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Abstract: Continuous sign language recognition is a weakly supervised task dealing with the iden-
tification of continuous sign gestures from video sequences, without any prior knowledge about
the temporal boundaries between consecutive signs. Most of the existing methods focus mainly on
the extraction of spatio-temporal visual features without exploiting text or contextual information to
further improve the recognition accuracy. Moreover, the ability of deep generative models to effec-
tively model data distribution has not been investigated yet in the field of sign language recognition.
To this end, a novel approach for context-aware continuous sign language recognition using a gener-
ative adversarial network architecture, named as Sign Language Recognition Generative Adversarial
Network (SLRGAN), is introduced. The proposed network architecture consists of a generator that
recognizes sign language glosses by extracting spatial and temporal features from video sequences,
as well as a discriminator that evaluates the quality of the generator’s predictions by modeling
text information at the sentence and gloss levels. The paper also investigates the importance of
contextual information on sign language conversations for both Deaf-to-Deaf and Deaf-to-hearing
communication. Contextual information, in the form of hidden states extracted from the previous
sentence, is fed into the bidirectional long short-term memory module of the generator to improve
the recognition accuracy of the network. At the final stage, sign language translation is performed by
a transformer network, which converts sign language glosses to natural language text. Our proposed
method achieved word error rates of 23.4%, 2.1%, and 2.26% on the RWTH-Phoenix-Weather-2014
and the Chinese Sign Language (CSL) and Greek Sign Language (GSL) Signer Independent (SI)
datasets, respectively.

Keywords: continuous sign language recognition; sign language translation; generative adversarial
networks

1. Introduction

Sign language (SL) is the primary communication means of hearing-impaired peo-
ple in their everyday life, and it consists of a well-structured set of grammar rules and
vocabulary, similarly to spoken languages. The fundamental element of all sign languages
(there are over 300 sign languages used around the world [1]) is the “gloss”, which is
composed of a combination of hand shapes, positions, and motion trajectories, orientations
of palms and fingers, and facial expressions. Although the development of video-based
Sign Language Recognition (SLR) methods for the automated recognition of glosses and
the translation of SL to the spoken language is of great importance for the communication
of the Deaf community with hearing people (i.e., Deaf-to-hearing communication and vice
versa) or among different Deaf communities (i.e., Deaf-to-Deaf communication), it is still
considered as a challenging research area. This is mainly because sign languages feature
thousands of signs, sometimes differing only by subtle changes in hand motion, shape, or
position and involving significant finger overlaps and occlusions [2]. SLR tasks are divided
into Isolated Sign Language Recognition (ISLR) [3–5] and Continuous Sign Language
Recognition (CSLR) [6–8]. The CSLR task focuses on recognizing sequences of glosses from
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videos without predefined annotation boundaries, and it is more challenging compared to
ISLR [9], in which the temporal boundaries of glosses in the videos are predefined.

Early SLR methods focused primarily on the classification of simple signs and gestures.
They adopted various techniques for extracting handcrafted features [10], e.g., hand and
joint trajectories [11] or histograms of oriented gradients [12], while employing traditional
sequence-modeling mechanisms, such as Hidden Markov Models (HMMs) [13,14] or
Conditional Random Fields (CRFs) [15], for the modeling of the time-evolving information
of a sign. On the other hand, recent SLR methods have achieved outstanding performance
using deep-learning networks [7,16,17]—in particular, convolutional neural networks
(CNNs) and recurrent neural networks (RNNs)—to efficiently extract visual and temporal
information from video sequences. Two-dimensional CNNs have already proven their
ability to model complex or even heterogeneous data [18], while 3D-CNN or CNN–RNN
network architectures have been widely used for spatio-temporal modeling in a variety
of applications [19–21]. However, and despite the fact that deep generative models have
been widely employed in a variety of applications due to their ability to effectively model
data distribution, the use of such network architectures in the field of SLR has not been
investigated yet. Moreover, existing SLR methods have not attempted to exploit contextual
information to further improve the recognition accuracy in sign language conversations.

Generative Adversarial Networks (GANs) are powerful deep generative models that
have recently attracted a lot of attention due to their ability to generate novel content,
such as high-quality realistic images [22]. GANs consist of two networks: the generator
that produces samples and the discriminator, which aims to differentiate the predicted
samples from the real ones. In other words, the discriminator tries to determine whether
a sample comes from the model distribution or the data distribution [23]. The two networks
compete with each other, i.e., a min–max game, aiming to improve the performance of both
networks. Due to the fact that GANs can easily learn complicated distributions of data, they
have demonstrated impressive results in a variety of tasks, such as video synthesis [24],
sign language synthesis [25], and action recognition [26,27].

Motivated by the aforementioned analysis, this paper proposes a novel context-aware
GAN-based approach for CSLR, namely SLRGAN, which is depicted in Figure 1. More
specifically, the proposed network architecture consists of: (i) a video encoder, which
plays the role of the generator, aiming to predict the corresponding gloss sequence with
respect to the input video, and (ii) a novel discriminator network consisting of a sentence-
level and a gloss-level branch to better train the generator and improve gloss prediction.
The generator and the discriminator are trained iteratively to compete and learn from
each other in a way that improves the CSLR performance of the proposed approach. To
take advantage of the context information, i.e., previous sentences from Deaf-to-Deaf or
Deaf-to-hearing communication, the use of previous hidden states for the initialization
of recurrent neural networks, i.e., the Bidirectional Long Short-Term Memory (BLSTM)
layer of the generator, is proposed. At the final stage, the predicted sequence of glosses
produced by the generator network is fed into a transformer network, which is based on
an encoder–decoder architecture, to perform sign language translation, i.e., turn a gloss
sequence into a natural language text.

More specifically, the main contributions of this work are summarized as follows:

• A novel approach for continuous sign language recognition using a generative adver-
sarial network architecture is introduced. The proposed network architecture com-
prises a generator, which aims to predict the corresponding glosses from a video se-
quence through a series of a CNN, Temporal Convolution Layers (TCLs), and BLSTM
layers, as well as a discriminator, which consists of two branches, i.e., a sentence-level
and a gloss-level branch, aiming to distinguish between the ground-truth glosses and
the predictions of the generator.

• The importance of leveraging contextual information on sign language conversations
is investigated in order to improve the overall CSLR performance. The proposed
method uses information from the previous sentence of the dialogue in the form of
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hidden states to initialize the generator’s BLSTM network in the next sentence for
both Deaf-to-Deaf and Deaf-to-hearing communication. Thereby, the previous context
of the dialogue is taken into consideration in the next sentence for the recognition of
more relative glosses with respect to the conversation topic. The experimental results
presented in the paper demonstrate the improvement in sign language recognition
accuracy when contextual information is considered.

• The proposed network design was benchmarked on three publicly available datasets
and compared against several state-of-the-art CSLR methods to demonstrate its effec-
tiveness. Additional experimental results with a transformer network show the great
potential of the proposed method in sign language translation.

The remainder of this paper is organized as follows. In Section 2, related work in SLR
is described. The architecture of the proposed CSLR method and the optimization process
are described in Section 3 and Section 4, respectively. Finally, the implementation details
and the experimental results are discussed in Section 5, while conclusions are drawn
in Section 6.

Generator

Discriminator Score (Fake-Real)

Video

Transformer Hi, I want a certificate.

Translation

Ground truth
(Real)

Predictions 

orContext module

I  WANT  CERTIFICATE

Predictions 
(Fake)

Previous sentence
HI NEED HELP

Figure 1. Overview of the proposed framework that performs continuous sign language recognition and sign language
translation.

2. Related Work

One of the most common methodologies in the literature for tackling the problem
of SLR is to employ a feature extraction module to learn visual representations of videos
followed by a sequence-modeling module that learns long-term dependencies between
the visual representations. Earlier methods were based on HMMs to model sequences, as
in [28,29]. Koller et al. [14,30,31] employed hybrid methods using a CNN feature extractor
embedded in an HMM to model the gloss transitions, while with the emergence of recurrent
neural networks, the same authors [32] extended their work using long short-term memory
(LSTM) units for sequence modeling. The aforementioned hybrid methods were trained
iteratively using alignments between video frames and glosses provided by the HMM, and
they managed to improve the SLR performance with respect to the previous HMM-based
methods.

Other approaches employed both recurrent networks and temporal convolutions for
sequence modeling, demonstrating the enhanced ability of such combinations to learn
complex representations. Moreover, they adopted the Connectionist Temporal Classifica-
tion (CTC) [33] cost function for training, inspired by the use of the CTC for processing
unsegmented input data in other sequence-to-sequence modeling problems, such as speech
recognition and handwriting recognition. Cui et al. [34] proposed a 2D-CNN-LSTM net-
work in parallel with stacked temporal 1D convolutions to efficiently capture the temporal
boundaries of glosses. In [35], the authors employed a hybrid feature extractor with 2D
and 3D convolutional layers, followed by two LSTM networks for sequence modeling at
the gloss and sentence levels, respectively, which could be trained end-to-end with CTC
loss. In the same direction, many researchers employed different 3D-CNN architectures,
inspired by their effectiveness in the human action recognition task [36]. More specifically,
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in [37], the authors proposed a 3D-CNN network along with a hierarchical attention net-
work for sign language recognition, while in [38], the authors proposed a 3D-CNN along
with temporal convolutional and recurrent layers trained with CTC loss. Pu et al. [39]
adopted a 3D-ResNet18 as feature extractor, followed by stacked dilated temporal convo-
lutions instead of LSTM units. Zhou et al. [40] adopted the I3D network [36], which was
initially proposed for action recognition on top of a recurrent network for temporal mod-
eling. The architecture was trained iteratively with CTC loss and a new pseudo-labeling
method. In [41], the authors employed a 3D-Resnet18 with two decoder networks—a CTC
decoder and an LSTM decoder, respectively. The whole architecture was jointly trained
and aligned with CTC loss and a soft-DTW (Dynamic Time Warping) [42] algorithm, which
indicated the alignment path between the video and the glosses. Additionally, the authors
in [43] used deep temporal convolution layers for sequence modeling instead of recurrent
networks to model the short- and long-term dependencies simultaneously.

On the other hand, other researchers used multiple cues to increase the recognition
accuracy, such as optical flow, hand images, and skeleton data. More specifically, in [44],
the authors used a two-stream network with 2D-CNNs on top of a BLSTM layer, which
trained with RGB (red, green, blue) color images and images of cropped hands, while Koller
et al. [8] adopted multi-stream HMMs with synchronization constraints by using powerful
CNN-LSTM models in each HMM stream to model RGB, hands, and face data, respectively.
In [6], Cui et al. proposed a 2D-CNN followed by temporal convolutions and BSLTM units
using both RGB images and optical flow. The whole architecture was optimized iteratively
in two stages using CTC loss and cross-entropy loss with pseudo-labels. In [45], the authors
proposed a method for exploiting not only RGB data, but also information from multiple
cues, such as the pose, hands, and face of the signer, aiming to find correlations between
the different cues.

Recently, in [46], the authors proposed an RGB-based CSLR approach using a (2+1)D
inception architecture with different receptive fields to extract dynamic spatio-temporal
features, while a self-attention network captured the global context. The inception network
and self-attention networks were optimized jointly with clip-level feature learning and
sequence learning. On the other hand, in [7], a cross-modal approach was proposed for
RGB-based CSLR. The extracted video and text representations were aligned into a joint
latent space while a jointly trained decoder was employed. However, at the testing phase,
only RGB data were used for the task of CSLR. Finally, Cheng et al. [16] proposed a fully
convolutional network for online SLR from RGB data and introduced a gloss feature
enhancement module to enforce a more accurate sequence alignment.

Over the last few years, GANs have been employed in various research fields, such as
video captioning, action recognition, and automatic speech recognition (ASR). In [47],
the authors developed a new network architecture for the discriminator to evaluate
the video captions based on visual relevance, language fluency, and coherence, while
in [26], the authors employed a deep convolutional generative adversarial network for
human activity recognition. For speech recognition, in [48], the authors employed a deep
speech recognition network trained jointly with a discriminative language model that
improves ASR performance. This offers a direction for better utilization of additional text
data without the need for a separately trained language model. Other research approaches
have leveraged contextual information to improve the accuracy of different network archi-
tectures. More specifically, Jiang et al. [49] proposed a hybrid deep learning architecture,
where the first unsupervised layer relies on an advanced spatio-temporal Segment Fisher
Vector that encodes both visual and contextual features for the automated recognition
of mouse behaviors, while Huang et al. [50] introduced a novel generative adversarial
privacy framework for designing data-driven context-aware privacy mechanisms. More
recently, Zha et al. [51] proposed a Context-Aware Visual Policy network (CAVP) for fine-
grained image captioning. During captioning, the CAVP explicitly considers the previous
visual attentions as the context and decides whether the context is used for the current
word/sentence generation given the current visual attention.
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Inspired by the aforementioned research, this work proposes a novel context-aware
GAN-based architecture for continuous sign language recognition. Instead of using cross-
modal alignment [7] between video and text embeddings, the proposed method employs
generative adversarial networks to generate gloss sequences from videos and discriminate
between predicted and real gloss sequences (i.e., video embeddings are projected directly
to the space of text embeddings), achieving higher sign language recognition performance
on three publicly available datasets. In addition, contextual information is employed to
improve the accuracy of the proposed network architecture in sign language conversations
for both Deaf-to-Deaf and Deaf-to-hearing communication. Unlike other methods, the pro-
posed network architecture extracts spatial and temporal features from video sequences
without the need for identifying other visual cues, such as hands [9], skeletal data, facial
expressions [3], or optical flow [6].

3. Proposed Method

The proposed GAN-based network for continuous SLR is shown in Figure 2. The net-
work adopts a video encoder that acts as a generator with the purpose of extracting
spatio-temporal features from a video sequence and generating a gloss sequence that best
describes the video content. A text-modeling network is employed as a discriminator
that aims to model gloss-level and sentence-level text information in order to correctly
differentiate between real data and the predictions of the generator. The proposed CSLR
approach is trained in an adversarial fashion, where the generator learns to output accurate
gloss predictions to increase the error of the discriminator, while the discriminator learns to
better differentiate between the real gloss sequences and the generator predictions. The two
networks are trained iteratively, competing and learning from each other in a way that
improves the overall CLSR performance of the proposed approach. The main components
of the proposed architecture are described in detail below.

f

T' x C

CNN BLSTM

TCL

Generator

I  WANT  CERTIFICATE

Classifier

T x 3 x 224 x 224

Video

context

Figure 2. The proposed generator extracts spatio-temporal features from a video and predicts the signed gloss sequences.

3.1. Generator

The proposed generator, which is illustrated in Figure 2, adopts a 2D-CNN followed by
temporal convolution and pooling layers to extract spatio-temporal features from the input
frame sequence. The extracted features are then processed through a BLSTM layer to learn
long-term dependencies over all time steps. Finally, a softmax layer classifier outputs
the predicted glosses. The input frame sequence x = {xτ}T

τ=1 of length T is passed through
the 2D-CNN, which is represented by the function FCNN, and extracts the spatial features
of the video. In the next processing stage, the 2D-CNN is followed by the TCL module,
which is represented by the function FTCL and consists of stacked 1D convolutions and
pooling layers that learn short-term temporal dependencies between frames at each time
step τ. The extracted spatio-temporal feature sequence f is represented as follows:

f = {(FTCL(FCNN(xτ)))}T
τ=1, (1)
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where f ∈ RT′×DF , DF is the output dimension of the feature extractor, and T′ = T/λ is
the length of the extracted spatio-temporal sequence, with λ depending on the receptive
field of the feature extractor.

In the CSLR task, the signed video is aligned and mapped to a sentence with gram-
matical rules, meaning that each sign depends on the previous and succeeding signs of
the video sequence. BLSTMs have proven successful in learning long-term dependencies
that are crucial for correctly recognizing glosses. Moreover, they are capable of encoding
both the preceding and succeeding frames, and thus, they provide more powerful video
representations than LSTM networks. The BLSTM layer computes the forward and back-
ward hidden sequences and preserves information from both past and future inputs. Using
R to represent the BLSTM layer with K hidden units, the outputs are computed as:

h = {R( ft)}T′
t=1, (2)

where h ∈ RT′×K are the concatenated forward and backward hidden state sequences and
ft are the extracted spatio-temporal features at time step t. Eventually, the concatenated
hidden state sequence is passed through a fully connected and softmax layer denoted as Φ,
which outputs the gloss label probabilities from a given vocabulary of C classes (glosses).

z = {Φ(ht)}T′
t=1, (3)

where z ∈ [0, 1]T
′×C is the output probability distribution of the generator among C classes.

3.2. Discriminator

The discriminator is used to distinguish the glosses predicted by the generator from
the ground-truth glosses. More precisely, as shown in Figure 3, the discriminator takes
either the outputs from the generator or the ground-truth gloss sequence and produces
a score between 0 and 1, with 1 representing a real sample and 0 representing a fake
sample. The ground-truth gloss sequence of length K is represented as a sequence of one-
hot vectors y = (y1, y2, · · · , yK), while the output probability distribution of the generator
is represented as z = (z1, z2, · · · , zT′). At first, the input sequence is passed through
a fully connected layer, i.e., a word embedding that learns a linear projection e. This layer
maps the predictions of the generator or the real glosses to a commonly hidden space of a
lower dimension. To obtain a score for each gloss, the vector e is passed through a fully
connected layer (FCgl), a global average pooling layer (GAP), and a sigmoid function σ.
The gloss-level score Dgl is calculated as:

Dgl = σ(GAP(FCgl(e))). (4)

Ground truth(Real)

Word
Embedding

Predictions (Fake)

T' x C

Gloss score 
     

GLOSS-LEVEL

SENTENCE-LEVEL

Discriminator

N x C

Output score

 ( True or Fake)

or

Sentence score

Figure 3. The proposed discriminator aims to distinguish between the ground truth and predicted glosses by modeling text
information at both the gloss and sentence levels.
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Afterwards, to obtain a sentence-level score for sentence s, the vector sequence e is
passed through a BLSTM layer (RD) to capture long-term relations between glosses. Then,
the last hidden state hd of the BLSTM is transformed into a single output through a fully
connected layer with a sigmoid activation function (σ). The output score for the entire
sentence (sentence-level) is calculated as follows:

Dsl = σ(FCsl(hd)). (5)

Finally, the two scores are concatenated and passed through a fully connected layer to
obtain the entire score of the discriminator as:

D = σ(FC([Dgl ; Dsl ]). (6)

3.3. Context-Aware SLRGAN

The proposed framework is extended to cover sign language conversations by in-
corporating the previous context of the dialogue in a way that empowers the network to
select relative glosses with respect to the conversation topic. More specifically, the hidden
states hv of the BLSTM layer of the generator for the video sequence v are initialized with
context information from the previous sentence s−1 or the previous video sequence v−1 for
Deaf-to-hearing and Deaf-to-Deaf dialogues, respectively.

Subsequently, the generator outputs the predictions g = g(v|s−1, v−1) for the video
sequence v with respect to the previous sentence s−1 or the previous video sequence v−1.
It should be noted that when the generator takes the first sentence of the sign language dis-
cussion as input, the initial hidden state is zero, since there is no previous sentence. Finally,
to investigate the effect of using relevant information to the sign language conversation and
improving CSLR performance, the proposed method was evaluated on Deaf-to-hearing
and Deaf-to-Deaf conversations.

3.3.1. Deaf-to-Hearing SLRGAN

Deaf-to-hearing conversations refer to the communication between a hearing and
a Deaf person. A sentence is either directly written by the hearing person or formed by
a speech recognition system that captures the speech of the hearing person. This sentence is
then fed into the context modeling module of the context-aware SLRGAN to improve CSLR
performance on the video with the response of the Deaf person. The spoken text s−1 is
mapped to the hidden state space by a word embedding and a BLSTM layer, respectively, as
depicted in Figure 4. Then, the last hidden state hs−1

−1 produced by the BLSTM of the context
module initializes the hidden state hv

0 of the BLSTM layer of the generator to improve
the predictions of the next video sequence.
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FCBLSTMHI NEED HELP Word
Embedding

Generator

Video

2) Deaf-to-Deaf1) Deaf-to-hearing

Figure 4. Context modeling on Deaf-to-hearing and Deaf-to-Deaf conversations. In the first case, the previous sentence (text)
is passed through a word embedding and a Bidirectional Long Short-Term Memory (BLSTM) layer. In the Deaf-to-Deaf
setting, the previous hidden state of the generator is passed through a mapper network. In both cases, the produced hidden
state is fed into the BLSTM layer of the generator.

3.3.2. Deaf-to-Deaf SLRGAN

Similarly, Deaf-to-Deaf discussions refer to the communication between two Deaf
people using sign language. The first person signs one sentence, while the second person
responds. The context-aware SLRGAN adopts the context of the discussion to make better
predictions of each sentence. In more detail, the hidden states hv−1 of the previous video
sequence v−1 of the discussion are passed through a fully connected layer, as shown
in Figure 4. Again, the transformed hidden states uv−1 initialize the hidden states hv

0 of
the BLSTM layer of the generator in order to accurately predict the next gloss sequence.

3.4. Sign Language Translation

The proposed method is extended by a transformer network [52,53], as depicted
in Figure 5, in order to perform sign language translation. The family of the transformer
networks follows an encoder–decoder architecture, where both components are composed
of N identical sub-layers. Each gloss of the input sentence is transformed into a lower-
dimensionality vector by an embedding layer before being passed on to the first layer
of the encoder in Figure 5. The word embedding is forwarded to a positional encoding
layer that adds the information of the relative position of the gloss in the sentence. Then,
the embedding is passed through the multi-head attention layer, which employs H parallel
attention layers, known as heads. This enables the acquisition of multiple representations
for a gloss, each one with a different context size, while the model is able to focus on
different positions. Then, the outputs of the parallel attention layers are concatenated
and passed through the feed-forward layer, which is composed of a fully connected layer.
After the multi-head attention and the feed-forward layers, normalization layers and
residual connections are employed to ensure stability during training and robustness.
The decoder shares a similar structure with the encoder, except for the fact that each sub-
layer uses an extra multi-head attention layer, where it takes into consideration the output
of the encoder component. At each time step, the decoder outputs a word from the output
sentence, which is then fed into the first decoder sub-layer in the next time step, until
the symbol indicating the end of the sentence is reached.
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Generator

Video

HI, CAN, I, HELP

Glosses

Hello, how could I help you ?

Word
Embedding

Multi-Head
Attention FeedForward 

Natural language
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Encoding

Word
Embedding
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Attention FeedForward Positional

Encoding
Multi-Head
Attention<start>

Figure 5. Overall architecture of the sign language translation method. The proposed generator is
extended by a transformer network to perform translation of the predicted glosses.

4. Training
4.1. Generator Loss

The CTC loss function is adopted to train the generator when the frame sequence is
given. The objective of the CTC loss is to maximize the sum of probabilities of all possible
mappings between the input video and the target label sequences. The CTC extends
the vocabulary C with a blank label “− ”, which represents the silence and the transition
between two consecutive labels. The extended vocabulary is defined as V = C ∪ {blank}.
Given a frame sequence x = {xτ}T

τ=1 of length T, the proposed generator outputs a gloss
probability distribution g with length T′ to predict the corresponding sequence of target
glosses y = {yk}K

k=1 of length K. The alignment path between the input video and the target

gloss sequence is defined as π = {πt}T′
t=1, where the label πt ∈ V. Then, the posterior

probability of a CTC alignment path π can be defined as:

p(π|x) =
T′

∏
t=1

gπt ,t, (7)

where gπt ,t is the emission probability of label πt at time step t. The alignment path π is
mapped to the target sequence y with a many-to-one mapping operation B that removes
repeated labels and blanks from the given path. Subsequently, an inverse operation
B−1(y) = {π|B(π) = y} is used to represent all the possible alignments corresponding to
target labels y. The conditional probability of y is defined as the sum of the probabilities of
all corresponding paths π:

p(y|x) = ∑
π∈B−1(y)

p(π|x). (8)

The objective function LCTC that guides the training process is derived from the prin-
ciple of maximum likelihood [54] and is used to optimize the generator. Finally, the CTC
loss is formulated as:

LCTC = − log p(y|x). (9)

Furthermore, the generator must learn to produce samples that have a low probability
of being classified as fake by the discriminator. In addition, the generator minimizes
the following loss function in order to output a probability distribution similar to the real
data distribution:

Ls = Ez∼pz(z)[(1− log D(z))], (10)

where pz is the probability distribution of the predictions z of the generator. Finally, the total
loss for the generator is defined as:

LG = LCTC + Ls. (11)
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4.2. Discriminator Loss

The discriminator is trained to maximize the probability of assigning the correct
label to both ground-truth glosses and the outputs of the generator. More specifically,
the discriminator aims to classify the ground-truth gloss sequence as real, i.e., a score equal
to 1, and the output sequence of the generator as fake, i.e., a score equal to 0. The loss
function of the discriminator is defined as:

LD,G = Ey∼preal(y)[log(D(y))] +Ez∼pz(z)[(1− log(D(G(z)))], (12)

where preal is the distribution of the ground-truth glosses y. The discriminator is trained to
minimize the error of assigning the correct label to both distributions. The generator and
the discriminator are trained iteratively in each step.

5. Experimental Evaluation

In this section, the evaluation metrics and the implementation details are initially
described. Subsequently, a series of experiments in three CSLR datasets are performed
and discussed. More specifically, the proposed method was evaluated on RWTH-Phoenix-
Weather-2014 [11], Chinese Sign Language (CSL) [37], and Greek Sign Language (GSL) [17].
The first two datasets are widely used in CSLR, while the third one is suitable for Deaf-
to-Deaf and Deaf-to-hearing sign language recognition. The initial experiments were
conducted on the RWTH-Phoenix-Weather-2014 dataset in order to configure the opti-
mal parameters and settings of SLRGAN. Then, the proposed method was evaluated on
the three CSLR datasets, and the results are analyzed. Finally, a series of experiments were
conducted in order to assess the impact of using contextual information for CSLR and sign
language translation.

5.1. Datasets and Evaluation Metrics

RWTH-Phoenix-Weather-2014 is the most popular CSLR dataset, and was created
from recordings of weather forecasts. Videos were recorded with nine different signers at
a frame rate of 25 frames per second. Each video depicts a single German sentence of sign
language glosses. The vocabulary size is 1295 and the dataset contains 5672, 540, and 629
videos for training, validation, and testing, respectively.

CSL is a popular CSLR dataset, with a smaller vocabulary compared to RWTH-
Phoenix-Weather-2014. The videos were recorded in a predefined laboratory environment
with Chinese words that are widely used in daily conversations. The dataset contains
100 predefined sentences performed five times by 50 signers, with 25,000 videos in total.
The following signer-independent split (Split 1) [37] of the training and test sets was
adopted, with videos from 40 signers used for training and the rest for testing.

GSL is a large-scale Greek CSLR dataset that contains both sign language glosses and
spoken language translations. The videos were captured under laboratory conditions at
a rate of 30 fps. To increase variability in the videos, the camera position and orientation
were slightly altered within subsequent recordings. The dataset consists of five individual
and commonly met scenarios in different public services performed by seven different
signers. It contains 10,295 videos, with a vocabulary size of 310 unique glosses. Each signer
performs signs from pre-defined conversations five consecutive times. In all cases, the sim-
ulation considers a Deaf person communicating with a single public service employee.
The involved signer performs the sequence of glosses of both agents in the discussion.
The dataset has two different evaluation strategies, named GSL Signer Independent (SI) and
GSL Signer Dependent (SD) [17] . GSL SI is a signer-independent split, since the recordings
of one signer are left out for validation and testing. This split consists of 8821, 588, and 881
videos for the training, validation, and test set, and all sets share the same vocabulary of
glosses. On the other hand, GSL SD is a signer-dependent split, where 10% of the recorded
sentences are not included in the training set. The sentences in the training set are different
from those in the validation and test sets, while the vocabulary used in the validation and
test sets is a subset of the vocabulary used in the training set.
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GSL and CSL are both balanced datasets, as they contain predefined gloss sequences
repeated from each signer. On the other hand, RWTH-Phoenix-2014 is an imbalanced
dataset, since it contains unique sentences, and some glosses are signed only once in
the entire dataset. It must be noted that for a fair comparison with the other state-of-the-art
approaches, data enhancement and resampling were not applied before the training of
the network.

For the evaluation of the performance of the proposed method, the word error rate
(WER) was selected, since it is the standard metric for the evaluation of CSLR methods’
performance. The WER measures the similarity between the predicted and the ground-
truth glosses. More specifically, it calculates the least number of operations (substitutions,
deletions, insertions) required to transform the aligned predicted sequence to the ground
truth according to the following equation:

WER =
S + D + I

N
, (13)

where S is the total number of substitutions, D is the total number of deletions, I is the total
number of insertions, and N is the total number of glosses in the ground-truth sentence.

To evaluate the performance in sign language translation, the Bilingual Evaluation
Understudy (BLEU) [55] and METEOR [56] scores were adopted, which are commonly
used to measure neural machine translation performance. Concerning the BLEU metric,
the BLEU-4 score was adopted. For a fair comparison, the proposed method was com-
pared against state-of-the-art methods that adopt only full-frame (RGB) modality during
inference.

5.2. Implementation Details

The generator adopted BN-Inception [57] as the 2D-CNN backbone of the network,
and was initialized with weights learned with the ImageNet dataset. The kernel and stride
sizes of the TCL module were manually tuned to approximately cover the average gloss
duration of each dataset. The TCL had two 1D convolutional layers with 1024 filters and
two max-pooling layers. For the CSL dataset, the convolutional layers had a kernel size
equal to 7, while the pooling layers had kernel and stride sizes equal to 3 and covered
the average gloss duration of 58 frames. For the RWTH-Phoenix-Weather-2014 dataset,
the convolutional layers of the TCL module had a kernel size equal to 5, while the pooling
layers had kernel and stride sizes equal to 2, resulting in a receptive field of 16 frames.
Finally, for the GSL dataset, the convolutional kernels and the pooling-layer kernels and
strides were set to 5 and 3, respectively. The sequence learning module consisted of two
BSLTM layers with 512 hidden units each. The discriminator adopted one BLSTM layer
with 128 hidden units and two fully connected layers with 128 filters each. The following
data processing techniques were used for all datasets. Each frame of the video was resized
to 256× 256 and cropped at a random position to a fixed size of 224× 224, and up to 20%
of the frames in the video were randomly discarded. Videos with more than 300 frames
were downsampled due to memory limitations. The generator and the discriminator
were trained for 30 epochs. The discriminator was updated after five training steps of
the generator in order to stabilize the optimization process. The Adam optimizer with
an initial learning rate λ0 = 10−4 was used. The transformer implementation was based on
the work in [53] and the Open-NMT [58] library. More specifically, the word embeddings
had a size of 512 filters and sinusoidal positional encoding, while the feed-forward layers
of the transformer contained 2048 hidden units. Furthermore, the encoder and the decoder
of the transformer had two layers each. The proposed architecture was implemented
in the PyTorch [59] framework. The experiments were conducted on a PC with 64-bit
ubuntu 18.04 OS, a Core i7-8700K processor, and 32 gigabytes of RAM. The network was
trained on an Nvidia GTX 1080-TI graphics card with the cudNN 7.6.5 and CUDA 10.2
libraries.
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5.3. Experimental Results
5.3.1. Ablation Study

The initial experiments were conducted using the RWTH-Phoenix-Weather-2014
dataset in order to evaluate the performance of each module of both the generator and
discriminator networks. At first, the effectiveness of each module of the generator was
investigated. More specifically, Table 1 shows that learning long-term temporal feature
dependencies (2D-CNN+BLSTM) is more beneficial than learning short-term temporal
feature dependencies (2D-CNN+TCL), with WERs of 27.7% and 29.8% on the test set,
respectively. However, the combination of the TCL with BLSTM improved the recognition
rate, achieving a WER of 25.0% due to its ability to simultaneously learn short- and long-
term feature dependencies. Finally, to verify the importance of modeling both forward
and backward hidden sequences, we compared the LSTM with the BLSTM network. As
can be seen in Table 1, the use of LSTM (i.e., 2D-CNN+TCL+LSTM network) deteriorated
the accuracy of the proposed approach.

Subsequently, further experiments were conducted to find the optimal settings for
the discriminator. More specifically, the effectiveness of using the discriminator at the gloss
level and sentence level was investigated. From the experimental results in Table 2, it is
clear that the GAN-based approach benefits from the adversarial training and outperforms
the generator-only approach. At first, the gloss-level discriminator used only the fully
connected layers to produce scores for each predicted gloss, and achieved WERs of 23.8%
and 23.9% on the validation and test sets, respectively. Subsequently, experiments were
conducted with the sentence-level discriminator, which employde a recurrent layer to
produce a score for the entire gloss sequence. It was observed that the architecture with
the sentence-level discriminator had a slightly worse CSLR performance compared to
the gloss-level architecture, with WERs of 23.9% and 24.0% on the validation and test
sets, respectively. Finally, the architecture consisting of two branches, i.e., gloss-level and
sentence-level branches, was found to improve the overall CSLR performance, with WERs
of 23.7% and 23.4% on the validation and test sets, respectively.

Table 1. SLRGAN performance of the generator with different configurations on the RWTH-Phoenix-
Weather-2014 dataset measured with the word error rate (WER).

SLRGAN (Generator Only) Validation Test

2D-CNN+TCL (without BLSTM) 30.1 29.8
2D-CNN+BLSTM (without TCL) 27.9 27.7

2D-CNN+TCL+LSTM 26.0 25.8
2D-CNN+TCL+BLSTM 25.1 25.0

Table 2. SLRGAN performance measured with the WER with different discriminator settings on
the RWTH-Phoenix-Weather-2014 dataset.

Method Validation Test

SLRGAN (generator only) 25.1 25.0
SLRGAN (gloss-level) 23.8 23.9

SLRGAN (sentence-level) 23.9 24.0
SLRGAN 23.7 23.4

5.3.2. Evaluation on the RWTH-Phoenix-Weather-2014 Dataset

In Table 3, the proposed method is compared against several state-of-the-art meth-
ods using only RGB data (for fair comparison, methods based on multi-cue information,
e.g., [45], are not included in Table 3) on the RWTH-Phoenix-Weather-2014 dataset. SLR-
GAN achieved a WER of 23.7% on the validation set and 23.4% on the test set. The word
error rate was reduced by 0.6% on the test set with respect to [7], which performed cross-
modal alignment between the video and text embeddings to model intra-gloss depen-
dencies. This justifies the benefit of improving the output probability distributions by
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employing a discriminator instead of aligning the two spaces. Furthermore, the proposed
method surpassed Re-Sign [32], which adopts an HMM for sequence modeling, as well as
the CNN-TEMP-RNN [6] (using only RGB data) architecture, achieving improvements of
up to 3.4% and 1%, respectively. In addition, the proposed method performed better than
Fully-Conv-Net [16] (improvement of 0.5%), which focuses on gloss features to find better
sequence alignments.

Table 3. Comparison of the Continuous Sign Language Recognition (CSLR) approaches on the RWTH-
Phoenix-Weather-2014 dataset, measured with the WER.

Method Validation Test

Staged-Opt [34] 39.4 38.7
CNN-Hybrid [14] 38.3 38.8

Dilated [39] 38.0 37.3
Align-iOpt [41] 37.1 36.7
DenseTCN [43] 35.9 36.5

SF-Net [35] 35.6 34.9
DPD [40] 35.6 34.5

Fully-Inception Networks [46] 31.7 31.3
Re-Sign [32] 27.1 26.8

CNN-TEMP-RNN (RGB)[6] 23.8 24.4
CrossModal [7] 23.9 24.0

Fully-Conv-Net [16] 23.7 23.9

SLRGAN 23.7 23.4

5.3.3. Evaluation on the CSL Dataset

The proposed method was also evaluated on the CSL dataset (Split 1) in Table 4. All
CSLR methods achieved higher performance on the CSL dataset compared to the RWTH-
Phoenix-Weather-2014 dataset because the vocabulary size was smaller (i.e., the CSL dataset
had 178 classes, while the RWTH-Phoenix-Weather-2014 dataset had 1232 classes), and
there are more training data on the CSL dataset. SLRGAN achieved a WER of 2.1% on
the test set, outperforming the SF-NET [35], Fully-Conv-Net [16], and CrossModal [7]
methods with absolute WER improvements of 1.7%, 0.9%, and 0.3%, respectively.

Table 4. Evaluation comparison on the Chinese Sign Language (CSL) dataset, measured with
the WER.

Method Test

LS-HAN [37] 17.3
DenseTCN [43] 14.3

CTF [38] 11.2
Align-iOpt [41] 6.1

DPD [40] 4.7
SF-Net [35] 3.8

Fully-Conv-Net [16] 3.0
CrossModal [7] 2.4

SLRGAN 2.1

5.3.4. Evaluation on the GSL Dataset

The last group of experiments was conducted on the GSL dataset, which contains sign
language conversations between signers and enabled us to investigate the use of context
from the sign language discussion during recognition.

In Table 5, SLRGAN was evaluated on the GSL dataset and achieved WERs of 2.87%
and 2.98% on the validation and test sets of the GSL SI split, respectively. Subsequently,
Deaf-to-hearing SLRGAN, which modeled the previous sentence of the conversation, i.e.,
context, showed a further improvement by reducing the WERs to 2.56% on the validation
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set and 2.86% on the test set of GSL SI split. Deaf-to-Deaf SLRGAN employde the hidden
states of the previous video of the conversation, achieving WERs of 2.72% and 2.26% on
the validation and test sets, respectively. It was experimentally shown that the proposed
method can produce more accurate predictions when the context of the discussion is used
during recognition.

Table 5. Comparison of Sign Language Recognition (SLR) methods on the Greek Sign Language
(GSL) SI and SD datasets.

GSL SI GSL SD

Method Validation Test Validation Test

CrossModal [7] 3.56 3.52 38.21 41.98

SLRGAN 2.87 2.98 36.91 37.11
Deaf-to-hearing SLRGAN 2.56 2.86 33.75 36.68

Deaf-to-Deaf SLRGAN 2.72 2.26 34.52 36.05

Furthermore, the proposed method was evaluated on the GSL SD split, which is
a challenging CSLR task, since the validation and test sets contain different sentences,
i.e., unseen sentences, from those in the training set. Nevertheless, as shown in Table 5,
SLRGAN outperformed CrossModal [7], with WERs of 36.91% and 37.11% on the validation
and test sets, respectively. The results demonstrated the strong generalization capability of
SLRGAN in recognizing unseen combinations of glosses. Furthermore, Deaf-to-hearing
SLRGAN achieved WERs of 33.75% and 36.68% on the validation and test sets, respectively.
Finally, Deaf-to-Deaf SLRGAN achieved a WER of 36.05% on the test set, significantly
improving upon all state-of-the-art CSLR approaches. Some qualitative results are shown
in Figure 6 from when the proposed method was tested on a sign language discussion
between two signers. Overall, it was observed that the context-aware SLRGAN with any
setting (Deaf-to-hearing or Deaf-to-Deaf) performs better than SLRGAN and achieves
more accurate results by incorporating context information in its predictions. As expected,
Deaf-to-Deaf SLRGAN performs slightly better than Deaf-to-hearing SLRGAN, since it
employs context from the video instead of text modeling.

Ground	truth

SLRGAN

context-aware
SLRGAN

MUST BOOK HAVEYOU HEALTH

Ground	truth

SLRGAN

context-aware
SLRGAN

I PLUS EXAMINATIONWANT BLOOD

Ground	truth

SLRGAN

context-aware
SLRGAN

DOCTOR BOOK EXAMINATIONTHERE HEALTH WRITE BLOOD

MUST BOOK HAVEHEALTH

MUST BOOK HEALTH

I PLUS EXAMINATIONWANT BLOOD

I PLUS EXAMINATIONWANT BLOOD

DOCTOR BOOKTHERE HEALTH

DOCTOR BOOK EXAMINATIONTHERE HEALTH

3

BLOOD

EURO

30 NOVEMBER

YOU HAVE

Figure 6. CSLR performance comparison on a sign language conversation. It was observed that the context-aware SLRGAN
performs better during recognition of a sign language conversation.
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5.3.5. Results on Sign Language Translation

In the last set of experiments, the predictions of SLRGAN were fed into the transformer
for SLT. In Table 6, SLRGAN and context-aware SLRGANs were used with the transformer
for evaluation on the GSL SI and SD datasets. The Deaf-to-hearing SLRGAN+Transformer
achieved slightly better performance on the test set, with a BLEU-4 score of 84.91, while
the Deaf-to-Deaf SLRGAN+Transformer achieved a BLEU-4 score of 84.96 on sign language
conversations compared to SLRGAN+Transformer, which achieved a BLEU-4 score of 84.24.
This justifies the importance of context during recognition and translation.

Table 6. Reported results on sign language translation.

GSL SI GSL SD

Test Test

Method BLEU-4 METEOR BLEU-4 METEOR

Ground Truth 85.17 85.89 21.89 28.47

SLRGAN+Transformer 84.24 84.58 19.34 25.90
Deaf-to-hearing SLRGAN+Transformer 84.91 85.26 20.26 26.71

Deaf-to-Deaf SLRGAN+Transformer 84.96 85.48 20.33 26.42

The proposed method was also evaluated on the GSL SD dataset (Table 6). The Deaf-to-
hearing and Deaf-to-Deaf SLRGANs with the transformer achieved BLEU-4 scores of 20.33
and 20.26 on the test set, respectively. Moreover, the context-aware SLRGAN+Transformer
performed better than SLRGAN+Transformer, which had a BLEU-4 score of 19.34 on
the test set, further verifying the need for using context information in sign language
recognition and translation. Qualitative sign language recognition and translation results
are shown in Table 7. It was observed that the context-aware SLRGAN achieves more
accurate predictions than SLRGAN. Furthermore, the use of context improves the quality
and fluency of the translations predicted by the transformer.
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Table 7. Qualitative sign language translation results.

Method Gloss Translation

Ground Truth HELLO I CAN HELP YOU HOW Hello, how can I help you?

SLRGAN+Transformer HELLO I CAN HELP Hello, can I help?

Deaf-to-hearing SLRGAN+Transformer HELLO I CAN HELP YOU Hello, can I help you?

Deaf-to-Deaf SLRGAN+Transformer HELLO I CAN HELP YOU HOW Hello, can I help you how?

Ground Truth YOU_GIVE_MY PAPER APPROVAL
DOCTOR OWNER OR HOSPITAL

The secretariat will give you the opinion.

SLRGAN+Transformer ME PAPER APPROVAL DOCTOR Medical opinion.

Deaf-to-hearing SLRGAN+Transformer YOU_GIVE_MY PAPER APPROVAL DOCTOR
OWNER

Secretariat will give you the opinion.

Deaf-to-Deaf SLRGAN+Transformer YOU_GIVE_MY PAPER APPROVAL DOCTOR The secretariat will give you the opinion

Ground Truth YOU HAVE A CERTIFICATE BOSS You have an employment certificate.

SLRGAN+Transformer YOU HAVE CERTIFICATE DOCTOR OWNER You have a national team certificate

Deaf-to-hearing SLRGAN+Transformer YOU HAVE CERTIFICATE BOSS You have employer certificate.

Deaf-to-Deaf SLRGAN+Transformer YOU HAVE CERTIFICATE You have a certificate.
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6. Conclusions

In this work, a novel approach that adopted a generative adversarial network for
continuous sign language recognition was proposed. Instead of focusing only on visual
feature extraction, the proposed approach learns a better representation of the data by
taking advantage of adversarial training. To this end, a generator produces gloss predictions
from video processing, while a discriminator evaluates the generator’s predictions against
the real gloss sequences and learns to differentiate them. By competing against each
other, both the generator and the discriminator are improved, ultimately producing more
accurate and robust SLR results. Moreover, the proposed method incorporates contextual
information that is relevant to the discussion between signers to further improve the CSLR
performance for sign language conversations. The experimental results on three large
sign language recognition datasets demonstrate the effectiveness of the proposed method.
In particular, experiments on the GSL dataset, which contains sign language conversations
between signers, demonstrated the improvement of sign language recognition accuracy
when contextual information is considered.

Concerning future work directions, we aim to apply the proposed generative adver-
sarial networks for the recognition and translation of different sign languages, as well as to
develop a novel mobile application that supports the translation between speech and sign
languages to assist people with hearing impairments. In addition, the proposed generator
could be adopted in other application fields for the modeling of visual information, such as
video captioning and action recognition. Finally, there were several recent research works
dealing with the problem of complex and imbalanced data in GAN networks [60–64].
Although the study of this problem is out of the scope of this paper, we consider that
future work in this direction can further improve the accuracy of the proposed network
architecture.
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