into account the current speed of the road, the speeds of the past two time intervals and the average 

speed of the most correlated roads that have a maximum time lag of 10 minutes. Naturally, using a training set it is attempted to 

approximate the φij parameters and then to test the method by predicting the next Zt values on a given test set. As noted in [27] 

the best estimates of the φ values, from many points of view, are the maximum likelihood estimates but since without a priori 

knowledge of their initial values, they cannot be exactly computed. Hence a close approximation of them is achieved via least 
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squares. In particular, for every training sample an equation like the one given by (5) is formed where φij are the only unknown 

parameters. This leads to an over-determined equation system, in the form of Xβ = y, or written with the normal equations, as: 

 

 ˆ( ) y      (6) 

Using the linear least squares method, (6) has a solution in the form of (7). 

 

 1ˆ ( ) y        (7) 

 

Since STARIMA models are non-linear in form, it is necessary to estimate the parameters of the model using any non-linear 

optimization technique. As a result, the Levenberg Marquardt (LM) algorithm [28] (also known as Damped Least Squares meth-

od) was used in order to solve the equation as a non-linear least square problem. The LM method actually solves a slight varia-

tion of (6), known as the augmented normal equation described by (8):  

 

, ˆN y    (8) 

where the off-diagonal elements of N are identical to the corresponding elements of X
T
X and the diagonal elements are given by 

(9): 

 [ ] ,   0ii iiN m m      (9) 

 

The term m is called damping term and the rest of the LM algorithm, which was introduced in [29], remains unchanged. 

 Noticeably, the proposed method has inherent parallelism because the problem of computing the prediction for the traffic can 

be split into N independent sub-problems. Each one of them can be processed by a different CPU without synchronization points 

or intermediate communications, thus rendering the method suitable for parallel systems. At this point, this characteristic is not 

used at the computations and remains as future work. 

IV. EVALUATION 

A. Traffic data 

1) Available Datasets 

In order to evaluate the prediction accuracy and the performance of the proposed scheme two datasets were used, thereafter re-

ferred as the Berlin dataset and the Thessaloniki dataset, with respect to the two cities. The reason for using datasets from two 

different cities was the need for exploring the behavior of the implemented model in two cities with different size and architec-
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tural designs.   

The Berlin dataset contains speed probes from GPS devices covering total period of two weeks, i.e. from March 18, 2012, to 

March 31, 2012, from the city of Berlin, Germany. The instantaneous speeds contained in the dataset were already matched to 

road segments before provided to us.   

 The Thessaloniki dataset used for the needs of this paper contains speed probes from GPS devices installed on taxis from the 

city of Thessaloniki, Greece and covers a total period of two months, i.e. from Feb 1, 2014 to Mar 31, 2014. It contains instanta-

neous speeds of each vehicle that were unmatched.  

Both datasets provide a small portion of the data that can be available for serving the needs of an online traffic prediction sys-

tem. Data production rates fall in the range of approximately 10kB/sec and 3kB/sec, for Berlin and Thessaloniki, respectively, 

resulting in several TBs, e.g., during one year data gathering cycle. 

2) Pre-processing 

Applying a prediction algorithm on those datasets is restrictive not only due to scalability issues, but also because of zero val-

ues, e.g. a road segment may have no data at different time instances. Thus a new ‘higher level’ interpretation of the network is 

necessary. To this end, the road segments were firstly combined to form roads. Each road was defined as a segment between two 

intersections, whereas road segments were defined as straight lines, thus a road contains an arbitrary number of road segments. In 

this way the 314,278 road segments of the Berlin network were transformed into 218,576 roads and the 91,926 road segments of 

the Thessaloniki network into 68,451 roads. The various characteristics of the two networks are shown in Table II. 

As already mentioned, the Thessaloniki dataset consists of instantaneous speeds of vehicles at given coordinates, i.e. in an in-

appropriate format for travel time prediction. Therefore a process of matching instantaneous speed values to road segments on 

the network’s map was required. The map-matching procedure that was used, is the one proposed in [30]. 
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TABLE II 

NETWORKS TOPOLOGICAL CHARACTERISTICS 

Network characteristics Berlin Thessaloniki 

1 Nodes 152010 40672 

2 Road segments 314278 91926 

3 Roads 218576 68451 

4 Min. road segment length (km) 0.001 0.002 

5 Max. road segment length (km) 5.777 19.525 

6 Average road segment length (km) 0.097 0.l29 

7 Min. road length (km) 0.001 0.002 

8 Max. road length (km) 9.129 28.557 

9 Average road length (km) 0.140 0.173 

10 Min. road segments per road 1 1 

11 Max. road segments per road 44 48 

12 Average road segments per road 1.4364 1.34286 

 

As a result of the previous pre-processing step both datasets contain individual records of instantaneous speeds per road seg-

ment and time instance. These records were aggregated into harmonic averages of 5-minute time intervals per road. Supposing n 

raw speed values recorded at a time interval t, the harmonic average xi,t of a road i at interval t given by (10) is preferred over the 

ordinary average, because it eliminates outliers in the form of too high speeds, thus resulting in more accurate prediction of travel 

times [31]. 

 

 


n

j
j

ti

x

n
x

1

, 1

 (10) 

Finally, for every road of the network a traffic time series was formulated, representing a day of traffic data for the specific 

road. In particular, every traffic time series consisted of harmonic average speeds for every 5-minute interval of a day, hence its 

size was 24 60 /12 288  . 

B. Benchmark techniques 

We compared against the following five benchmark techniques: (1) Historical Average (HA), (2) k-Nearest Neighbor (kNN), 

(3) Random Forests (RF), (4) Support Vector Regression (SVR), (5) Compressed Support Vector Regression (CSVR). All the 

benchmark methods are briefly described below. 
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1) Historical Average 

As mentioned at Section II, HA is a naïve prediction method that is characterized by the absence of any advanced mathemati-

cal model and is usually used as a reference method. Given the traffic time series of a road of interest, the estimation of the N+1 

value of the time series (at interval t+1) is the average of its N previous values, i.e., from the beginning, up to the current interval 

t.  

2) k-Nearest Neighbor 

Predicting the next value of a traffic time series using kNN is based on the current state vector (a time interval t), which is de-

fined as x(t) = [V(t), V(t-1), V(t-2), Vh(t), Vh(t+1)], where V(t) is the traffic descriptor (in this case speed) at time t, and Vh(t) is the 

historical value of V at time t. The output is defined as y(t)=V(t+l), where l is the number of intervals to predict ahead. The algo-

rithm creates input vectors x(t1), …, x(tN) using the training set. When a prediction is requested, the k nearest vectors to the cur-

rent vector (i.e. the vector xp at present time where yp is unknown) are calculated and an averaging technique is used to calculate 

the corresponding output value (yp). In the experiments the value of k was set to 4. 

3) Random Forests 

An RF-based algorithm was implemented for our benchmark purposes, in order to predict the harmonic average of speed for a 

specific road and arbitrary time interval ahead of the current time. Each random forest corresponds to a road. Features from glob-

al statistics of the network for a 30-minute interval, such as the number of non-zero samples, the number of zero samples and the 

arithmetic mean of speeds were defined. A Principal Component Analysis (PCA) was applied to these features in order to isolate 

the most important of them, which in turn were given as global inputs to the algorithm. The inputs of the road to be predicted 

consist of these features, as well as the harmonic average of the road intervals beyond the 30-minute window. The latter were 

used as target output data in order to train the RF. Concerning both datasets, the number of trees per forest was set to 100, since it 

proved optimal for the generalization ability of the algorithm. 

4) Support Vector Regression 

SVR is the variant of the classic machine learning classification technique Support Vector Machines (SVM) for regression 

problems and is based on a straightforward idea: construct a hyperplane that sets apart the classes of data. Due to its high accura-

cy if trained with satisfactorily large dataset, SVR has been used for travel time prediction in various works such in [12]. 

5) Compressed Support Vector Regression 

This technique was proposed in [13], and is based on the idea of training and running SVR models using the data from a sub-

set of the road segments of a traffic network and then extrapolating the results to the whole network. At the training phase, the 

roads segments that will be used are chosen using a CUR decomposition technique [14] and the relationship matrix between the 

subset of road segments and the whole network is constructed. Also the method constructs SVR models for the chosen road seg-
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ments. Then at the evaluation phase, the travel time is predicted for the selected road segments using the aforementioned SVR 

models, and the results are extrapolated to road segments of the whole network. 

C. Evaluation framework 

1) Setup of the evaluation framework 

Concerning the Berlin dataset, training and testing of the algorithms were conducted using traffic data from one day of the first 

week, and the corresponding day of the next week, respectively, e.g. trained for Monday 19 March, 2012 and tested with data 

from Monday 26 March, 2012. In a similar manner, for the Thessaloniki dataset, the algorithms were trained and tested with data 

from one day of the first month and the corresponding day of the next month, respectively, e.g. trained with data from Friday 7 

February, 2014 and tested with data from Friday 7 March, 2014. The prediction period includes up to twelve 5-minute intervals, 

i.e. 1 hour, beyond present time. The traffic descriptors used for quantifying traffic are the harmonic speed of an interval τ and 

the corresponding travel time (in min/km). In particular, the speed Sτ,r of a road r in a time interval τ is predicted, and the gener-

ated value is transformed into travel time Tτ,r ( , ,60 /r rT S  ). 

The metric used for evaluating the performance of the implemented algorithms is the Root Mean Square Error (RMSE), which 

was selected over other metrics, such as the Mean Average Precision Error (MAPE), because of its robustness to near zero val-

ues. The RMSE for a specific prediction interval τ (e.g. 5-minute ahead prediction) for all the roads of the network is given by 

(11): 
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 

 

(11) 

where Tτ,r and T’τ,r are the real and the predicted travel time values, respectively, for road r at prediction interval τ. The average 

RMSE is the mean RMSE value for all prediction steps and all roads of the network. 

2) Selection of the optimal adjacency class 

An interesting characteristic of the proposed method is its behavior with respect to the adjacency class, i.e. the maxi-mum d in 

hops that includes all neighboring roads that are taken into account for the calculation of CoD. The optimal adjacency class that 

should be used for the Berlin and Thessaloniki datasets was determined according to the following routine. We perform consecu-

tive training and testing sessions using various CoD values that correspond to increased values of the adjacency class, i.e. from 1 

to 20, in an iterative fashion. For each value of the adjacency class, we calculate the total computational time for CoD (Fig. 4) 

and the resultant average RMSE value (Fig. 5). Note that the numerical results presented at this section (and also at Section 

IV.C.3 and Section IV.C.4) refer to experiments for which no concern about the handling of missing data was taken into account, 

and so the predictions refer to all the roads of the two networks. 
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As shown in Fig. 4, and according to our expectation, the CoD computation time increases as the value of adjacency class in-

creases too, because a larger number of computations are required for the calculation of CoD as more neighboring roads are tak-

en into account. 

An interesting case is revealed in Fig. 5. For the Berlin dataset, the average RMSE increases with the adjacency class. This 

means that as the number of neighbors that are taken into account for the computation of CoD increases, the quality of the pre-

diction is harmed. On the other hand, concerning the Thessaloniki dataset, the average RMSE is reduced as the adjacency class 

increases. This implies that taking into account the traffic information of long distance roads, improves the quality of the predic-

tion. This opposition between the two cities indicates different traffic patterns, which could be associated to their different urban 

architecture styles and topologies. The criteria for the selection of the optimal adjacency class are related to the achieved predic-

tion accuracy that should be statistically better compared to the best of the benchmark methods, and to the complexity of the 

CoD calculation that should be managed in reasonable time. 
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Fig. 4. CoD computation time versus adjacency class 
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Fig. 5. Average RMSE versus adjacency class 

  

Concerning the Berlin dataset, the benchmark method with the best prediction accuracy is the CSVR algorithm with average 

RMSE value of 2.55597 min/km. As shown in Fig. 5, the lowest average RMSE value (that corresponds to the optimal prediction 

accuracy) for the GBLS algorithm is the one that is derived for adjacency class 1 and its value is 2.13357 min/km (< 2.55597). In 
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order to make sure that the selected adjacency class leads to a better prediction accuracy which is statistically significantly differ-

ent compared to the one of CSVR, for all prediction steps, the Wilcoxon signed-rank test was applied. This test showed that there 

is statistically significant difference between the compared accuracy values. Moreover, the required time for computing the CoD 

for the adjacency class 1 is 11.842 minutes, which is considered acceptable. For the aforementioned reasons the adjacency class 

of 1 was chosen as the optimal one for the Berlin dataset. 

Regarding the Thessaloniki dataset the same approach was adopted. Again CSVR is the benchmark method that achieves the 

best prediction accuracy (average RMSE value of 2.51843 min/km). As shown in Fig. 5 the first value of the adjacency class for 

which our GBLS algorithm achieves an average RMSE value (2.51389 min/km) lower than the one of CSVR’s, is 10. This is a 

candidate to be selected for the optimal adjacency class, but we finally select the value of 13 as it does not require significantly 

additional computational time (i.e. shorter than one minute) and it leads to even better accuracy. A Wilcoxon signed-rank test 

proves that there is statistically significant difference for all the prediction steps ahead in time between the prediction accuracy of 

the GBLS algorithm with adjacency class 13 and that of the CSVR algorithm. Hence, the adjacency class 13 was chosen as the 

optimal class for the Thessaloniki dataset. 

3) Varying the time interval resolution 

The time interval size used for aggregating traffic data and for defining the prediction step was 5 minutes. As one may consid-

er, different interval resolutions (e.g. down to 1 minute) may lead to better prediction accuracy and smaller CoD computation 

times. This possibility was investigated by conducting focal experiments for benchmarking the GBLS method for different inter-

val resolutions. In those tests we used the adjacency class values as calculated in Section IV.C.2. As shown in Fig. 6, increasing 

the time interval resolution to, e.g. 1 minute, leads to a decrease of the prediction accuracy for the Thessaloniki dataset, as op-

posed to the Berlin one, for which the accuracy increases. On the other hand, if we increase the length of the time interval, e.g. to 

10 minutes or on, the prediction accuracy remains relatively constant for both cities. 

However, as it is shown in Fig. 7, the CoD computational time increases significantly as the resolution of the time interval in-

creases, i.e. its size becomes shorter. In the opposite case, it remains relatively constant, exhibiting a slight reduction for time 

intervals of length 10 or longer. 

Hence, our choice of 5-minute long time intervals is justified because it comprises a fair trade-off between accuracy and per-

formance, but also because it is the de facto standard in the relevant literature. 
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Fig. 6. Average RMSE versus interval resolution 
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Fig. 7. CoD computation time versus interval resolution 

 

4) GBLS variant 

At the core of the GBLS lies the selection of the optimal adjacency class as it determines which neighbors of a road are taken 

into account for the CoD calculation. An alternative modification of interest would be the one that takes into account a fixed 

number of neighboring roads. In order to test the impact of this alternative way for selecting neighboring roads, we tested this 

GBLS variant with a range of fixed number of neighbors. The results are depicted in Fig. 8 and 9.  

 As shown in Fig. 8, the prediction accuracy remains almost constant for the Berlin dataset as the fixed number of neighbors 

increases, whereas in the Thessaloniki dataset we notice a slight deterioration in the prediction performance. However, in the 

case of Berlin the adoption of the variant leads to a higher achieved accuracy compared to the basic adjacency class selection 

method (Fig. 5). In terms of CoD computation times, we see that performance remains almost constant as the number of neigh-

bors increases for both the Berlin and Thessaloniki datasets. In both cases the performance is significantly improved with respect 

to the basic adjacency class selection method. 

The computational complexity of this variant of the proposed method is O(N∙(nnz(A)/N)
(x∙N/nnz(A))

), where x is the explicitly se-

lected number of neighbors. This complexity is similar to the one presented in Section III.B. The memory requirements remain 

these presented in Section III.B. 
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Fig. 8. Average RMSE versus number of neighbors 
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Fig. 9. CoD computation time versus number of neighbors 

 

D. Experimental results 

We tested our method against the benchmark techniques described in Section IV.B, with respect to prediction accuracy by 

means of RMSE. The prediction results presented here refer to network roads for which the corresponding time series, in both 

training and test datasets, were selected to have at most 50% and 70% missing data for the Berlin and Thessaloniki dataset, re-

spectively. For the CoD calculations we use the GBLS variant presented in Section IV.C.4 for the Berlin dataset. For Thessalo-

niki we retain the initial GBLS algorithm (Fig. 3) with adjacency class set to 13. The above configurations correspond to the best 

achieved accuracy. 

For all prediction steps ahead in time, GBLS outperforms all benchmark techniques in terms of prediction accuracy for both 

Berlin (Table III) and Thessaloniki (Table IV) dataset. From the above benchmark results, we notice that the RMSE of travel 

time for all benchmark techniques is less than 2.7 minutes in all cases. The quality of the prediction improves when the number 

of steps is low, whereas it becomes worse as the number of concerned steps increases. The average prediction performance, i.e. 

taking into account all prediction steps for each benchmark technique is depicted in Fig. 10. 

 Avoiding the computation of CoD for all roads significantly reduces computational time and RAM requirements. Fig. 11 

shows the required calculation times when the value of the explicitly specified number of neighbors is 1 for the Berlin dataset, 

and the value of adjacency class is 13 for the Thessaloniki dataset. As shown in Fig. 11, the computational time reduced from 
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2,100 minutes (35 hours) to 13.1387 minutes for the Berlin dataset (i.e., 99.374% improvement), and from 1,200 minutes (20 

hours) to 25.5433 minutes for the Thessaloniki dataset (i.e., 97.871% improvement) with respect to the naïve (all-to-all) ap-

proach for calculating CoD. It should be mentioned that all the experiments were conducted on a computer with a dual core Intel 

i5 CPU at 3.33 GHz with 4GB RAM.  

TABLE III 

RMSE VALUES FOR THE BERLIN DATASET 

Step HA kNN RF SVR CSVR GBLS 

1 2.075 2.138 1.849 1.103 0.827 0.378 

2 2.044 2.108 1.856 1.145 0.859 0.781 

3 2.020 2.090 1.916 1.158 0.875 0.851 

4 2.009 2.067 1.984 1.147 0.870 0.817 

5 2.029 2.085 1.989 1.132 0.860 0.746 

6 2.045 2.099 2.095 1.109 0.839 0.722 

7 2.051 2.104 2.058 1.119 0.855 0.654 

8 2.111 2.137 2.125 1.148 0.885 0.716 

9 2.124 2.150 2.018 1.110 0.850 0.718 

10 2.169 2.211 2.058 1.102 0.837 0.710 

11 2.117 2.159 2.141 1.151 0.887 0.755 

12 2.170 2.230 2.108 1.203 0.936 0.700 
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TABLE IV 

RMSE VALUES FOR THE THESSALONIKI DATASET 

Step HA kNN RF SVR CSVR GBLS 

1 2.596 2.593 2.569 2.662 2.338 2.039 

2 2.601 2.595 2.573 2.663 2.338 2.255 

3 2.605 2.600 2.586 2.664 2.339 2.264 

4 2.609 2.607 2.588 2.669 2.341 2.272 

5 2.614 2.609 2.571 2.672 2.344 2.279 

6 2.613 2.613 2.576 2.671 2.343 2.283 

7 2.612 2.615 2.588 2.668 2.340 2.283 

8 2.613 2.613 2.583 2.666 2.338 2.285 

9 2.615 2.615 2.576 2.667 2.338 2.289 

10 2.614 2.611 2.582 2.666 2.336 2.300 

11 2.613 2.606 2.591 2.663 2.334 2.309 

12 2.616 2.619 2.600 2.664 2.335 2.299 
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Fig. 10. Average RMSE values 

V. CONCLUSION 

Based on the benchmark results presented in Section IV, the newly introduced GBLS prediction method can be considered as 

a travel time prediction technique suitable for big traffic data, such as the ones from Berlin and Thessaloniki. In particular, it ren-

ders significant improved performance on the computation of the traffic correlations between roads of the same network, by 

means of CoD, compared to the basic naïve approach. Specifically, when the proposed technique is used the computational com-

plexity reduces from O(N
2
) to O(aN), with a > 1. Also the proposed technique outperforms benchmark methods from the litera-
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ture in terms of prediction accuracy. The complexity of the urban network and the implicated topology are parameters that 

should be seriously considered for the selection of the appropriate GBLS variant. In the context of this paper we selected to apply 

those configurations that result in the best accuracy.  

A practical implication of the GBLS approach is that it enables the exploration of traffic dependencies between roads in urban 

networks for improving traffic prediction maintaining computational performance, as opposed to the use of naïve techniques, 

which rendered the computation of correlation metrics, such as CoD, prohibitive for large networks. This enhancement intro-

duced by GBLS is mainly related to the application of the MBFS. To this end, the overall contribution of GBLS can be seen as 

enabling the development of more accurate traveller information systems managing associated big traffic data in efficient time.  
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Fig. 11. Computational times against the naïve approach 
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