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Abstract

Learning based approaches for depth perception are lim-
ited by the availability of clean training data. This has
led to the utilization of view synthesis as an indirect ob-
jective for learning depth estimation using efficient data ac-
quisition procedures. Nonetheless, most research focuses
on pinhole based monocular vision, with scarce works pre-
senting results for omnidirectional input. In this work,
we explore spherical view synthesis for learning monoc-
ular 360o depth in a self-supervised manner and demon-
strate its feasibility. Under a purely geometrically de-
rived formulation we present results for horizontal and ver-
tical baselines, as well as for the trinocular case. Fur-
ther, we show how to better exploit the expressiveness of
traditional CNNs when applied to the equirectangular do-
main in an efficient manner. Finally, given the availabil-
ity of ground truth depth data, our work is uniquely po-
sitioned to compare view synthesis against direct supervi-
sion in a consistent and fair manner. The results indicate
that alternative research directions might be better suited
to enable higher quality depth perception. Our data, mod-
els and code are publicly available at https://vcl3d.
github.io/SphericalViewSynthesis/.

1. Introduction

Data-driven approaches are producing impressive results

in a variety of vision related tasks. Convolutional neural

networks (CNNs) are trained to match – and even surpass

– human perception, managing to infer three-dimensional

(3D) information solely from monocular images. How-

ever, their performance is closely related to the availabil-

ity of high quality training samples, which for certain tasks

is tedious, expensive or even outright impossible. While

landmark annotations can be crowd-sourced, densely anno-

tating images with ground truth depth values fits the latter

category. As a result, fully supervised depth learning has

Figure 1. Spherical view synthesis for self-supervised depth es-

timation using 360o stereo images. Considering spherical view-

points within a 3D scene, we render color images from consistent

baselines. Starting from a central viewpoint (green), we explore

both vertical (cyan) and horizontal (pink) setups, as well as the

trinocular case. Indicative equirectangular projection images as

observed by the 3 spherical viewpoints are presented on the left,

while the 3D scene and viewpoint positions within it, on the right.

only been demonstrated in small scale datasets [31], usually

without pixel perfect depth measurements [33], or other-

wise in generated synthetic datasets [45] that, nonetheless,

need to overcome the synthetic-to-real domain gap.

Naturally, a great body of work has identified this chal-

lenge and focused on overcoming it with self-supervision,

using an indirect objective to infer depth, namely, view syn-

thesis. Accurately explaining imaged content from a differ-

ent viewpoint relies on 3D information, and by extension,

accurate depth. Even though view synthesis supervision re-

lies on a set of assumptions (diffuse materials, absence of

occlusions, static scenes) that do not necessarily hold for

real world acquired data, convincing depth estimation re-

sults have been presented without using any ground truth.

Earlier efforts relied on synchronized stereo cameras cap-

turing static scenes [9, 11], introducing view synthesis via

inverse image warping and paving the way follow-up works.

Circumventing the need for stereo data acquisition, more

recent works [47] only rely on video input for learning to in-
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fer depth. To achieve this they learn to estimate the camera’s

motion jointly with estimating the observed scene’s depth,

and are supervised by synthesizing future and/or past views.

While an abundance of data are readily available for these

structure-from-motion learning methods, they still need to

overcome the violation of the static scene assumption.

The absolute majority of this line of research has focused

on traditional pinhole cameras, disregarding self-supervised

depth estimation for omnidirectional input, apart from [41],

which, however, uses a cube map (i.e. pinhole) representa-

tion. Spherical view synthesis is relatively unexplored as

most works focused on catadioptric or cylindrical cameras.

It is also challenging due to the inherent distortions when

applied to two-dimensional images, which in turn mani-

fest into severe self-occlusions. Further, due to the con-

tent’s spherical nature, the irregular disparity patterns that

it exhibits hinder efficient learning, especially for horizon-

tal baselines, while the singularities at the epipoles prevent

coherent gradient flows when using inverse image warping.

In this work, we explore spherical view synthesis and

demonstrate its applicability for self-supervised spherical

depth estimation. Summarizing, our contributions are:

• The full spherical disparity model is presented using a

purely geometric derivation.

• A robust supervision scheme is developed for spheri-

cal view synthesis using depth-image-based rendering

(DIBR) and spherical attention.

• Unlike inefficient and resource consuming spherical

learning approaches, our network design incorporates

a straightforward way to make our model aware of its

spherical nature.

• Besides offering a large 360o stereo dataset, our work

is uniquely posed to compare the effectiveness of view

synthesis and direct supervision. We perform a fair and

consistent evaluation and present its results.

2. Related Work
Learning with spherical content: Applying CNNs to

spherical content is accomplished by warping it to a regular

grid. MPEG-OMAF [34] defines two projection formats

for 360o images, the cubemap and equirectangular (ERP)

projections. While cubemaps can be straightforwardly fed

into a CNN, and then re-merged back into 360o as in [24],

they still suffer from cubemap distortion and discontinuity

artifacts. For the latter, cube padding [3] can explicitly aid

the network into connecting the cube faces, enabling global

reasoning. Similarly, circular padding [42] has been used

when applying convolutions directly to the ERP image.

A novel direction is to bypass learning on spherical data

and instead, adapt models trained on perspective images to

the 360o domain. Initially, [36] regressed per row rectan-

gular filters from the pre-trained ones, at the expense of in-

creasing the model’s size and complexity (multiple filters

for a single activation map) and suffering from regression

approximation. It was recently extended [37] to transfer 2D

CNN models by producing functions that map weights to

each row, while preserving inter-channel information ex-

change, and overcoming some of the previous disadvan-

tages, albeit still taking a model size hit (even though sig-

nificantly reduced). Another approach is adapting the input

data to the 360o domain [27], yet it was not demonstrated

for full spherical images, but rather only for panoramic

ones.

Another direction is training rotation equivariant CNNs

either using graph-based learning [16] or employing spec-

tral learning approaches, with two notable works using

spherical harmonics [7] and spherical cross correlation with

Fast Fourier Transforms (FFTs) [4] to achieve expressive

training on the sphere. Still, their high memory footprint

hinders applicability due to limited input resolutions.

As a result, more efficient approaches resorted to kernel

distortion [38], tangent plane kernels [5], kernel resampling

[46] or ERP specific dilations [8]. However, as presented in

[37], all these approaches are valid only for the first layers,

as the CNN’s non-linearity distorts the pure spherical repre-

sentation as the network deepens, breaking the assumptions

they are designed for (i.e. the features’ spherical smooth-

ness). In addition, inefficient implementations [46] intro-

duce problems during training (very small batch size and

low run-time performance). Instead, we resort to a more

explicit and efficient solution to make the network aware of

the data spherical nature, by exploiting recent research re-

lated to CNNs’ capacity to self-localize their features, and

also utilize spherical attention to allow for distortion aware

supervision in the ERP domain.

Monocular self-supervised (spherical) depth: The

seminal works of [9] and [11] first demonstrated that view

synthesis can serve as the supervisory signal for monocular

depth estimation. This has attracted a lot of attention from

the research community given the difficulty in obtaining

high quality real world depth measurements. Both [9] and

[11] used perspective horizontal stereo data and employed

either approximately [9] or locally [11] differentiable image

warping [14] to synthesize the reconstructed views.

A novel solution was introduced by [47] that extended

view synthesis supervision to unstructured video datasets

by simultaneously predicting inter-frame pose. However,

learning to estimate depth purely from video breaks the

static scene assumption and necessitates the use of an atten-

tion mechanism for foreground motion between consecutive

frames. More recent iterations of this direction added scale

normalization and removal of the separate pose estimation

branch [40], 3D geometric constraints between the pre-
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dicted depths [23], epipolar constraints [29], additional fea-

ture reconstruction supervision [44], stereo matching con-

straints [43] or explicitly used two consecutive frames as

input [28].

Prevalent for all the above methods is the reconstruc-

tion loss of synthesized views via inverse warping through

a stereo disparity model or explicit 3D transformations and

projections. Disregarding the challenging Lambertian sur-

faces assumption, inverse warping does not gracefully han-

dle occlusions, which are only implicitly addressed (e.g. ex-

plainability/visibility masks, left-right consistencies). This

has a detrimental effect for spherical images as occlusions

are magnified due to distortion. Instead, we rely on a soft

rendering approach to synthesize the supervisory views.

While a large body of work exists for traditional per-

spective images, scarce research has addressed depth esti-

mation from spherical panoramas. The most apparent is-

sue is the unavailability of data, and thus, two concurrent

works addressed 360o depth estimation by generating data

via rendering existing 3D datasets. Two baseline models

were presented in [49] after creating a large dataset of color

and depth pairs using a mix of synthetic and real scenes.

Further, [41] utilized the more recent advances in depth esti-

mation from videos and rendered videos from a purely syn-

thetic 3D dataset. Still, [49] simply applied a CNN on ERP

images while [41] explicitly used a cubemap representation

and relied on previous works on perspective depth video

learning, but with cubemap constraints.

Indirect supervision through spherical view synthesis has

not been explored yet for learning monocular 360o depth

estimation. Previous works mainly focused on estimating

depth from fisheye [19] or cylindrical [48] stereo setups

and utilized the corresponding disparity models. For the

full spherical setting a complete disparity model has not

been considered as prior work only focused in extracting

depth measurements and not synthesizing views. Conse-

quently, 360o vertical stereo setups [17] were preferred due

to their simpler disparity model that requires no rectifica-

tion. Works using 360o horizontal stereo [20, 16] relied

only on horizontal disparity modelling which is sufficient

to triangulate depth values after rectification. On the other

hand, horizontal spherical view synthesis introduces distor-

tions which manifest as vertical disparity. In this work we

present and explore the complete spherical disparity model

for both stereo placements under a view synthesis, self-

supervised 360o depth estimation learning context.

3. Self-supervised Spherical Depth

3.1. Spherical Disparity Model

We define a spherical image through its ERP on a 2D grid

as shown in Fig. 2. Each image’s local 3D coordinate sys-

tem in spherical ρ = (r, φ, θ) and Cartesian v = (x, y, z)

Figure 2. Spherical � = (φ, θ) longitudinal and latitudinal coor-

dinates aligned with the image grid’s equirectangular coordinates

p = (u, v) respectively (left). The spherical attention masks AUD

for vertical and ALR for horizontal stereo placements as defined

in Eq. 5 respectively (middle). Both attenuate towards the singu-

larities, while the ALR also includes distortion related attenuation.

Image grid coordinate feature maps for the horizontal (u) and ver-

tical (v) image grid directions (right).

coordinate systems are given in Eq. 1. An ERP image’s

width w and height h span w × h := 2π × π radians at the

[0, 2π] and [0, π] ranges respectively, covering a complete

spherical view with ϕ = 2π/w the horizontal and ϑ = π/h
the vertical angular resolutions respectively. Columns cor-

respond to constant longitude/azimuth (φ) angles, while

rows to constant latitude/elevation (θ) angles. Each pixel

p = (u, v) can be mapped to angular spherical coordinates

� = (φ, θ) as (uϕ, vϑ) and vise versa. This linear mapping

between image domain pixels p and spherical domain an-

gular coordinates � allows for straightforward transitions

between image and spherical based operations. We will

therefore omit any explicit conversions between them in the

following text. Contrary to perspective images, 360o depth

is defined as the 3D Euclidean distance to a point, which

corresponds to the radius r in spherical coordinates.⎡
⎣rφ
θ

⎤
⎦=

⎡
⎣(x2 + y2 + z2)1/2

arctan(x/z)
arccos(y/r)

⎤
⎦,
⎡
⎣xy
z

⎤
⎦=

⎡
⎣r sin(φ) sin(θ)r cos(θ)
r cos(φ) sin(θ)

⎤
⎦ (1)

Spherical stereo considers physical displaced spherical

viewpoints that image the same scene. They are positioned

with a known baseline in either horizontal or vertical place-

ments. Fig. 3 shows both of these placements as well as

the projection of a 3D point on each displaced viewpoint.

Disparities γ = (γφ, γθ) correspond to angular differences

in the angular spherical coordinates (φ, θ) measured in radi-

ans. Spherical disparities γ can be analytically derived from

a source viewpoint vsrc with respect to an unrotated target

viewpoint vtgt according to their baseline b = vsrc − vtgt

by calculating the partial derivatives of the spherical coor-

dinates with respect to the Cartesian ones:

⎡
⎣∂r∂φ
∂θ

⎤
⎦=
⎡
⎢⎣
sin(φ) sin(θ) cos(θ) cos(φ) sin(θ)

cos(φ)
r sin(θ) 0 − sin(φ)

r sin(θ)
sin(φ) cos(θ)

r
− sin(θ)

r
cos(φ) cos(θ)

r

⎤
⎥⎦
⎡
⎣∂x∂y
∂z

⎤
⎦(2)

These link Cartesian displacements, i.e. the baseline b =
(dx,dy,dz), to angular displacements on the sphere,
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Figure 3. The spherical disparity γ model for a horizontal (pink region) and vertical (cyan region) baselines. Besides longitudinal disparity,

the horizontal placement introduces latitudinal disparity as well, with both being a function of the estimated depth according to Eq. 2.

For the vertical placement scenario, a simpler model that only includes latitudinal disparity simplifies spherical view synthesis and depth

estimation. The top left inset illustrates the irregular sign patterns of the disparities in the horizontal stereo placement setting (negative –

green and positive – pink). The left image corresponds to longitudinal (φ), and the right to latitudinal (θ) disparity.

i.e. disparity γ = (dφ,dθ), through the radius, i.e. depth,

r. For horizontal stereo along the x axis with a baseline

bx=(dx, 0, 0) it is γhoriz = dx(∂φ/∂x, ∂θ/∂x) while for

vertical stereo with a baseline by =(0,dy, 0) along the y
axis it is γvert = dy(∂φ/∂y, ∂θ/∂y). Evidently, the dis-

parity model for vertical placements is simpler, as there is

no longitudinal disparity and thus, the pixels reproject to

the same vertical scan path. However, for horizontal place-

ments the reprojected pixels lie on epipolar curves on the

ERP domain which are sinusoidal, resulting in a more com-

plex disparity model with displacements along both angular

directions.

3.2. Depth-image-based rendering

As presented in Sec. 3.1, the angular disparity γ for an

ERP pixel � = (φ, θ) is a function of its depth r and the

baseline b between the viewpoints. Consequently, we can

transform pixel coordinates from a source ERP image Is
to a target ERP image It given the source’s depth map Ds

using an angular pixel displacement function Γ:

�t = Γs→t(Ds,�s,bs→t) = �s − γ(Ds,�s,bs→t). (3)

It should be noted that for horizontal stereo, the longitudinal

disparity wraps around the sphere. This corresponds to a

modulo operation, which is omitted to simplify notation.

Under a traditional inverse warping approach, the tar-

get image would be bilinearly sampled to synthesize the

source view and supervise learning through the recon-

structed source view. Yet, this approach cannot easily han-

dle occluded regions or non-linear mappings which are

prevalent in the sphere. Indeed, the ERP distortions are

responsible for many-to-one as well as one-to-many pixel

mappings, a fact that is more pronounced in wider base-

lines that are a necessity for higher accuracy in farther

depths. Furthermore, wider baselines produce noticeable

occlusions, especially for spherically imaged content.

In order to enable learning through view synthesis for

spherical stereo we use a soft locally differentiable render-

ing approach (DIBR) that involves splatting the contribu-

tions of each source image pixel to an empty target canvas Ît
(Fig. 4). The splatted coordinates are derived by Γ and are a

function of the source depth map Ds. Local differentiability

is ensured by neighborhood based bilinear splatting, while

soft rendering relies on weighted contribution accumulation

in the target image [39].

In more detail, each source pixel �s contributes to four

target pixels �Nt : {�tl
t ,�

tr
t ,�bl

t ,�
br
t } comprising a neigh-

borhood N created through floor and ceiling operations

on the target pixel’s �t coordinates. A bilinear weight

β(�Nt ,�t) is associated with each of them. The contribu-

tions of all source pixels are accumulated on the target im-

age via scattering operations and additionally weighted by

a depth attenuation factor α(�s, D) = e−D(�s)/dmax , with

dmax a pre-selected maximum depth value. Each source

pixel’s contribution to the target image canvas Ît is weighted

by w(�s) = α(�s, D)β(�Nt ,�t). Additionally, the weights

themselves are also splatted in a target weight canvas Ŵt.

In this way, soft z-buffering is enforced and the target

view Ĩt is synthesized, after a normalization operation that

divides the splatted color canvas with the splatted weight

canvas in an element-wise fashion: Ĩt = Ît � (Ŵt + ε), ε
being a small numerical stability constant. This allows for

backpropagation to the occluded areas whose view synthe-

sis contributions and gradients are weighted according to a

viewpoint proximity criterion. Besides gracefully handling

occlusions, this splatting based view synthesis can accom-

modate many-to-one pixel mappings. While one-to-many

pixel mappings are not supported, they do not need to be

explicitly handled as the canvas will be empty in those re-

gions where no source pixel contribution landed. This way,

a binary mask Mt = Ŵt < ε can be calculated that masks

empty canvas areas. On the contrary, when using inverse

warping, either ground truth depth for z-testing, or an atten-

tion mechanism is required to prevent false supervision and

destabilizing gradient backpropagation.
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Figure 4. Depth-image-based rendering view synthesis. For each

pixel, its reprojection to another viewpoint (in horizontal or ver-

tical stereo placement) is calculated via the estimated depth map.

For each pixel a weighted splat is added to an empty canvas around

its immediate reprojection neighborhood. Subsequent to their ac-

cumulation, a normalization step produces the final rendering. In

this way, occlusions and irregular pixels mappings are handled

gracefully, allowing for the use of view synthesis as a supervision

objective, even for severe distortion areas.

3.3. CoordNet

Architecture: Our network, CoordNet, illustrated in

Fig. 5, is designed to be efficient in learning with spheri-

cal data, minimizing memory consumption and maximiz-

ing inference speed compared to other approaches for 360o

learning. Our lightweight backbone architecture is inspired

by [15] but we replace traditional residual blocks with pre-

activated ones [12] and utilize ELU [32] activations instead

of RELU [25] and batch normalization [13].

We introduce 360o awareness implicitly within our

model by utilizing the recently introduced coordinate con-

volutions [21]. Each input feature map is concatenated with

two additional feature maps that represent its grid coordi-

nates in the two dimensional grid. These extra features al-

low the network to learn the spatial context, which in our

case is the ERP domain. CoordNet has minimal mem-

ory overhead compared to spectral or model transference

approaches, which only scales with feature resolution and

the number of convolutional layers. Additionally, in terms

of run-time performance, the processing overhead is lower

than kernel based approaches that involve trigonometry cal-

culations for warping features or weights.

Unlike other stereo self-supervised learning approaches,

we resort to predicting depth directly instead of disparities,

and use Eq. 2 to calculate them for view synthesis. This

allows for a more general spherical view synthesis model

that can facilitate both vertical and horizontal stereo place-

ments. For the vertical case, a direct disparity estimation is

equivalent to depth estimation, but for the horizontal one,

it touches on an important weakness of CNNs: their in-

ability to simultaneously regress spatially varying positive

and negative values. Longitudinal disparities for horizon-

tal stereo are of opposing signs at the front and back look-

ing directions. Moreover, latitudinal disparities, in the same

placement, follow spatially varying sign patterns, depicted

in Fig. 3, further magnifying the problem. While a solution

would be to predict absolute values and explicitly enforce

correct signs this was not the case in our experiments as

training did not manage to converge. Since the longitudinal

and latitudinal disparities are correlated, directly predicting

the first would make the estimation of the second possible,

but only after transitioning to depth, yet this only strength-

ens the choice of regressing depth directly.

Supervision: CoordNet is self-supervised by a depth

driven photometric image reconstruction loss as well as a

depth smoothness prior:

Ltotal = λreconLrecon + λsmoothLsmooth, (4)

where λrecon and λsmooth are weights that sum up to one.

Our reconstruction loss uses a standard photometric loss as

presented in [11], which is also used in most self-supervised

monocular depth estimation methods:

Lphoto(p)=ηLD(IMt (p), ĨMt (p))+(1−η)∣∣IMt (p)−ĨMt (p)
∣∣.

It combines the L1 penalty function with structural dissim-

ilarity LD, under a relative weighting factor η. The super-

script M denotes multiplication with the binary mask Mt.

While previous ERP domain learning approaches [49]

used uniform supervision on the ERP image, such an ap-

proach will greatly bias higher quality predictions towards

the more distorted areas. Instead, we explicitly use a spheri-

cally weighted attention mechanism to uniformly aggregate

errors and gradients on the sphere, instead of on the dis-

torted ERP image. We use an attention weight matrix A
defined on the ERP domain in two different variants:

A(�) =

{
| sin(θ)|, for vertical stereo,

| sin(φ)|| sin(θ)|, for horizontal stereo.
(5)

These weight maps, as illustrated in Fig. 2, eliminate the

effect of the epipole singularities as the contributions of the

areas around the singularities tend to zero. For the verti-

cal case, they coincide with the distortion attenuation fac-

tor sin(θ) but for the horizontal case the corresponding sin-

gularity attenuation term sin(φ) is added. Hence, the total

reconstruction loss is the spherically weighted mean photo-

metric error of all valid pixels:

Lrecon =
1∑

p Mt(p)

∑
p

A(p)Mt(p)Lphoto(p). (6)

We also impose a smoothly varying prior on the predicted

signal. However, defining smoothness on the sphere is chal-

lenging and naive approaches like applying finite element

gradient operators [49] in the ERP domain will not succeed
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Figure 5. CoordNet and its view synthesis based supervision scheme. An ERP depth map D̃ is predicted using a single monocular ERP

color image Ĩ. Through the estimated depth, we synthesize stereo viewpoints in vertical (up – Ũ) or horizontal (right – R̃) baselines.

These are supervised using a photometric consistency error using the original viewpoints U and R for the up and right reconstructions,

as well as placement specific attention maps, AUD and ALR respectively. The trinocular self-supervised scenario is also considered using

a blending factor λratio to balance loss between the two different viewpoint reconstructions. CoordNet utilizes CoordConvs for all its

convolutional layers as shown on the right. Each incoming feature map is concatenated with the horizontal u and vertical v coordinate

maps of its resolution before fed into the convolution operation.

in enforcing smoothness correctly, as spherical depth inher-

ently varies spatially even for flat surfaces. As an alterna-

tive, we enforce a smoothness constraint on the deprojected

Cartesian coordinates v=(x, y, z) for each predicted pixel

(r=D̃(p), φ, θ), by minimizing the following weighted to-

tal variation term, using central differences:

Lsmooth=Ā(p)e||∇Is(p)||2√(∇uv(p))2+(∇vv(p))2. (7)

The weighting term Ā(p) = 1 − A(p) more heavily en-

forces smoothness on the distorted regions. A color guid-

ance weighted factor is also used in order to establish cor-

related depth and color gradients. Thus, smoothness on the

ERP domain is ensured via the Eq. 1 deprojection functions.

4. Results
Dataset: Given the unavailability of stereo 360o

datasets, we take a similar approach to [49] and render

panoramas from displaced viewpoints in both vertical and

horizontal placements as shown in Fig. 3. We use Blender1

and set the baseline for both placements to 0.26m, which is

a reasonable distance to get high quality results for indoor

scenes, which is the context of the rendered 3D datasets

used in [49]. However, unlike [49], we use the official

train, validation and test splits of Matterport3D [2] and

Stanford2D3D [1] (fold#1).In this way, our test set is suf-

ficiently different from our train set, and at least quadruple

the size of the test set used in [49]. Further, SunCG [35]

is only used during training and validation, but not during

testing as our focus is to assess applicability in real world

settings.

1Blender uses different longitudinal and latitudinal ranges ([−3π
2

, π
2
]

and [−π
2

, π
2
] respectively), therefore Eq. 1, Eq. 2 and Eq. 5 get modified

accordingly using trigonometric reflections.

Implementation Details: We implement our network in

PyTorch [26], initialize its weights using [10], and train all

our models for 30 epochs using a fixed learning rate of 10−4

and a batch size of 16. Across all experiments we use a

fixed seed for all the involved random generators to guar-

antee consistency. We use the AdaBound [22] optimizer

with a convergence speed of 2× 10−3 and a final target

SGD learning rate of 10−3. The weights of Eq. 4 are set

to λrecon=0.95 and λsmooth=0.05. Inline with prior work,

the photometric error is balanced by η=0.85 and a box filter

with a kernel size of 5 is used for the SSIM calculations.

Metrics: We use traditional depth evaluation metrics [6],

but with a notable difference. While previous works on

360o depth estimation [49, 41] used these metrics in the

ERP domain, they did not take into account its distortion.

As a result, distorted areas were given higher precedence in

the error calculation. We adapt the absolute relative error,

squared relative error, RMSE and RMSLE to use weighted

calculations for each pixel using the first case of Eq. 5 in

order to alleviate the effect of ERP distortion in our eval-

uation. However, the percentile threshold metrics require

a different approach. Instead of densely sampling the ERP,

we sample the sphere using an S2 generalized spiral set [30]

with N =0.25×w×h points. Consequently, the percentile

thresholds are only calculated for these spiral points.

Stereo placement analysis: First we seek to assess

which stereo placement is more efficient for view synthe-

sis based depth estimation learning. We train two variants

of the network described in Sec. 3.3. For the vertical vari-

ant (referred to as UD, i.e. up-down) we supervise using the

up view (displaced on the y axis) while the network is fed

the down/central image. Similarly, for the horizontal vari-

ant (LR, i.e. left-right), we supervise using the right view.

Table 1 shows that both converge at about the same epoch,
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Figure 6. Qualitative results of each category of trained models (TC6 was chosen as it is the best performing trinocular model). From left

to right: the input color image, the ground truth depth from [49], the fully supervised prediction (SV), the self-supervised predictions of

horizontal (LR), vertical (UD) and trinocular (TC6) placements. Additional examples can be found in our supplementary material.

and that UD achieves higher performance. Intuitively this is

attributed to the simpler disparity model. Nevertheless, an-

other important factor is that an UD model does not suffer

from the prevalent horizontal distortions. Due to this rea-

son, an UD variant can be trained with inverse warping as

the view synthesis method, while for the LR variant, con-

vergence with inverse warping was not possible.

Complementarity analysis: Next, we seek to under-

stand whether these two placements are complementary.

We train another model using trinocular (referred to as TC)

supervision that infers a single depth map from the cen-

tral view and is jointly supervised by the reconstruction of

both the up and right images, as seen in Fig. 5. We ex-

plore the effect of blending both view synthesis supervi-

sions by adding a ratio parameter to combine their losses

Lrecon=λratioLUD
recon+(1−λratio)LLR

recon. We train 4 vari-

ants of the TC network with a 0.2 step for λratio and name

them by suffixing TC with the ratio’s decimal. The results

are also presented in Table 1 with the color coded interpola-

tion for each metric illustrating the transition from the best

to worst, as we move from LR (λratio=0) to UD (λratio=1).
Interestingly, TC4 indicates that there exist blending factors

that will not allow the model to learn a good enough repre-

sentation as single viewpoint supervisions do. We further

observe that performance increases as the ratio increases

towards the simpler disparity model. Nonetheless, while

UD achieves best performance with respect to outlier pre-

dictions (as indicated by the RMS metrics), we find that the

slower convergence of TC6 results in a more robust model,

offering a compromise for overall performance, attributed

to the harder to optimize for, right view reconstruction.

Self-supervision status: Given that we ren-

dered/synthesized our data, we are in the unique position

of being able to directly and fairly compare view synthesis

self-supervision and direct supervision. Most others

self-supervised works resort to view synthesis supervision

because no high quality depth ground truth data are avail-

Table 1. Best performing snapshots (reached at the corresponding

epoch on the right) of our trained models. Relative performance

for the self-supervised methods is color coded to showcase the

gradual transition from LR to UD via the different blending factors

of TC. Lower is better for light blue metrics, while for the darker

accuracies δi < 1.25i higher is better.

Abs

Rel

Sq

Rel
RMSE RMSLE δ1 δ2 δ3 Epoch

SV 0.138 0.091 0.473 0.184 82.4% 95.9% 98.5% 24

LR 0.143 0.129 0.639 0.230 58.1% 88.2% 96.5% 18

TC2 0.132 0.117 0.606 0.216 61.3% 89.3% 96.1% 20

TC4 0.199 0.154 0.651 0.250 65.8% 91.2% 96.7% 17

TC6 0.129 0.112 0.580 0.209 65.1% 91.3% 97.0% 28

TC8 0.133 0.117 0.578 0.209 65.4% 91.0% 96.9% 16

UD 0.134 0.119 0.571 0.208 66.4% 90.8% 96.8% 16

able. While datasets with laser scanner depth data exist,

they are usually sparse, and/or of limited test samples. On

the other hand, synthetic datasets that offer high quality

depth renders, do not need to render stereo viewpoints, and

consequently, this comparison has not been done before.

Further, even if it is possible to perform this comparison

with synthetic data, applicability to real world scenes is the

ultimate goal, which our dataset supports in assessing.

We train our network modifying only the loss function

and directly supervising with ground truth depth maps. We

use the BerHu loss [18] and refer to the fully supervised

train as SV. Table 1 clearly shows the superiority of a fully

supervised approach compared to stereo self-supervision,

providing food for thought and poses interesting dilemmas.

Convergence analysis: We additionally offer a detailed

analysis for the convergence behaviour of all variants as Ta-

ble 1 only reported the best performing snapshots. Fig. 7

plots the results of four metrics on the whole test set across

epochs. It further signifies the importance of direct super-

vision as it is observed that it consistency improves its pre-

dictions. At the same time, UD plateaus while LR is unable

to converge further and instead loses performances across
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epochs, both after around the middle of the training dura-

tion, where they achieve their best performing state. The

good TC variants showcase more stable training and con-

sistently higher quality performance, contrary to UD which

fluctuates more, albeit achieving a high quality minima.

Figure 7. Test set metrics for each epoch for all the conducted

experiments. Left to right, top to bottom: Absolute relative error,

Squared relative error, δ1 < 1.25 accuracy, RMSE.

State-of-the-art comparison: We compare our stereo-

based learning approach to a recent video-based one [41].

Since [41] similarly renders a sequence dataset using

SunCG scenes (PanoSunCG), we train a SunCG only vari-

ant of our TC6 model (SCG-TC6). The first two rows of

Table 2 compare both methods on the PanoSunCG test set.

Since [41] does not provide a publicly available model, and

only offers a quantized dataset of significantly smaller vari-

ance than ours (our test set alone uses twice as many scenes

as the PanoSunCG train and test set combined), the final

row of Table 2 presents our model’s quantitative perfor-

mance on our SunCG test set. While the performance of

[41] is slightly better on PanoSunCG, our model achieves

much higher quality results in our more diverse test set.

Table 2. SunCG & PanoSunCG Comparison Results

Abs

Rel

Sq

Rel
RMSE RMSLE δ1 δ2 δ3

[41] 0.337 0.196 0.337 0.611 64.7% 82.9% 89.9%
SCG-TC6 0.371 0.440 0.843 0.421 56.2% 78.4% 87.8%

SCG-TC6 0.185 0.123 0.491 0.215 72.2% 89.5% 92.0%

CoordConv: Finally, we perform an ablation analysis

starting with the effect of CoordConv. We train UD and LR

using standard convolutions and report the results in Table

3. We observe that CoordConvs clearly boost the perfor-

mance in an UD placement but it is harder to determine a

similar finding for LR. The discrepancy in RMSE and RM-

SLE indicate that there is a gain for closer distances (which

RMSLE favors) compared to far ones (that RMSE favors),

similarly indicated by the discrepancy in the relative metrics

(squared against absolute).

Spherical Attention: We conduct two experiments to

assess the gains associated to the spherical attention maps

by re-training UD and LR without their respective attention

Table 3. CoordConv Ablation Results

Abs

Rel

Sq

Rel
RMSE RMSLE δ1 δ2 δ3

LR 0.143 0.129 0.639 0.230 58.1% 88.2% 96.5%
w/o CC 0.141 0.138 0.663 0.228 60.5% 88.4% 96.2%

UD 0.134 0.119 0.571 0.208 66.4% 90.8% 96.8%
w/o CC 0.138 0.136 0.650 0.224 61.2% 88.9% 96.3%

masks AUD and ALR. The results are presented in Table 4

where an interesting outcome is apparent. Their effect on

LR is significant while for UD it remains questionable as

it very slightly hampers performance. ERP distortions are

more prevalent in LR and stabilizing the loss during training

by reducing their effect, is very important. On the contrary,

vertical distortions are gracefully handled by DIBR, there-

fore rendering the attention insignificant.

Table 4. Spherical Attention Ablation Results

Abs

Rel

Sq

Rel
RMSE RMSLE δ1 δ2 δ3

LR 0.143 0.129 0.639 0.230 58.1% 88.2% 96.5%
w/o ALR 0.269 0.295 0.824 0.324 56.7% 84.4% 93.2%

UD 0.134 0.119 0.571 0.208 66.4% 90.8% 96.8%
w/o AUD 0.132 0.116 0.566 0.205 66.2% 90.1% 96.0%

5. Discussion
Spherical view synthesis is a relatively unexplored su-

pervision scheme, mainly due to the lack of data and the

challenges that it entails. We have presented a learning

scheme under which self-supervised 360o depth estimation

is possible addressing the challenges mainly related to the

distortions that ERP introduces. Our work is the first to

train a horizontal baseline 360o self-supervised model and

to achieve this, besides introducing the full 360o disparity

model, a more robust 360o view synthesis was required.

The DIBR splatting scheme, in combination with spheri-

cal attention, manage to overcome the inconsistent supervi-

sion that traditional inverse warping approaches suffer from.

Nonetheless, vertical stereo setups are offering higher qual-

ity models, further improved by CoordConvs, but as current

research focuses on utilizing videos for learning depth esti-

mation, the challenges that horizontal disparity comes with,

as well as the full spherical disparity model, are very rele-

vant. Finally, an unsurprising open question is raised with

respect to the performance deviation of self-supervised and

fully supervised models. Is self-supervision the direction to

pursue, or are other approaches like higher quality data ac-

quisition, or synthetic data and domain adaptation, perhaps,

better alternatives?
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