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Abstract—This work focuses on detecting and localizing
anomalous events in videos of crowded scenes, i.e. divergences
from a dominant pattern. Both motion and appearance infor-
mation are considered, so as to robustly distinguish different
kinds of anomalies, for a wide range of scenarios. A newly
introduced concept based on swarm theory, Histograms of
Oriented Swarms (HOS), is applied to capture the dynamics
of crowded environments. HOS, together with the well known
Histograms of Oriented Gradients (HOG), are combined to
build a descriptor that effectively characterizes each scene.
These appearance and motion features are only extracted within
spatiotemporal volumes of moving pixels to ensure robustness
to local noise, increase accuracy in the detection of local, non-
dominant anomalies, and achieve a lower computational cost.
Experiments on benchmark datasets containing various situations
with human crowds, as well as on traffic data, led to results that
surpassed the current state of the art, confirming the method’s
efficacy and generality. Finally, the experiments show that our
approach achieves significantly higher accuracy, especially for
pixel-level event detection compared to State of the Art (SoA)
methods, at a low computational cost.

Index Terms—swarm intelligence, crowd, anomaly, traffic.

I. INTRODUCTION

THE widespread use of surveillance systems in roads,
stations, airports or malls has led to a huge amount of

data that needs to be analyzed for safety, retrieval or even com-
mercial reasons. The task of automatically detecting frames
with anomalous or interesting events from long duration video
sequences has concerned the research community in the last
decade. Event, and especially anomaly detection in crowded
scenes is very important, e.g. for security applications, where it
is difficult even for trained personnel to reliably monitor scenes
with dense crowds or videos of long duration. Numerous
methods have been proposed to assist in this direction.

The analysis of motions and behaviors in crowded scenes
constitutes a challenging task for traditional computer vision
methods, as barriers like occlusions, varying crowd densities
and the complex stochastic nature of their motions are difficult
to overcome. Computational cost is one more complicating
factor, as it has to be kept within reasonable limits. In many
practical situations, it is crucial to analyze crowded scenes in
real time, or at least as fast as possible, considering the fact
that security personnel should act quickly if something seems
to be “not as usual”. Furthermore, the ambiguity of the term
“anomaly” sets its own limitations in our effort to identify
it, as there is no commonly accepted definition, and it varies
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significantly depending on the given scenario. This means that
an “anomaly” pattern in one video sequence may often be part
of the “normal” pattern of another. In order to address these
issues, we define as “anomalies” the events that display a low
probability of occurring based on earlier observations.

We deal with the challenging problem of detecting abnormal
patterns in videos of crowded scenes that emerge as spatiotem-
poral changes, both in motion and appearance. An appearance-
related anomaly would be, e.g. a bicycle passing through a
crowd. Moreover, sudden changes in velocity, like an abrupt
increase of its magnitude and the dispersion of individuals in
the crowd are detected, indicating that something unusual and
potentially dangerous may have occurred.

In this work we propose a novel method for anomaly
detection and localization that incorporates both motion and
appearance information. We introduce a descriptor created
from Histograms of Oriented Gradients (HOG) to capture
appearance, and the newly introduced Histograms of Oriented
Swarms (HOS), to capture frame dynamics. Swarm intel-
ligence has been used in the past only in the framework
of Particle Swarm Optimization (PSO) in [1], where PSO
optimizes a fitness function minimizing the interaction force
derived from the Social Force Model (SFM). However, in our
work, swarms are used in a very different way: the core idea
is to construct a prey based on optical flow values over a
specific time window and deploy a compact swarm flying
over it to acquire accurate and discriminative information of
the underlying motion. The agents’ motion is determined by
forces acting on the swarm (Sec. IV), which, unlike [1], do not
correspond to the SFM, but are used to determine the swarm
motion and location.

Thus, this work introduces an innovative deployment of
swarm intelligence, which, together with the HOG descriptor,
forms a new feature capable of successfully determining a
region’s “normality” in an SVM framework. In order to
capture “anomalies” appearing in a small part of the frame, our
algorithm is applied only on regions of interest, and temporal
information is incorporated to improve accuracy. Even though
benchmark datasets of human crowds were mainly used for
the algorithm’s validation, results on other kinds of videos of
crowded scenes, e.g. traffic, reveal that the proposed method
can be extended and generalized to different scenarios. The
experimental section shows that our algorithm outperforms
state of the art (SoA) algorithms in accuracy and at a low
computational cost. Our contribution can be summarized as
follows:

1) Swarms are used in an original way, via Histograms of
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Oriented Swarms (HOS) that are introduced to charac-
terize crowd motion for anomaly detection. They lead
to credibly filtered flow in videos of crowds, resulting
to very few noisy flow values. Thus, swarm intelligence
captures the motion of crowded scenes in an efficient
way that can be extended to other types of videos.

2) The method can be efficiently applied even when the
motion in the crowded scene is non-uniform in space
and time, and “anomalies” appear locally in a changing
context. This is shown in the experiments of Sec. VI
on the complete UCSD dataset, where our method’s
accuracy for pixel level anomaly detection surpasses the
SoA.

II. STATE OF THE ART

Even though significant research has taken place on event
and anomaly detection from static cameras [2], [3] the majority
of these works address non-crowded scenes, where detailed
visual information can be exploited for each individual. How-
ever, real-world surveillance scenarios often involve crowds
of people or dense traffic, where such information cannot be
easily extracted with traditionally used methods. Therefore, a
number of different approaches have been proposed to handle
these situations. Several interesting works [4], [5], [6], [7]
introduce tracking methods, nevertheless, they seem to be
effective only in videos with crowds of low density, as tracking
is otherwise hindered, due to the high degree of occlusions,
while their computational cost is also greatly increased. As
a result, the current SoA focuses mostly on analyzing entire
frames spatially, temporally or both. Existing methods can be
classified in two main categories: those that use only motion
information to detect an abnormality in the scene, and those
that use both appearance and motion information to describe
the scene dynamics.

In the first category, Wu et al. [8] use chaotic dynamics
in particles’ representative trajectories as a means to build
a model capable of locating an outlier that moves with a
different pattern. Even though this method works for very
dense videos where a global motion pattern exists, it is
unable to detect local abnormalities that take place in a
small region in the frame, or in the absence of a global
pattern. Activity recognition based exclusively on trajectories
is also proposed by [9]. However, this method is only based
on motion information, completely ignoring the existence of
“interesting” activities that exhibit a typical motion pattern. In
the same category, Mehran et al. [10] use the Social Force
Model (SFM) to describe a crowd’s normal behaviour based
on motion characteristics, while Cui et al. [11] make use of
interaction energy potentials derived from the interest points’
position and velocity. In [12], the min cut/max flow algorithm
is used to define each block’s dominant direction and crowd
motion segmentation is performed by training the algorithm
separately, for each spatial location. That method also only
relies on motion patterns to detect an anomaly, completely
ignoring appearance information. Another interesting work in
the same domain, is that of Cong et al. [13], who introduce
a sparse reconstruction cost to measure the normality of
the testing sample, considering dictionary learning methods.
Saligrama et al. [14] extract local low-level motion descriptors

and utilize score functions for anomaly detection, derived
from local nearest neighbour distances. A different approach
is used by Adam et al. [15] who use fixed monitors to extract
local low level features and determine a preset threshold
for each monitor in order to declare an alert, while Kim et
al. [16] propose a Markov Random Field model in a Bayesian
framework for the final inference. A Gaussian mixture model
is used by Ryan [17] for anomaly detection in crowded scenes
based on textures of optical flow in 3D volumes. 3D Gaussian
distributions that characterize the underlying motion patterns
of spatiotemporal cuboids are used in [18]. In this work, KL
divergence is used as a distance measure to identify similar
cuboids in the same location and new prototypes are created
accordingly. Observations are then only evaluated according to
distributions occurring in the same spatial location by creating
a single HMM for each location. As a result the method
proposed leads to many false positives in sparse videos, as
the number of frames needed to work properly is huge, and
it has to cover every region separately in order to train each
HMM efficiently. Thus, that method is appropriate for crowded
scenes of a very high density, but cannot handle videos of
crowds with middle to low density, which are often captured
by surveillance cameras. The same 3D gradient features are
used by Lu et al. [19] in a different framework: they propose
the use of sparse coefficients to fit new data to a previously
learned dictionary. Sparse combination learning is introduced
instead of searching the whole search space as classic sparsity-
based methods do, thus greatly reducing the computational
cost. The method exhibits remarkably high speed performance
but at the expense of its accuracy, as shown in the experiments.
Finally, an almost real-time algorithm is suggested in [20] for
event detection, based on the clustering statistics derived from
moving particles.

A common problem that is encountered by all the methods
mentioned earlier, is their inability to successfully detect
anomalies that move similarly to the “normal” motion pat-
tern, as they rely solely on motion characteristics. A second
category of methods tackles this issue by incorporating ap-
pearance information as well. One work that stands out in this
category is that of [21], that uses mixtures of dynamic textures
to describe each 3D cuboid extracted from video sequence
and detect temporal and spatial abnormalities. However, the
computational cost of that algorithm, around 25 sec per frame,
makes it prohibitive for many applications. An improved
version of this method, with a lower computational cost, that
is similar to ours, is found in [22]: that method’s accuracy
is also improved, but it still remains lower than ours as
the experiments in Sec. VI show. The joint modelling of
appearance and dynamics is also proposed by Ito et al. [23]
for detecting interesting events via density estimation ratio to
classify frames in two classes, normal or abnormal. Despite
the applicability of that method to many scenarios, it is only
suited for detecting events that occur over the entire frame
(e.g. global changes in motions, scene changes etc.) and it
misses local abnormalities. Another work that uses features
based on both motion and texture is that of [24]. In that work,
the input image is split into nonoverlapping cells and features
based on motion, size and texture are extracted and are fed
into two classifiers. The main drawback of the method is that
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the classification of each cell is determined by a pre-defined
threshold, which makes the method sensitive to input video.
Another interesting work is that of [25] which proposes a
method of detecting abnormalities indirectly after establishing
a complete interpretation of the foreground, by using a set
of hypotheses. Afterwards, anomalies are defined as those
hypotheses that are required to explain the foreground but
which themselves cannot be explained by normal training
samples. That method works efficiently on the UCSD dataset,
however, the need for interpretation of all foreground objects
may arise difficulties in more dense crowd datasets. Results
on the UCSD dataset provided in Sec.VI, also show that our
method provides better accuracy. Finally, the work of [26]
uses densely sampled spatiotemporal video volumes at each
pixel location to construct a low level codebook and bag of
video words is used to detect anomalous events. However, that
method only uses the HOG descriptor to capture both motion
and appearance characteristics omitting essential information
that could led to better results. As the experiments show, our
approach outperforms all the methods described above, in the
important pixel level criterion on the UCSD dataset, which
is used by most SoA works, making it more suitable for
spatiotemporally local anomaly detection.

The deployment of swarms involves the calculation of inter-
nal and external interaction forces, characterized by a number
of parameters. In this work, an analytical description of the
method’s robustness to various parameter values is presented
in Sec.VI-A. Currently, new methods are being developed for
the evaluation of parameter sensitivity in [27], which may be
taken into account in future extensions of this work.

This paper is organised as follows: Sec. III describes the
problem formulation, Sec. IV extensively presents the math-
ematical background of the new descriptor, while anomaly
detection and localization is described in Sec. V. Finally, a
detailed experimental evaluation is discussed in Sec. VI and
conclusions are summarized in Sec. VII.

III. PROBLEM FORMULATION

In this work, we address the problem of detecting dynam-
ically changing anomalies in both space and time in videos
with crowds of varying densities. In order to effectively capture
these anomalies for a wide range of situations, we incorporate
both motion and appearance features. Our algorithm uses data
derived from automatically extracted regions of interest (ROIs)
instead of entire video frames, so as to only process pixels
containing information relevant to the event taking place, while
at the same time achieving a lower computational cost, fewer
false alarms, greater precision and successful spatiotemporal
localization of anomalies, both on a global and local scale.

In order to extract the ROIs, we apply background subtrac-
tion using weighted moving mean [28], as it has been shown
to be robust and reliable, however other SoA background
subtraction methods like Gaussian Mixture Models (GMMs)
could also be used, leading to equivalent results. We define
interest points on a dense grid in the resulting foreground and
ROIs are described as rectangular areas of fixed size around
each interest point. The size of the ROIs is determined at
the beginning of each set of experiments, and depends on the
camera viewpoint for each dataset. Due to the static nature of

surveillance cameras, the block size needs to be set only once
for each camera, or in our case for each dataset, and thus does
not affect our algorithm’s generality. For the UCSD dataset, a
ROI of 20× 20 pixels is used, as it is large enough to capture
activity/appearance related details, but is not too large, so as
to include noisy information in the descriptor.

Once ROIs are extracted, the interest points in them are
tracked until the next frames using the KLT tracker, while
the foreground grid is continuously updated, with new interest
points defined in each new frame’s foreground area. The
resulting ROIs and the interest points in them are considered
informative and are retained if at least 60% of that ROI
contains motion, otherwise that interest point and its ROI
are considered to be noisy and are ignored. The ROI needs
to contain at least 60% moving pixels in order to be as
informative as possible; if a ROI contains fewer moving pixels,
noisy (motionless) data will also be taken into account, while
if it is required to contain more moving pixels, potentially
informative interest points may be ignored.

Spatiotemporal feature extraction from ROIs follows for a
particular time window, to acquire descriptors that effectively
describe the video dynamics, and help identify both local and
global abnormalities. We consider both motion and appear-
ance features, as their combined use allows the detection of
anomalies, i.e. deviations of motion and/or appearance from
usual patterns, leading to a generally applicable method. An
overview of the procedure for extracting the descriptor is
depicted in Fig.1(a). The stages for modelling appearance and
motion are discussed in more detail in the sequel.

A. Appearance modelling

In order to extract the appearance characteristics of a
video sequence, the Histograms of Oriented Gradients (HOG)
proposed in [29] are used, as the HOG descriptor has sev-
eral advantages over other appearance features: it is color
invariant as it uses gray scale images, and is also invariant
to illumination and local geometric transformations as a result
of the normalization that takes place. At the same time, it
effectively captures the local edge and gradient structure, so it
can distinguish variations in appearance even in small areas of
the image. The implementation of HOG that is adopted is that
of [30], as it creates direction invariant HOGs by following a
mirroring technique, where mirrored shapes are mapped into
the same bin. Direction invariant appearance features (HOGs)
decrease intra-class variation, e.g. for walking, which is the
predominant activity in human crowds, resulting in similar
appearance descriptors for motions in opposite directions. This
leads to more robust appearance descriptors that are suitable
for the needs of anomaly detection in crowded videos, which
can describe, for example, the density or sparseness of a
crowd more effectively by ignoring directionality (which is
not relevant for appearance).

The HOG descriptor is applied in ROI blocks that are
tracked over time and are extracted as described in the previous
section, so the final HOG descriptor for each block also
incorporates temporal information. The procedure for this
computation is as follows: each block k is first divided into
2×2 cells as suggested in [29] for a more detailed description
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(a)

(b)

Fig. 1. Problem formulation. (a) Overview of final motion-appearance descriptor calculation. (b) Extraction of appearance descriptor (HOG). Each block is
divided into 4 cells and HOG histograms are calculated for each of them. The block is tracked over time and the final HOG descriptor results from the average
of consecutive triplets after a normalization step. The HOGk

j (c) symbol represents the HOG histogram, calculated from the cth cell of block k, at frame j.

that also takes spatial location information into account and
mitigates the effects of local noise. For example, if occlusions
are present in a ROI, its division into 2×2 cells may limit their
presence to only one of the cells, instead of the whole area,
leading to a less noisy appearance descriptor. The division of
a block into 2× 2 cells was chosen, as it was found by Dalal
et al. [29] to retain a sufficient level of detail for describing
appearance. A weighted histogram of gradients is then created
for each cell using 9 bins, corresponding to the gradients’
orientation. The HOG of the cth cell (1 ≤ c ≤ 4) in block k
of frame j is thus represented by HOGk

j (c), of dimension
1 × 9. Each histogram is normalized and the 4 resulting
cell histograms are concatenated, forming a 1 × 36 block
descriptor, which is also normalized for noise elimination.
Once HOGs for each block are calculated for all frames in
the temporal window under examination, they are averaged
over 3 consecutive frames so as to include richer temporal
information and at the same time achieve temporally local
noise reduction. The final appearance descriptor is thus a
concatenation of a 3 frame average for each cell c in block k:

HOG
k

j,j+2(c) = E[HOGk
j (c), HOG

k
j+1(c), HOG

k
j+2(c)]

(1)
This means that a 15 frame time window will result in 5
concatenated triplets of 1×36 descriptors, resulting in a 1×180
final spatiotemporal appearance descriptor. The entire process
for extracting HOG descriptor is depicted in Fig.1(b). For
simplicity of notation, in the sequel, the HOG descriptor of
Eq. (1) for block k, averaged over frames j to j + 2 will
be represented as HOGj,j+2 including the average over all 4
cells.

B. Motion modelling using HOS descriptor

This work introduces a novel method for capturing crowd
dynamics based on the application of swarm intelligence,

which is used to build a novel motion descriptor. Swarm intel-
ligence in computer science is inspired from the behaviour and
characteristics of real swarms encountered in nature. Swarms
are comprised of individuals, which act autonomously, while
following the specific rules of a swarm and interacting with
each other. Although the decisions of a swarm’s individuals
take place locally, their aggregated behaviour can match events
in crowded environments, which makes them relevant in many
applications, as shown in Sec. VI.

Swarm based methods have been used in the literature for
image filtering and noise reduction [31], but their incorporation
for the analysis of motion in videos is an original concept
first presented in [32]. The core idea is the monitoring of
movements in crowded scenes by a swarm of agents “flying”
over them, to capture their dynamics in a collective way
while also taking motion history into account. Swarms are
thus deployed and the agents’ positions are extracted from
their accelerated motion, derived from the forces acting on
the swarm as described in Sec. IV. They are then used to
form Histograms of Oriented Swarms (HOS), which are used
to capture the ROIs’ underlying motion and detect anomalous
events in them. The main concepts of our swarm descriptor
are presented in the following section.

IV. SWARM MODELLING FOR CROWDS DYNAMICS

In our implementation, we adopt physics-based modelling
of crowded scenes, as their properties are highly correlated
with those of a swarm in nature. The swarm model that is
used is based on the general theory described in [31] and on
the behavior of natural swarms, consisting of predators, which
“fly” over the “prey”, following its dynamics. In [31], swarm
modelling is used to filter noise in images, whereas in this
work it is deployed to better characterize the highly complex
and stochastic motion information from videos of crowds. In
our implementation, swarms comprise of agents and a prey:
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the agents “track” the prey, but also interact with each other, as
they would in nature. Hence, agents (“predators”) are subject
to three types of forces: “physical” forces, like inertia and
friction, interaction forces between them, and external forces
dependent on the prey. Interaction forces ensure the cohesion
of the swarm of agents, friction forces maintain elementary
memory of the agents’ velocity, while external forces depend
on the characteristics of the prey being tracked.

Consequently, in this approach, swarm intelligence maps
the motion information into a more informative space by
efficiently tracking the motion represented by the prey. Agents
filter the prey motion, avoiding false alarms and local noise
caused e.g. by occlusions or outlier optical flow values. The
prey corresponds to the values of the variable that we want
to leverage in the discriminative process. In our case, we
are interested in the extraction of motion features via the
swarm modelling, so optical flow (OF) values are used as a
prey, as detailed in the next section. Thus, the use of swarms
is expected to lead to better results than when using OF
information alone, as they can capture the most important
aspects of crowd behaviour while circumventing the effects of
local noise, occlusions and the overall complexity of motion
in crowded scenes.

A. Prey Generation

The prey that is tracked by the swarm comprises of OF
magnitude values of pixels lying inside ROIs, instead of their
luminance, which is the case in [31]. Hence, the number of
prey in each frame varies, as it is equal to the number of
ROIs in the frame. In this section we describe how prey data
is extracted, namely how it is mapped to be tracked by agents.
As mentioned previously, ROIs correspond to rectangular areas
around each interest point containing a fixed number of n
pixels. In order to form the prey for a ROI in a temporal
window of m frames, we consider the pixels of each ROI
sequentially over time. Each pixel at position i in a particular
ROI of frame j has OF magnitude equal to Oij , where 1 ≤
i ≤ n and 1 ≤ j ≤ m. For the prey construction, we consider
the ith pixel’s OF sequentially over time. The OF magnitude
is used to determine the prey’s position xp as follows:

xp(t) = Oij (2)

where t is a spatiotemporal index that spans all n ROI pixels
over m frames, so that 1 ≤ t ≤ n · m. The selection of
the sequence of pixels for prey construction is very important
for capturing meaningful temporal information. As a result
of the above processing, the final prey position data that the
swarm will track for all pixels 1, . . . , nm in each ROI cuboid
is defined as:

[xp(1), . . . , xp(nm)] = [O11, . . . , O1m, . . . , On1, . . . , Onm] ,
(3)

where the Oij represent the OF magnitude. This process of
prey construction is illustrated in Fig.2.

After each prey is extracted, a swarm of agents is generated
to characterize its motion, leading to more accurate analysis
of its behavior, as also shown in Sec. VI, where using swarms
leads to better classification than when only using the OF.

Fig. 2. Prey extraction in a m frame window occurs sequentially in a cuboid
of m frames. First, m “OF values” of the 1st pixel are taken into account,
then m instances of the 2nd pixel and so on, until m instances of the nth

pixel, where n is the number of pixels in each ROI.

Fig. 3. A swarm following prey: dashed lines show agents’ trajectories while
the continuous line depicts prey trajectory.

The orientation of each pixel’s OF is also taken into account
for the construction of swarm histograms: the correlation
of swarm behavior with OF orientations is high, as swarm
behavior (agents’ positions and accelerations) for each t is
determined by the OF magnitude and orientation of the corre-
sponding pixel. In the following section, we describe agents’
dynamics which are then used to create HOS.

B. Extraction of Forces

In this section we present the manner in which the agents
operate, i.e. the way they “fly over” the prey and track it.
Agents are groups that we define to track the prey and char-
acterize its state: they are initially located in random positions,
which change over time according to agent-prey forces, agent-
to-agent forces and friction forces presented here. The result
of these forces’ interactions is the accelerated motion of
the agents, which is affected and formed according to prey
behaviour. These forces are inspired by crowd psychology
and the analysis of movements of individuals in crowds [33],
matching real world behaviors of people (or other entities, like
cars or animals) in crowded situations: for example, when
agents are too close to each other, repulsive forces develop
between them, while the opposite occurs (attraction forces
develop) when they are at a large distance, ensuring the
cohesion of the swarm of agents. An illustrative example of
the way the swarm follows the prey is given in Fig.3.

The interaction force Fneigh is the force between agent i and
all other agents of the swarm found in the neighbourhood of
i, at a distance smaller than ρ. It can be attractive or repulsive
depending on the agents’ distances in the swarm, and its role
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is to prevent collisions of the agents and to ensure swarm
cohesion. It is determined by the following equation:

Fneigh(i, t) =
∑
j∈Vi

Fint(i, j, t), (4)

where Fint is the interaction force between each agent i and
all other agents j of the swarm in its vicinity Vi, determined
as the agents whose distance from i is smaller than ρ. We
define each agent i’s position at t as xi(t), so Fint(i, j, t) is:

Fint(i, j, t) =
β · (xi(t− 1)− xj(t− 1))

d(i, j)2
(5)

when |xi(t− 1)− xj(t− 1)| ≤ dmin and

Fint(i, j, t) =
−α · (xi(t− 1)− xj(t− 1))

d(i, j)2
(6)

when dmin < |xi(t− 1)− xj(t− 1)| ≤ ρ.
Here d(i, j) denotes the distance between agents i and j,

xi(t − 1) is the previous position of agent i and α, β are
weighting parameters set equal to 1, as agent-prey distances
are found to be a sufficient measure of internal force strength,
and do not need to be amplified or compressed. Nevertheless,
the effect of these parameters on the anomaly detection accu-
racy is investigated in detail in Sec. VI-A, where experiments
are run for a very wide range of values of α, β, showing that
their values indeed do not greatly affect the outcomes of our
method. The value of dmin (0 ≤ dmin ≤ ρ) sets the boundary
that determines if the interaction force is attractive or repulsive.

The second force is the velocity dependent friction force
Ffric that acts on each agent i, offering to the swarm a type
of elementary memory. It depends on the velocity the agent
formerly had, corresponding to the previous prey location t−1:

Ffric(i, t) = −µ · ẋi(t− 1) (7)

where 0 ≤ µ ≤ 1 is the friction coefficient and ẋi(t− 1) the
former velocity of agent i. After experimentation, µ = 0.4
is found to provide the best tradeoff between tracking speed,
smoothness and accuracy as shown analytically in Sec. VI-A.

Finally, the swarm is driven across the frame mainly by the
external force Fext given by Eq. (8) below, which is an elastic
force that makes the swarm follow the trajectory of the prey,
as every agent is attracted to it. It is an agent-prey force that
guides the swarm “over” the prey, so it moves in parallel with
it, in our case with the optical flow magnitude:

Fext(i, p, t) = λ · (xp(t− 1)− xi(t− 1)). (8)

It is clear that the external force between the swarm agents and
the prey pixels is directly dependent on their relative position
values (in practice the OF magnitude), with the force becoming
weaker as the swarm agent diverges from its prey. This force
is similar to the restoration force of a harmonic oscillator, so
λ represents the positive spring constant, whose value is equal
to λ = 1 in the experiments.

C. HOS Descriptor

In order to form the HOS descriptor, we examine the
evolution of the agents’ positions, determined by prey mo-
tion patterns and the forces affecting the agents. We modify
Newton’s second law of motion by inserting an elementary
parameter γ that takes into account the previous velocity
values, as in Eq. (9) shown below. Then, the acceleration ẍi(t)
of each agent i at position xi(t) is given by the vector sum of
all forces acting on it, considering the fact that an agent’s mass
equals 1, along with the γ-weighted velocity of the previous
time instant. Thus, the acceleration of each agent is given by:

ẍi(t) = (γ − 1)ẋi(t− 1) + Fneigh(i, t)

+ Ffric(i, t) + Fext(i, p, t), (9)

where γ is a memory parameter, relating past values of
the velocity with the current acceleration. When pixel flow
undergoes a sudden change, it will be captured by the forces
acting on it in Eq. (9), so the influence of its previous value
will be mitigated. As a result of the forces, the swarm follows
accelerated motion and the velocity of agent i at location xi
is:

ẋi(t) = γ · ẋi(t− 1) + δ · ẍi(t), (10)

where δ constitutes a timestep parameter, essentially forming
an autoregressive process with flow values changing slowly
over space and time. Therefore, the positions of agents are
continuously updated and their new values are given for each
spatiotemporal location t by the following equation:

xi(t) = xi(t− 1) + δ · ẋi(t− 1) +
1

2
ẍi(t)δ

2. (11)

Swarm agents’ positions are randomly generated for the first
prey position t = 0, and their speeds and accelerations are
initially set to zero. Their values change over time depending
on prey locations, as described above, and the forces affecting
the agents. During training, ROIs are extracted and the pixel
OF in them is examined and tracked by the agents. We then
compute the average of swarm agents’ positions of Eq. (11) for
each t, and follow a process similar to the HOG extraction of
Sec. III-A to extract weighted histograms of agents’ positions
(HOS), according to the corresponding OF orientation. As in
Sec. III-A, each ROI (block) around each interest point, is
partitioned into 2 × 2 cells, and the positions of the swarm
agents that follow this particular block establish a weighted
histogram of 18 bins according to the OF orientation in each
cell. Subsequently, these 4 histograms are concatenated to
form the block’s HOS. In order to include temporal infor-
mation, the final motion descriptor contains histograms of
subsequent frames, averaged in triplets over each time window.

V. ANOMALY DETECTION AND LOCALIZATION

Appearance and motion descriptors are combined to form
the final descriptor for anomaly detection. In a time window of
m frames, average triplets of HOG and HOS are consecutively
concatenated, resulting in the feature vector of Eq. (12):

f = {HOG1,3, HOS1,3, . . . ,HOGm−2,m, HOSm−2,m}
(12)
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Fig. 4. Overview of method proposed in a time window of m frames.

Here, HOGm−2,m is the average of HOG histograms corre-
sponding to a block for frames m−2 to m and HOSm−2,m is
the average of the corresponding HOS histograms taken from
Eq. (1). The overall process takes place in each ROI and it
is depicted in Fig.4. A normalization step takes place to form
the final descriptor so as to achieve scale invariance.

Afterwards, a Support Vector Machine (SVM) is used to
determine each region’s normality. SVMs are used, as they
generally exhibit good performance relatively to other machine
learning methods and are also fast to run, for reliable real
time detection. Furthermore, they are able to handle large data
sets, which generally appear in real life situations. Because
of the infinite number of “anomalies” that can be derived in
each case, it is impossible to provide examples of all possible
anomaly classes, so a one class classifier is chosen. This way,
we provide our system exclusively with normal situations,
aiming to identify any irregularities deviating from the normal
pattern. This leads to a more accurate and general classifier
capable of detecting different kinds of anomalies, even when
appearing for the first time in the dataset.

The Support Vector Data Description (SVDD) method
of [34] was chosen, as it is known to be best suited for outlier
detection. According to this approach, spherical boundaries
are used instead of planar ones around the provided data of
the training set. The goal is to enclose nearly all n training
examples in a hypersphere with center o and the smallest
possible radius R, with the outliers lying outside this sphere.
Thus, its purpose is to minimize the function:

minR,o

(
R2 + C

n∑
i=1

ξ̇i

)
(13)

subject to:

‖νi − o‖2 ≤ R2 + ξ̇i, ξ̇i ≥ 0 ∀i (14)

In order to create a soft margin and allow for outliers in
the training set, slack variables ξ̇i and a penalty parameter C

describe the hypersphere. By using Lagrange multipliers to
solve Eq.(13), subject to Eq.(14), with a Gaussian kernel, we
conclude that a new “test object” z is accepted when:

‖z − o‖2 =

n∑
i=1

λi exp

(
‖z − νi‖2

σ2

)
≥ −R

2

2
+ CR (15)

otherwise z is an outlier. CR is a constant, dependent only on
support vectors νi, while λi are the Lagrange multipliers and
σ represents the standard deviation of the Gaussian kernel.

After training, localization is straightforward, as descriptors
are estimated spatially in specific ROIs around interest points.
Our algorithm checks each frame’s ROI independently, infers
about its normality and then notifies the system. Hence, our
method is capable of dealing with non-uniformly moving
and evolving crowds, as the descriptors are examined and
characterized separately in each ROI. It can accurately localize
different anomalies in a wide range of videos, from human
crowds to traffic, as the experiments that follow demonstrate.

VI. EXPERIMENTS

In order to evaluate the effectiveness of our method, we
applied it on four benchmark datasets of surveillance where
different kinds of anomalies were detected. Our algorithm’s
speed and accuracy on a frame and pixel level were calculated
and compared with the SoA, demonstating its effectiveness.
An extensive sensitivity analysis has also taken place to
examine the effect of varying all parameter values, showing
that they do not significantly affect the accuracy of the results.

As mentioned in Sec. III, temporal information is exploited
by extracting features over a specific window in time. The
length of the window should be large enough to contain
sufficient information and, at the same time, as small as
possible to avoid undesirable delays during the detection
process. Hence, we use a temporal window length that depends
on the frame rate and the underlying dominant motion, which
in our case is the mean walking frequency of a pedestrian.
As an example, Fig.5 depicts the optical flow values of a
pedestrian for the “ped2” dataset: it can be seen that the entire
motion displays periodicity over time, and therefore a temporal
window of 15 frames sufficiently captures the entire cycle for
this case. Averaging of the extracted features over time to form
triplets follows, as detailed in Sec. III-A, to mitigate the effects
of local noise and include richer temporal information in the
resulting descriptor.

The size of the extracted blocks is also scene-related and
dependent on the camera view, so as to contain adequate
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Fig. 5. Walking frequency of a pedestrian in ped2. A time window of 15
frames can capture the whole period of the motion.
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(a) (b) (c)

Fig. 6. Effect of different µ values on agents tracking the prey for the first 100 timesteps, with the other swarm parameters kept stable: (a) µ = 0.1, (b)
µ = 0.4 , (c) µ = 0.8. For µ = 0.8 the system is unstable and uncontrollable oscillations appear, making values of µ ≥ 0.8 unsuitable for our system.

information. As explained in Sec.III, its value is determined
in the beginning for each dataset and is fixed for all the shots
made by the same camera. In this work, we use a ROI of
20×20 for the UCSD dataset as it is small enough to capture
anomaly localization, but at the same time large enough to
capture useful information about the entities moving in the
scene (people, bicylces etc in the UCSD data). The ROI size
was determined experimentally, however small variations in
its size do not significantly affect the algorithm’s accuracy.

Because of the static nature of surveillance cameras, the
size of the temporal window and ROI blocks are only set
once for each camera, or in our case once for each dataset,
and thus do not compromise the generality of our algorithm.
The parameters defining the forces affecting the motion of the
swarm agents also remain the same in all experiments. In the
next section, the method’s sensitivity to different parameters
affecting the swarm generation is analyzed in detail.

A. Sensitivity Analysis

The parameters α, β of Eqs. (5) and (6) are positive con-
stants representing attraction/repulsion internal forces. In our
experiments we use a common value for them, as we want
the impact of repulsive and attractive forces to be the same
(α = β). Eqs. (5) and (6) show that increasing their values
leads to larger internal forces, which move agents by larger
distances, either taking them further away or closer to each
other. However, in our method, the center of mass of agents’
positions is used to determine the swarm’s histogram HOS,
which depends on the relative position of each group of agents,
rather than the actual values of these internal forces. For
lower values of α, β, the individual agents move less with
respect to each other, and for larger α, β they move more,
but on average the swarm’s position stays the same. This is
also shown in Fig.7, where the Equal Error Rate (EER) is
shown for the UCSD dataset for an extremely wide range
of values of β ∈ [0, 10000]: the EER fluctuates very little,
even for these very large differentiations in β, proving that
algorithm’s performance is barely affected by these constants.
Subsequently, we set α = β = 1 for all experiments.

Fig.6 shows the effect of changing the friction force param-
eter µ of Eq. (7). The parameter µ is essentially the equivalent
of the spring constant in the definition of a force, with a higher
value indicating the presence of more friction. For a lower µ
(µ = 0.1), it can be seen that less friction leads to faster but
less smooth tracking, as the effect of previous values, is given
less weight. Lowering the value of µ can make the friction
force more prone to errors, derived from OF values, while
increasing its value can result in unstable oscillations, with

Fig. 7. Sensitivity analysis for β. The EER for UCSD is depicted for different
values of β: the EER fluctuates very little, even for very large differentiations
in β, proving that algorithm’s performance is not significantly affected by β.

Fig. 8. Variance of the mean position of agents tracking the prey for µ.

Ffric reflecting temporally local noise, as Fig.6(c) depicts. In
order to demonstrate the smoothness of the resulting tracking
as a function of the parameter µ, we plot the variance of the
agents’ positions xi(t) for 0.1 ≤ µ ≤ 0.7 in Fig.8, for a video
sample from the UCSD dataset. It can be seen that, for smaller
values of µ, the variance does not show significant changes,
while for µ ≥ 0.7 it rises dramatically. For these reasons,
and based on the experimental data shown in Fig.6, we use
µ = 0.4, even though values of µ ≤ 0.6 do not really greatly
affect the accuracy of our system.

The parameter γ constitutes an elementary memory param-
eter that determines the effect of the previous agent’s velocity
on the current agent’s acceleration. In Fig.9(a), the swarm’s
position in relation to the prey is depicted for different values
of γ: for larger values of the parameter, the swarm moves more
quickly, but less smoothly. For values greater or equal to 0.8,
the system starts to oscillate, so we choose values for γ in the
range [0, 0.7]. In Fig.9(b), the EER error for the UCSD dataset
is depicted for values of γ in this range, where it can be seen
that the EER at the frame level is barely affected, while the
pixel level EER varies by about 10%, especially for γ > 0.4.
Hence, in our experiments we use γ = 0.4, as it leads to better
results, even though other values of γ ∈ [0, 0.7] do not cause
significant fluctuations in the method’s performance.

One last parameter that needs to be set for the swarm
formulation is δ. This is equivalent to a timestep parameter,
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(a)

(b)

Fig. 9. Sensitivity analysis for γ. (a) Swarm position in relation to prey
(red line) for different values of γ, (b) EER for UCSD “ped1” dataset for
γ ∈ [0, 0.7]. Both frame level and pixel level EERs are shown.

(a)

(b)

Fig. 10. Sensitivity analysis for δ. (a) Swarm’s position in relation to prey
(red line) for different values of δ, (b) EER for UCSD “ped1” dataset for
δ ∈ [0.1, 1.2]. Both frame level and pixel level EERs are shown.

as can be seen in Eqs. (10), (11), that corresponds to the time
that each agent needs to move from its previous position to the
current one. Larger values of δ make the swarm respond more
quickly to the prey, but can produce overshoots as Fig.10(a)
depicts for δ ≥ 1.3. On the other hand, very small values
δ ≤ 0.2 lead to a system that cannot follow the prey’s
trajectory. In our experiments we choose δ = 0.4, as it is
shown that with this value the swarm is capable of following
the prey to a sufficient extent, while maximizing our system’s
performance. Fig.10(b) shows the sensitivity of our algorithm
to different values of δ.

It should be pointed out that in all the experiments the
parameters described above remain fixed to their optimal val-
ues. As the extensive analysis proved, after defining the range
of each variable that ensures system stability, our algorithm’s
performance is not particularly influenced by further variations
in these parameter values.

Finally, the number of agents forming the swarm is fixed

to 5, as it is empirically found that this number sufficiently
represents the filtered motion dynamics of the scene with-
out negatively affecting the algorithm’s speed. Experiments
showed that the use of more agents heavily increased the
computational cost, with a computational time of 3.86 sec
per frame if the number of agents increased to 50, while
the algorithm’s performance actually decreased. This can be
attributed to the fact that the presence of too many agents
may lead to noisy internal forces due to the density of the
swarm, which eventually degrades the results. On the other
hand, the use of fewer agents, as few as 2 agents for example in
“ped1”, also decreased algorithm’s performance from 78.87%
to 73.66%. The initial agents’ speed and accelerations are set
to zero, whereas their initial positions are randomly generated.

B. Evaluation Criteria
In order to evaluate our method, we use the same criteria

as the SoA literature for benchmark datasets. Thus, the frame
and pixel level criteria described in [21] are adopted for UCSD
dataset in Sec. VI-C, while the Area Under the Curve (AUC)
is used for the UMN and U-turn videos described in Sec. VI-D
and Sec.VI-E respectively.

The frame level criterion localizes changes only in time,
predicting which frames contain an anomaly, without finding
its spatial location: a frame is thus characterized as abnormal
if it contains at least one abnormality, wherever it is located.
In contrast, the pixel level criterion includes both temporal and
spatial anomaly localization, and is used in the literature [21]
as follows: if at least 40% of all anomalous pixels are found
(as determined by the ground truth annotation), the detection
is considered successful and the frame is characterized as
abnormal. True positives and false positives are then derived
by comparing the spatiotemporally detected anomalies with
the ground truth, leading to Receiver Operating Characteristic
(ROC) curves of true positives vs. false positives to evaluate
the method’s performance. It should be emphasized that the
pixel level criterion is a more detailed, precise and reliable
evaluation measure, since it localizes anomalies in both space
and time. On the other hand, the frame level criterion’s
results, based on the correct detection of abnormal frames,
may sometimes be coincidental, resulting from false positives
appearing in frames that include true anomalies, without these
anomalies having actually been detected.

The evaluation metrics used are derived from the ROC
curves: the Equal Error Rate (EER) corresponds to the frame
level criterion, while the Detection Rate (DR) corresponds to
the pixel level criterion. These metrics have been widely used
in the literature for the benchmark UCSD dataset, as they
provide a reliable criterion to evaluate method’s performance
and to compare it with other SoA works. The EER corresponds
to the error rate of a system when the false positives (detections
of anomalies in a normal situation) are equal to the false
negatives (missed anomaly detections). This is achieved by
adjusting the threshold for accepting/rejecting a change until
equal errors are achieved. The lower the EER, the higher the
accuracy of the system. The DR, on the other hand, refers
to the successful detection rate of the anomalies happening
at EER, with higher detection rates implying a better perfor-
mance of our algorithm.
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TABLE I
“PED1” DATASET.

Equal Error Rate (EER) and Detection Rate (DR) in “ped1”

SF[10] MPPCA[16] Adam[15] Sparse[13] PSO[1] BVP[25] Roshtkhari
[26]

150fps
[19]

H-MDT
(CRF)[22]

Ours

EER 36.5% 35.6% 38.9% 19% 21% 18% 15% 15% 17.8% 27.02%
DR 40.9% 23.2% 32.6% 46% 52% 68% 71% 59.1% 74.5% 78.87%

TABLE II
“PED2” DATASET.

Equal Error Rate (EER) and Detection Rate (DR) in “ped2”

Method EER DR

SF [10] 35% 27.6%
MPPCA [16] 35.8% 22.4%
Adam [15] 45.8% 22.4%
H-MDT(CRF) [22] 18.5% 70.1%
Ours 26.92% 74.92%

The AUC criterion is simply the area under the ROC curve,
derived for the UMN and U-turn datasets, as this criterion is
also used in the literature for those videos.

C. UCSD dataset

The UCSD dataset is comprised of two subsets “ped1” and
“ped2”, containing different scenes recorded from different
camera angles [21]. Each “ped1”, “ped2” subset is divided
into a training set containing exclusively normal frames and
a test set, including different kinds of anomalies. The dataset
consists of crowds of medium density traversing the scene
(“ped2”) or moving towards and away from camera, adding
some perspective (“ped1”). The UCSD dataset constitutes a
challenging dataset, as it contains many occlusions, a variety
of anomalies, sometimes co-occurring in the same frame, and
its resolution is of low quality. Anomalies present in the test
set include bicycles, skaters or other wheeled objects moving
with different speeds and passing through the crowd, which
are in some cases difficult to detect even for human observers.
“Ped1” comprises of 34 normal training clips and 36 test clips
of size of 158×238 pixels, while “ped2” consists of 16 training
clips and 14 test clips of 240× 360 pixels.

Table I depicts the evaluation of the proposed algorithm for
the “ped1” dataset, presenting the Equal Error Rate (EER)
and the detection rate (DR) for the frame and pixel level
criterion respectively. The full annotation provided by [25]
was used for pixel level criterion. The method is compared
against 9 other SoA works, which use different approaches to
detect spatiotemporal anomalies in this dataset. These include
descriptors based on social force flow dynamics [10], the
mixture of optical flow observations (MPPCA) [16], the use of
local low level motion histograms [15], sparse reconstruction
approaches in motion histograms [13], [19], particle swarm
optimization (PSO) to optimize a fitness function based on
SFM [1], a Bayesian video parsing approach using a set of
hypotheses that jointly explains the foreground [25], a bag
of video words approach [26] and finally the hierarchical
mixture of dynamic textures (H-MDT) after applying CRF

filtering [22], as this variation of their method led to SoA
results.

As observed from Table I our method greatly outperforms
all other existing methods for the pixel level criterion, while for
the frame level criterion it gives comparable results. However,
as stated above, the frame level criterion is a less detailed and
reliable descriptor of the performance of the algorithm than the
pixel level criterion, as in some cases even perfect frame level
anomaly detection can be achieved “coincidentally” by only
detecting false positives. Therefore, we consider that overall
our method significantly improves upon the SoA.

The results for “ped2” are presented in Table II. In this case,
our method is compared for both evaluation criteria with 4 SoA
approaches, as in [22]. Our method once again leads to better
performance for the more precise pixel level criterion, while
comparable results are obtained for the frame level evaluation.
In Fig.13 the ROC curves for the complete UCSD dataset are
presented.

Fig.11 and Fig.12 depict screenshots from successful detec-
tions in the “ped1” and “ped2” datasets respectively. As can be
seen, different kinds of “anomalies” are successfully localized
even when they co-occur in the same frame, as in Fig.11(f).
A remarkable achievement of the proposed method is that
deviations from normal patterns can be also detected in highly
occluded scenes, as Fig.12((e)-(f)) illustrate. In these cases, a
bicycle and a skater respectively are correctly identified as
“anomalies”, even though their detection is a challenging task
even for a human observer. Videos with the outcomes of our
algorithm on the UCSD dataset can be found in the following
link: http://mklab.iti.gr/people/vagiakal.

We conducted the same experiments without including the
swarms and using instead only the OF, while the rest of our
algorithm remained the same to evaluate the effect of swarm
intelligence. Table III shows the results for both cases in its
first two rows, demonstrating that swarms effectively “filter”
the OF values, leading to more accurate results and reinforcing
our decision to incorporate them in our algorithm. For both
“ped1” and “ped2”, a higher detection rate is achieved when
using swarms, while the EER is lower. Additionally, in order to
examine the impact of the appearance and motion descriptors
separately on performance, results are presented in the same
table for when only the motion descriptor (HOS) or only the
appearance descriptor (HOG) is used. For the “ped1” dataset,
the use of both descriptors led to better results than using them
separately. Nevertheless, for “ped2” the inclusion of the HOG
descriptor worsened the algorithm’s performance. However,
as Table III shows, the results when using both descriptors
or only motion descriptor are still comparable, proving that
our decision of combining both descriptors is justified as it
can be generalised in more cases, giving better or sometimes
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Different kind of anomalies (shown in red blocks) were detected in
Ped1 dataset: skaters ((a)-(b)),vehicle ((c),(e),(f)), wheeled chair (d), bicycle
(f). Red contours show the foreground where the algorithm is applied while
yellow points are the interest points in them.

(a) (b) (c)

(d) (e) (f)

Fig. 12. Different kind of anomalies (shown in red blocks) were detected in
Ped2 dataset: bicycles ((a),(b),(d),(e)), vehicle (c) and skater (f). Anomalies
were successfully detected even when co-occurring in the same frame (b)
or even in high occluded scenes ((e)-(f)). Red contours show the foreground
where the algorithm is applied while yellow points are the interest points in
them.

comparable results.
In Table IV, the computational cost of the method proposed

for the UCSD dataset is presented, in comparison with 5 other
SoA methods. Our method ranks on the average second in
speed performance after the sparse approach of [19], which
achieved a remarkably low computational cost, but at the
expense of algorithm’s detection performance. As it can be
seen, their method achieves only a detection rate of 59.1%
against ours of 78.87% and 74.92% for “ped1” and “ped2”
dataset respectively. In comparison with the H-MDT (CRF)
method, our approach exhibits lower cost with better detection
performance for “ped1” dataset and comparable cost for
“ped2”, while also achieving better detection performance.
Overall, Table IV shows that our algorithm achieves the best
detection performance results at a low computational cost. All
experiments were conducted on a 16GB RAM computer with
a 3.5 GHz CPU. The algorithm runs in C++, without being
optimized, meaning that the computational cost can be reduced
even further, making it applicable to real world situations.

D. UMN dataset

The UMN dataset [35] consists of 7739 frames of 320×240
pixels in 3 different scenes (umn1, umn2, umn3 ) including
respectively 2, 6 and 3 scenarios of crowd escape events. The

TABLE III
PERFORMANCE OF VARIOUS VARIATIONS.

EER DR
ped1 ped2 ped1 ped2

with swarm 27.02% 26.92% 78.87% 74.92%
without swarm 28.52% 27.09% 68.74% 64.94%
only HOS 29.03% 26.20% 75.76% 76.89%
only HOG 40.11% 47.32% 69.49% 48.56%

TABLE IV
COMPUTATIONAL COST.

method sec. per frame Performance(DR)
Sparse[13] 3.8 46%
MDT[21] 25 45%
BVP[25] 5 - 10 68%
150fps[19] 0.00697 59.1%
H-MDT(CRF)[22] 1.11 (ped1) 74.5%

1.38 (ped2) 70.1%
Ours 0.91 (ped1) 78.87%

1.49 (ped2) 74.92%

first frames in each event depict a normal crowd situation,
with people walking or standing in the scene, while “anomaly”
takes place with a sudden evacuation. This data is quite
straightforward, as the “anomaly” is global and can be easily
detected even by only using the average frame motion. As
a result, many methods have been proposed for this data,
achieving near perfect scores.

The main drawback of this dataset is its limited size, in
combination with the absence of a separate training set. The
limited number of training frames results in a not well defined
“normal” class. Our descriptor uses detailed appearance and
motion information, however these change significantly, even
in the “normal” frames, so it requires more training data for a
better defined description of the “normal” events. As a result
of its limited size, this data does not allow us to demonstrate
the true potential of our method, which uses many complex
features so as to be applicable to more difficult videos.

For training, normal frames of one scenario from scene 1
and two scenarios from scenes 2 and 3 were used to model

Fig. 13. ROC curves for the full UCSD dataset - top row: pixel level criterion,
bottom row: frame level criterion.
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normal crowd behaviors, while the rest of the frames were used
for testing. Fig.14 has screenshots of our algorithm’s outcome
for all 3 scenes, while in Table V comparisons with 5 SoA
methods [22] are provided. Anomalies are correctly detected
and localized in all cases, however, some false positives appear
due to the above mentioned lack of adequate training. The
total performance of our algorithm reached 99.59% for umn1,
93.38% for umn2 and 98.08% for umn3 using the Area Under
Curve (AUC) criterion, which is used in the literature for
UMN. Its performance is therefore shown to be near perfect,
comparable with the SoA, with the exception of umn2, where
it achieved very high, but not perfect, results. This is attributed
to the sparseness of the training data in umn2, which were
even less informative than those of umn1 and umn3.

Fig. 14. Screenshots of our results for UMN. The first row depicts normal
situations in all 3 scenes and the second row shows abnormal events
(evacuation). Red areas demonstrate anomaly localization.

TABLE V
AUC PERFORMANCE FOR ANOMALY DETECTION IN THE UMN DATA

SF
[10]

chaotic
[8]

sparse
[13]

local
stat.
[14]

H-
MDT
(CRF)
[22]

Ours
umn1

Ours
umn2

Ours
umn3

AUC
(%)

94.9 99.4 99.6 99.5 99.5 99.59 93.38 98.08

Fig. 15. Anomalies detected in red for the U-turn dataset by our algorithm.

E. U-turn
In order to confirm our method’s robustness, we also applied

it to a non-crowd dataset. We used the U-turn dataset of [36],
which shows normal traffic in a crossroad and some cars
making illegal U-turns (“anomaly”). The dataset comprises of
6117 frames of 360× 240 pixels. The scenes are quite sparse
and, in combination with the dataset’s limited size, there is
not much training data. However, even with limited training
samples, all anomalies are perfectly detected and localized, as
can be seen in Fig. 15. It is remarkable that in the first frame

in Fig. 15, our algorithm correctly distinguishes between an
illegal turn and a legal one. Around 3400 frames depicting
normal traffic were used for training, and the rest were used
for testing. In Fig. 16, the ROC curve of our method for the
U-turn data is compared with the results provided by [22]. As
it is shown, we achieve the highest AUC at the frame level,
equal to 95, 31%, with all “anomalies” having been correctly
detected and localized.

F. Love Parade
The algorithm was also tested on the surveillance data of

Love Parade 2010 [37], which contains videos of high density
crowds. Snapshots are provided in Fig. 17 and, as it can be
observed, deviations from normal crowd patterns are correctly
detected and localized, despite the little motion present, and
the high number of occlusions, due to the high crowd density.
Around 1000 frames were used for training with the rest of
the frames used for testing. The truck and ambulance are
successfully detected while traversing a highly dense crowd,
whereas people in the crowd jumping over railings are also
detected as an anomalous behavior.

VII. CONCLUSION

In this work, we propose a novel framework for anomaly de-
tection in different scenarios, recorded from static surveillance
cameras. Swarm intelligence is exploited for the extraction of
robust motion characteristics and together, with appearance
features, form a descriptor capable of effectively describing
each scene. Its remarkable performance in 4 completely dif-
ferent kinds of datasets proves the method’s generality and
its applicability in real life situations. The high detection
rate in the UCSD dataset, that greatly outperforms various
state-of-the-art approaches, especially on the most challenging
pixel level criterion, demonstrates that the proposed algorithm
can be effectively used for challenging crowd videos with
many occlusions, local noise and local scale variations. This
fact in combination with its low computational cost and its
effectiveness in different environments, make our algorithm
very appropriate for a variety of surveillance applications.
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Fig. 17. Our results for Love Parade. The truck and ambulance are successfully detected going through a very dense crowd. People from the crowd climbing
over the railings are also detected as anomalous behaviour.
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