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Abstract Social networks are changing the way multimedia conteritasex on the

web, by allowing users to upload their photos, videos, amticacontent, produced
by any means of digital recorders such as mobile/smart-@hcend web/digital

cameras. This plethora of content created the need for firttimdesired media in
the social media universe. Moreover, the diversity of thalabale content, inspired
users to demand and formulate more complicated queriebelsdcial media era,
multimedia content search is promoted to a fundamentalifeabwards efficient

search inside social multimedia streams, content clag8dit, context and event
based indexing. In this chapter an overview of multimeda@eiing and searching
algorithms, following the data growth curve is presenteditail. The chapter is the-
matically structured in two parts. In the first part pure nmittdia content retrieval

issues are presented, while in the second part, the sopet@sand new, interesting
views on multimedia retrieval in the large social media Hates are discussed.

1 Introduction

Social networking sites enabled multimedia content slgdrimarge volumes, by al-
lowing users to upload their photos, videos, and audio gataluced by any means
of digital recorders. Moreover, the huge volumes of infdtiorain the social me-
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dia inspired users to formulate new types of queries that pomplex questions to
these heterogeneous databases.

An attempt to index and retrieve multimedia content shahedugh the social
media, using techniques of the Content Based Multimediai¢¥t community,
shows clearly the inability to do so. The parameters andtcaings posed from the
social media aspect reformed the multimedia indexing atréeval processes in a
new problem seeking for new solutions. The major problensoecfal multimedia
indexing and retrieval exist due to a) the enormous volurhggarmation that push
existing techniques to their edges; b) the well known seingaip [55] between the
low-level multimedia descriptors and the higher level apts that exist in each
multimedia content. These facts do not imply that previousMedge and tools are
totally useless, rather that they should be used in a diffevay.

This chapter aims to structure the concept of multimediaxirty, search and
retrieval, based on the data growth curve from the smaldlipstored, multimedia
collections to the huge, heterogeneous and context-rickalsmultimedia collec-
tions and to present interesting works along the way.

Multimedia indexing, search and retrieval is a multi-stepgess that deeply de-
pends on the content type and its characteristics. Thealypantent-based mul-
timedia indexing (CBMI) and retrieval methods apply the lvgtlidied query by
example (QBE) paradigm, where a multimedia (MM) object isdias a query to
retrieve similar multimedia objects (See Fig. 1). In thigjgter we mainly focus on
image indexing, search and retrieval, yet the conceptskflear and conclusions
are valid also for other multimedia objects such as videdia®D, etc. A common
initial step of multimedia indexing is the extraction of caeteristic features from
the content in order to describe it in a more compact andidigtative manner. A
plethora of works has been published on the field, and manystand well eval-
uated multimedia content descriptors exist that encodeirtarhfeatures such as
color information, texture and edge, spectral charadtesiamotion, etc (e.g. SIFT,
Self-Similarity, CEDD [41, 40, 79, 80]) targeted to specdigplication areas [78].
The next step is to define a distance function (such as L1, Llahadlanobis, etc.)
between these descriptors in order to compare the sirgilbetween multimedia
objects. As it is obvious, when volumes of data increase dtaally (as in the case
of social media data) this part of the process becomes egtyeime-consuming
to be performed in real-time. Indexing structures (disedss Sect. 2) are data
structures aiming to reduce comparisons and consequethce the search time.
However, content based multimedia retrieval restricts gseries to the QBE ap-
proach which is not sufficient for the environment of the éaspcial multimedia
databases for various reasons. The responsiveness ofrtfeesén a timely man-
ner, the inability to map with thsubjectiveuser semantics to enhance the quality of
the retrieved results and the new, complex types of useliepiare some of them.
In the context of large Social Multimedia databases, théabla social metadata
are used to give answers to these challenging problems.

Sect. 2 and 3 present in a compact way, indexing structurem@ito address
the problem of searching inside large collections of mugiilia objects. Sect. 2 dis-
cusses multidimensional indexing structures, by clasgifthem either in exact or
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Fig. 1 Atypical content based multimedia retrieval process.

approximate approaches. Next, in Sect. 3, a use case of ibiMithages from the
Flickr collection is examined to evaluate indexing in bokaet and approximate
approaches. In these two sections, the aim of the algorithtngeduce search time
and storage/memory overhead while keeping accuracy as a®gossible to the
baseline which is the exhaustive search. Exhaustive sesttoh process of compar-
ing the query descriptor vector with the descriptor vectdrall multimedia objects
of a database, i.e. one-to-one comparison without usingrai@xing structure. Al-
though this gain is very important for the volumes of real atatabases such
as the social multimedia databases, the other major issbedgfing the seman-
tic gap between the low-level multimedia descriptors areddbncepts included in
the multimedia objects remains unsolved. Towards thesectbgs, a new area of
multimedia computing that clearly takes into consideratiee social aspects of the
social media data, has recently emerged [66, 65]. Sect.fiara exactly this part
of social multimedia indexing and retrieval and categaittee methods presented
in three subsections: a) context-based multimedia retighere the contextual in-
formation stored in social media is used to semanticallyaech the retrieved results
and thus improve the overall accuracy; b) event-based ingeas another way of
indexing multimedia content in a more user-oriented cohadjzation; and c) time-
related multimedia indexing and search for evolving sogialtimedia collections.
Finally, Sect. 5 discusses the conclusions drawn from tbikwnd presents future
challenges towards efficient social multimedia indexirggrsh and retrieval in the
ever growing social multimedia collections.

2 Content-based Multimedia I ndexing

The availability of multimedia in the large databases ofiaocetworks emerged
the imperative need to address the challenge of conteedbsesarching, where
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users pose multimedia objects as queries, in order to firmbaet content (See
Fig. 1). However, exhaustive searching is infeasible fa lgrge scale applica-
tions of social networks due to the extensive time consuwnptirequires. Thus, the
large databases of social networks should be supportedieyiimy schemes which
are able to provide: (a) low space requirements for stotiiegniultimedia content
within the indexing scheme; (b) efficient search time; andhigh retrieval accuracy.
Nevertheless, multimedia objects like compressed imag@so and audio streams
are usually described by sequences of descriptor vectoinsower than a thousand
dimensions. In this high dimensional space, the performafi@xisting indexing
schemes deteriorate significantly, since content-baseithsity search in high di-
mensions ¥ 1000) is challenging, due the well known problem of Dimenaslity
Curse [4, 10]. In order to address the aforementioned aigdle, the existing index-
ing schemes are divided into two main categories: thosefdfiatv (a) exact and
(b) approximate similarity search strategies.

The family of exact similarity search, despite achievingntical retrieval ac-
curacy to exhaustive search, fails to support the high daiosality. Meanwhile,
storage space and search time are dramatically increabediamily of indexing
schemes that follow the approximate search strategy, @aguiucing the space and
search time requirements, fails to preserve the retries@iracy of the exhaustive
search.

2.1 Exact Similarity Search

In the family of exact similarity search indexing schemestade-of-the-art approach
is the M-Tree and its variants [29, 15, 14]. The most efficigay to construct the
M-Tree is using the bulk-load method [15]. The M-Tree stmwetmanages the query
processing according to the distances between multimégkais, which are stored
as nodes. Additionally, the M-Tree has been further exténuheorder to support
both exact and approximate strategies, while preservimgdime indexing structure
of the M-Tree file. Furthermore, M-Trees have been introduogerform indexing
and searching, not only in content-based multimedia aatdtins, but also in other
similarity search applications, due to their dynamic #piib support insertions and
deletions efficiently [11]. Recently, M-Trees were evaddhin distributed environ-
ments, in order to support web-scale applications [3]. Teaiwas to build small
M-Trees in each node of the distributed environment andoperfthe similarity
search strategy to all relative nodes.

Moreover, a plethora of alternative exact similarity seéantlexing schemes have
been proposed in the literature. The most important of thenpeesented in Table
1. However, in these schemes there are several constiaip@atticular, the family
of BKT, FQT, FHQT, FQA is constrained to metric spaces detibg a distance
measure that necessary returns discrete values. In casa ¢oatinuous distance
function is applied or a large amount of different discresdues are returned, it is
infeasible to exploit these indexing schemes, as explam¢til]. The rest of the
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aforementioned methods support continuous distance$icaple to general met-
ric spaces. However, the dynamic capabilities of insestiand deletions, and the
input/output (I/0) cost must also be considered. The VPT,AMIYVPF methods
support latter insertions insufficiently [11]. Additioreahd more complicated prob-
lems appear in methods like GHT, BST, VT, GNAT, VPT, MVPT, VIPIMT, NNG
for deletion operations [11].

Table1 Exact similarity search indexing schemes.

Method Name Abbreviation Reference
R-Tree R-Tree [21]
KD-Tree KD-Tree [5]
Quad-Tree Quad-Tree [36]
Burkhard-Keller Tree BKT [7]
Fixed Queries Tree FQT [1]
Fixed Height FQT FHQT [2]
Fixed Queries Array FQA [10]
Vantage Point Tree VPT [12]
Multi-Vantage Point Tree MVPT [8]
Vantage Point Forest VPF [45]
Bisector Tree BST [31]
Generalized Hyperplane Tree GHT [6]
Geometric NN Access Tree GNAT 9]
Voronoi Tree VT [17]
Pivoting M-Tree PMT [38]
Nearest-neighbor Graphs NNG [39]

Therefore, the M-Tree is the unique exact indexing scherh&supports dy-
namic operations efficiently [11]. The M-Tree and its vatshave been designed
specifically for secondary memory operations and can benbathto maintain the
I/0 cost low, compared with the aforementioned exact siitylaearch indexing
schemes. However, due to the problem of Dimensionality €{#s10], M-Trees
are transformed to high level trees with many internal npdesailting in enormous
increase of the I/O cost, unsuitable for performing effitentent-based search and
retrieval in databases with billions of records such as tiesan Social Networking
Sites.

2.2 Approximate Similarity Search

In the family of approximate methods, a state-of-the-aprapch is the Locality
Sensitive Hashing (LSH) [20] and its variants, which aredu®e indexing of high

dimensional data for multimedia search and retrieval. Td®didea of LSH is (a) to
encode the distances between the multimedia objects iatéotm of compressed
sequences of bits, while using hash functions, and (b) tiee dtee encoding dis-
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tances into tables, in order to ensure that the probabilitptision is much higher
for multimedia objects that are close to each other thanethbat are far apart.
Therefore, the LSH-based indexing schemes vary accorditieetrespective hash-
ing function, trying to reduce the search time, while maximg the retrieval ac-
curacy, by minimizing the approximation error. Thus, theH @riants are catego-
rized in data dependent [16, 13, 34, 43, 25, 33, 22, 37] araliddependent ones
[32, 44, 23, 35, 26], where efficiency improvements of dafzedelent methods over
independent ones have been proved in several studies [23514

Alternative approximate techniques have also been intedin the literature,
such as the Spatial Approximation Tree (SAT) [30], the Aprtating Eliminating
Search Algorithm (AESA) [42] and the Linear Approximatintiriinating Search
Algorithm (LAESA) [28]. The main advantage of these appnoate methods is
the significant reduction of search time, while their maigadivantage is the low
retrieval accuracy. Moreover, such approximate methogigire a time consuming
preprocessing step of the multimedia content, in order ¢ceimse the retrieval ac-
curacy [27]. Additionally, these methods are not able taiffitly support dynamic
changes of the insertion and deletion operators, sincedohn ehange a full pre-
processing step is required [11]. For example, SAT doesupmtart insertions and
consequently, the whole indexing structure has to be boifhfscratch [11]. Despite
the fact that AESA and LAESA support dynamic operationsirdptheir search ap-
proach all disk pages of the indexing structure have to bd, nedich results in
limited 1/0O performance and consequently, the search tinméghly increased [11].
Therefore, research has been focused on LSH-based appsoadtich are able to
support both dynamic operations and efficient search tinoeueder, their achieved
retrieval accuracy is rather low.

3 Usecase: Flickr’'s1 Million Images

In this Section we present a case study of Flickr’s 1 Milliorage datasé{18, 19].
The photo sharing website Flickr has over 6 billion imaged iana representative
example of the large scale problem in multimedia indexiegysh and retrieval in
the large databases of social networks.

In order to build the evaluation dataset, a recent varianBI&fT descriptors
[40] was used. Consequently, several collections of desgrivectors were con-
structed, by varying the number of dimensions from 64 to 1@&re the resulted
datasets are denoted by: SIFT-64dim, SIFT-128dim, SIFGdR2B, SIFT-512dim,
SIFT-1024dim, respectively. All collections were index®dthe exact approach of
M-Tree and the approximate approach of Locality Sensitiaslitihg, since both
methods are superior over other indexing schemes in exdcagproximate simi-
larity search approach, respectively.

1 For further details visit ImageCLEF 2011, the “Visual CopicBetection and Annotation” task.
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However, in the case of M-Tree, it is infeasible to preprscése 1M SIFT-
1024dim dataset for any parameter combination, like node, sitilization, split
strategy, etc. [15]. Therefore, we measured the correspgmesults similar to the
case of 100K multiplied by 10, assuming that 10 M-Trees ailg, tmy splitting the
SIFT-1024dim dataset into equal size datasets of 100K.Heoramaining datasets
we report directly the performance of M-Tree, by identifyihe optimal parameter
selection.

Moreover, in the case of LSH, we varied the number of hasleshhlto achieve
the maximum retrieval accuracy, while preserving the detinee below the respec-
tive search time of exhaustive search. Therefore, we cdedlthat in the case of
SIFT descriptors, the maximum numberlohash tables equals 2, since further in-
crease results in exceeding the search time of exhaustrehseAdditionally, in
order to encode the multimedia distances, hash keys of liiR&eére used, result-
ing in the maximum retrieval accuracy of LSH.

In order to demonstrate and identify the aforementionetlainges, as presented
in Sect. 2, three respective experiments were conductegecoing: (a) space re-
quirements; (b) search time; and (c) retrieval accuracy.

Firstly, in Table 2 we present the construction requiremmédat (a) the exact
method of the M-Tree family and (b) the approximate methothefLSH family.
The column “exhaustive” denotes the case of performingestige search and con-
sequently, an indexing scheme is not required. Therefoeagquired disk space is
equal to the size of each dataset. Based on the experimestdis shown in Table
2, we conclude to: (a) the M-Tree indexing scheme requirégraficsant amount of
space, 10 times greater than the corresponding dataset, §iace high level trees
are constructed, consisting of many internal nodes and $ib) tequires an impor-
tant amount of additional space for storing the construbtesh tables, linked to
buckets, in which the IDs of the corresponding multimedastored.

Table 2 Disk Space Requirements in GB.

SIFT-dataset ~ Exhaustive M-Tree LSH-1L LSH-2L
SIFT-64 dim 0.238418579 2.088517205 0.556949615 0.871%04
SIFT-128 dim  0.476837158 4.239689925 0.795368195 1. 13BER
SIFT-256 dim  0.953674316 8.097807758 1.272205353 1.98876
SIFT-512 dim  1.907348633 15.95268128 2.225879669 2.5/8BB
SIFT-1024 dim 3.814697266 30.94820169 4.133228302 A8BYTT

Next, we evaluate M-Tree and LSH against the exhaustivelegproach, in
terms of search CPU time and disk accesses, by varying tieea$ithe SIFT-
1024dim dataset. For measuring the search time, CPU andn®©are separately
reported, following either a memory-based or a disk-baggdaach. Since, the 1/0
time is completely dependent on (a) the running operatistesy; (b) memory/disk
cache; and (c) hard disk specifications, the correspondsigatcesses (DA) are
measured, assuming that a disk page is equal to 4KBytes.aMergo produce the
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Fig. 2 Search CPU time versus dataset size for 100-NN queries i BIE4dim dataset.

different datasets, £010%, 10° images were randomly selected from the initiaf 10
SIFT-1024dim dataset. In Fig. 2 and 3, the respective result presented (note
that the exhaustive search method is omitted from Fig. 8edine disk-level imple-
mentation is not feasible without using an external indgxicheme). We can make
the following observations: (a) in each method, search G and disk accesses
are increased with respect to the dataset size; (b) the M+Bguires significantly
high search times and disk accesses, even higher than ezties times of the ex-
haustive approach, verifying the Dimensionality Cursebpgm faced by the family
of exact similarity search methods; and (c) LSH has highgserénce, since the
respective search time is highly reduced.

Finally, in Fig. 4, we evaluate the retrieval accuracy of L8 performing 1000
top-100 queries (denoted by 100-NN queries) and varyingdtheensionality of
the SIFT datasets. The retrieval accuracy is measureddingdo the ratio of the
topk results retrieved by the exhaustive search over thektasults retrieved by
the proposed indexing method. Based on the experimentatsés Fig. 4, an im-
portant observation is that LSH, despite using the maximumlyer of hash tables
(L = 2), achieves retrieval accuracy below 40% in all datasdis. [dw accuracy
of LSH is affected by the poor encoding of the multimediaatises. Additionally,
by increasing the number of dimensions, LSH’s accuracydsced. Note that the
comparison with M-Tree is omitted, since M-Tree belongsh® family of exact
similarity search and its retrieval accuracy is always ¢tpua00%.

Summarizing our conclusions, in the case study of Flickrsillion images, the
family of exact similarity search, despite achieving idesitretrieval accuracy to
exhaustive search, fails to support the high dimensignalid as a consequence,
storage space and search time are dramatically increasm@oler, the approxi-
mate search strategy of LSH, achieves to reduce the searehdguirements. Nev-
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Fig. 4 LSH’ retrieval accuracy versus dimensionality for 100-Nbeges in SIFT datasets.

ertheless, there is no analogous progress in terms ofvattaecuracy, since LSH
fail to preserve the retrieval accuracy of the exhaustieece

Clearly, this case study revealed the fragility of multinsegktrieval in large vol-
umes of data at the scale of millions of records. Howeveratieunts of multi-
media objects that should be indexed and retrieved in thye Isocial multimedia
databases such as Flickr and youTube are in the scale ofslozéillions making
it extremely challenging. Moreover, the retrieved resirtthe presented multime-
dia retrieval tasks, did not preserve any of the “subjettiger semantics that were
made available through the sharing process in social nkimgsites.
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4 The Social MediaEra

When social networking sites enabled users to share anéhuhbkir content on-

line, multimedia search and retrieval became one of the myxirtant and desired
features on the Web. However, the volumes of data shareddinte new challenges
in multimedia retrieval. Some recent YouTube statisticg ghow clearly that the

existing multimedia indexing and retrieval methods areadsquate for these vol-
umes of information. According to YouTube, 48 hours of videe uploaded every
minute. This is approximately 8 years of content every dayherequivalent of

240,000 full-length films every week. The video uploaded auNbe per month

exceeds the content created by the 3 major US networks imshé0 years. In Au-

gust 2011 Flickr reported that it reached more than 6 billipioaded images and
the number continuous to grow steadily [48, 46].

Moreover, the amount and diversity of metadata collectedl strared through
these enormous social media collections pose more paresteteonsider towards
efficient indexing and retrieval. In a first evaluation, thidra information increases
the complexity of the retrieval tasks dramatically. Howevke differentiation of
the metadata sources (user tags, sensors’ informatioial gwaph relations etc.)
construct a rich environment that helps to narrow down ttsete to manageable
clusters of information.

All these numbers and facts reveal that multimedia usage agpdications
changed drastically on the social media era, thus revaiatipmultimedia index-
ing, search and retrieval approaches are needed. What wélstiearly state here
is that not only did the multimedia collection change shape size but also the
users’ needs and goals evolved through the available wdlzafpns.

In the following subsections, recent works are presentedhly classified based
on the usage of social metadata and targeted applicatiens. £1 presents some
recent works which aim at involving contextual informatit;msemantically en-
hance the retrieved results. Sect. 4.2 discusses workgaaldvantly new approach
of recognizing and indexing events recorded in social mgtia content. Finally,
Sect. 4.3 discusses the works conducted on time-relatetthmedlia retrieval from
social streams and ephemeral collections.

4.1 Context-based Multimedia I ndexing and Retrieval

In an environment as wide and heterogeneous as the World W&tds, contextual
information is known to be inherently noisy, subjective @mdbiguous. However,
the information carried out through the context of the vasiaveb applications may
be overly helpful after applying some filtering and postgassing.

One of the most used and well studied contextual data is gretags. Users tend
to tag contentin a very personalized way based on theirdstgrculture, education,
etc., thus the relevance of each tag to the actual conteleidye subjective. In order
to build a system able to exploit user tags, so as to enhanttérradia retrieval,
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tags should be found that are relevant to the majority of #eesiof the system in an
objective way [49]. Towards this goal, several methods f(Q proposed learning a
mapping of low-level visual features to semantic concepts.

Li et al. [49] proposed a technique for learning tag releeamgneighbor voting.
The authors rely on the intuition that a relevant tag may ieried based on the
tags of the visual neighbors of that image. The major diffeesfrom the related
works of [82, 81] is that only common tags between visualimikir images are
propagated. With this approach no new tags are introducéitetanage and thus
the technique protects from incorrectly assigning irratextags.

The algorithm reads as following: firstly, top-K visuallyvglar neighbors of the
image are found, using common visual features and k-meastecing to divide
the dataset into small blocks of clusters. Then, for eachhimiring image, only the
common tags vote to the examined image tags, i.e. each thg ekamined image
accumulates votes from the common tags of the neighbor im@ge Fig. 5). Since
the approach started with the intuition that common tags fildferentusers impose
a strong relevance of the tags on the visual content, imaghs iK-nn set that come
from the same user as the examined image are ignored.

For evaluating their method, the authors compiled a datgab&4 Million im-
ages with tags from Flickr and separated a ground truth set\aluation. Their
experiments were evaluated in a tag-based social imadgevatframework where
the well known Okapi BM25 ranking function for text retriéweas used [52]. The
authors compiled three different experimental set-upsjrag to identify different



12 T. Semertzidis et al.

aspects of tag-based multimedia retrieval. In the first erpent, a single word was
selected as query and various numbers of neighbors werseliscted. In the sec-
ond experiment, the initial queries were expanded with syne using WordNet
[53] and an online dictionary (http://dico.isc.cnrs.fcd/en/search). Finally in the
third experiment the impact of database size was examinéd/tming the database
in 100K parts and increasing the database by incrementidiyng the parts to reach
the whole 1M images. Both experiments showed clearly tharidge of learning
the relevant tags from the visually similar neighbor imag#sce there was a sig-
nificant improvement in retrieval accuracy. However, thestrinteresting result, in
terms of scalability of the method, came from the third expent showing that
search performance (in terms of Mean Average Precisiongases as the database
size does.

4.1.1 Latent Semantic Spaces

A popular approach used in multimedia indexing and retfjeasted as clustering
and classification, is the extraction of the latent semardgicthe explored data to
reveal hidden relationships, concepts and possible stegthat a human mind
would easier understand [70, 69]. Revealing the hidden s8osan data is a well
studied research field with some interesting statisticalstavailable [71, 72, 73].
However, the formation of a problem to fit such a tool and theigiens on the
design and the social media data to be used, is a very integestd challenging
task.

Bosch et al. [68] performed scene classification using goitistic Latent Se-
mantic Analysis (pLSA) [72] on visual vocabularies extegttirectly from the
images. The visual vocabularies were extracted by quantizontent descriptors
using k-means and a Bag-of-word model. The results of thesifleation showed
promising performance in categorizing images, howevealferithm does not take
advantage of the available knowledge in social media ansl itha not capable to
accurately reveal the semantic concepts. On the contreayy $7] proposed the
GeoFolk model for classification of social media documesisgionly the contex-
tual information of tags, unstructured text, etc. and gp&tiowledge (geotags and
geo-coordinates). Moreover, in order to reduce problerok as ambiguity of tags
or geolocation information and the sparseness of the &lailaetadata, a model
that use both meta-information was developed. Yang et 8] dfboposed Heteroge-
neous Transfer Learning for image classification using botiiextual and content
information. Their approach was to extract visual wordsrfithe images and addi-
tional tags from the social web in order to build their antiotabased pLSA imple-
mentation, which showed significant improvement compavddreans clustering
and plain pLSA. The authors introduced aPLSA as a combinatidwo separate
pLSA models, one for image to visual features co-occurrenatrix and one for
text feature to visual feature co-occurrence matrix, with $ame latent variables.

A very interesting study on the combination of Content andt€xt information
to learn a Latent Semantic Space for use in social multinredigeval environments
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is the work of Guo-Jun Qi et al. [54]. Most of the works in thddjeexploit social
metadata (tags, geolocation etc) or content features to latent spaces, however
they have not addressed problems, directly inherited fl@use of content or con-
text data sources. Moreover, the sparsity of the annotdiettis (contextual infor-
mation) is one of the major problems that machine learniggrthms suffer from.
In their work, Qi et al. [54] aim to address the metadata styapsoblem. They
present the multimedia resources in the form of Multimedfaimation Networks
with two types of objects - multimedia and context objectkéid together (see
Fig. 6). While the content similarity links are important fietrieval, the context
links are the ones that bring quality to the retrieved rasilhe proposed algorithm
learns a latent space where content and context informatimcoded and mapped
to it. Then, the multidimensional vectors describing thdtimedia objects can be
indexed, classified and retrieved with common vector-basethods as the ones
described in Sect. 2. The authors make the assumption thé&ismultimedia ob-
jects should be closer to each other in the latent semardicesd his assumption
acts as a regularization factor to avoid overfitting proldetarived from the sparse
context links. To evaluate the algorithm, a database okFlimages along with their
tags was used. A comparison of the different multimediaeedi schemes was con-
ducted to show the promising results of the approach. Thedestrieval schemes
were a) content based multimedia retrieval (CMR); b) corte@sed multimedia re-
trieval (CxMR); and c) both content and context multimeditieval (C2MR). 81
concepts were manually defined in the database and expdsinvere formulated
as multimedia annotation problems. As a performance méirierage Precision
(AP) was selected to measure the retrieval accuracy of eautept. A supervised
and an unsupervised method of the model were presentediR32-C2MR) and
both had clear improvements against CMR and CxMR. The U-C2hfthod im-
proved CMR results by 246.8% and 37.6% CxMR, while S-C2MRrowpd CMR
by 264.2% and CxMR 44.5%.
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4.2 Event-based Multimedia Indexing and Retrieval

Event detection from web data has attracted a lot of reseatehntion recently
[62, 63, 64] due to the immense amount of available inforamagind desire of users
to extract/exploit structured information. Moreover, #atiwely new approach in
detecting, identifing and indexing social events [56, 57,58, is through the us-
age of social metadata along with the shared multimedisecdntowards bridging
the semantic gap between human perception and plain mdignagalysis, social
multimedia researchers developed methods to detect akevients to multime-
dia objects in order to support a more human-centered vetrfrocess and new
guery types. Since humans tend to structure their knowladdenemory based on
specific events and experiences, event identification aseking should become a
realistic way to retrieve multimedia content that we pereeis relevant.

Users aiming to decide weather they will attend a concanishre interested to
feel the atmosphere of previous events based on images @aalsvavailable in so-
cial networks. In [58], Liu et al. use content and metadatarimation from Flickr,
Last.fm, Eventful and Upcoming to identify events (conseshows, etc.) in 9 pre-
selected venues, in order to present characteristic cotaémerested users. Their
work is a two step process. In the first step they measure @hatong activity in
known venues, to detect an event occurrence. As a prior laamelfor this measure
a bounding box of a venue geo-location is used. To extragifiormation, the au-
thors use GPS information from Last.fm and Flickr metadatasto discard any
other information that was recorded outside this area.

This approach achieved to reduce the initial collectiom@ges about the venues
to only 4604 geo-tagged images from the huge collection iskFimages. Next,
they collected more relevant photos, by querying Flickihvatach venue name to
finally build a photo collection of approximately 9 thousanthages in total. By
tracking the number of shared images per day, number of @namet the product of
the previous two, the event days were identified with appadg@thresholding. The
next step of the process was to use seeds images (repraseimtatges) that were
explicitly linked to an event (in the events database), toaeee visually similar im-
ages from Flickr. In order to calculate visual similaritgwl level visual descriptors
such as color moments, gabor texture and edge histograresised. Note here that
the search space was largely reduced due to the first steppihigponly images that
were inside the venue bounding box or had venue name asdleir t

In [59], Becker et al. discussed also the problem of evergaliein and iden-
tification by learning similarity metrics and cast it as astering problem. The
features used for clustering the social media objects tatevelusters, were con-
text features such as tags, descriptions, time/date jéocatc. Moreover, they used
anall-text feature where all the textual representation of documeaitifes are in-
cluded (title, description, tags, time/date, locatiorf)eTextual features were used as
tf-id f weight vectors, while typical text processing (stop-wolichaation, stem-
ming) steps were applied when needed. In order to supporalatde clustering
approach, they proposed a single-pass incremental dhgpi@nd tested it into two
different scoring cases. In the first case, each examinedndest was compared
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to every other in the cluster so as to generate an overaksedrile in the second
approach only a document to cluster centroid comparisonpgg®rmed. For the
selection of similarity metrics ensemble-based simijaaihd classification based
similarity were also examined for the final results. The ekpental results showed
that All-text individual clusterer outperformed the other clustererdevthe simi-
larity based combination outperformed the individual tdusrs (includeill-text).
Overall, the classification method showed significant improent over the typical
text-based similarity approaches.

The work of Papadopoulos et al. [60] approached event deteict social mul-
timedia as a graph-based image clustering problem. Theioaph combined vi-
sual similarity along with tag-based similarity to builddwmage similarity graphs
which are then merged to a unified hybrid image similaritypgralThen, a com-
munity detection algorithm was applied to detect clustérsimilar images in the
hybrid image similarity graph. The authors examined twdedént cases of im-
age clusters, which are commonly found in social multimetiiaring sites such as
Flickr. These are “Landmarks” and “Events”. For classifyithe image clusters as
Events or Landmarks, four features were used. The first tmimpduced in Quack
et al. [61], are the duration of the cluster in terms of ci@atimestamps of the in-
cluded images and the ratio of owners over the number of thgésin the cluster.
According to the authors these two features were not adedqoaliscriminate effi-
ciently “Landmark” clusters from “Event” clusters. Additially, they also created
two tag vectors corresponding to each class and then rentbeedommon tags
to build class-specific tag vectors. Finally, the other teatéires were the counts of
tags of the images clusters that belong to the one set of llee. @ith the classifica-
tion step, the Event detection task was finished. Howevehgdrcase of Landmark
detection, another step was also required. Although thdéadeaimed to cluster
the image collections in meaningful groups, the authorgwndes! that some of the
Landmark clusters referred to the same object. Towardsdatiis inefficiency, a
merging step was applied. By using geolocation informatomew spatial proxim-
ity graph was built and the community detection algorithnswaed to form new
clusters of images. The experimental results comparedkaiitteans clustering of
both the visual and the tag features appear to have bettesggmial focus (which
is significant to events and landmarks) and overall highecipion in the subjective
evaluation.

4.3 Time-related multimedia indexing and search for evolving
social multimedia collections

The speed of multimedia content sharing in the Social weldgtblthe Social media
databases with enormous volumes of data in very short timdaws. Thus, a major
difference between the Social web databases and the comoitmedia databases,
is the fact that they are constantly increasing, populaiddfvesh content. This fea-
ture inspires users to ask for complicated queries thatdelime/date related infor-
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mation. Moreover, these ever evolving databases stor®nslbf records every day,

with ephemeral interest to the users and useless if not coedin a certain period

of time. Thus, queries that filter the retrieved content iecsfied time windows are

also needed. However, the time-evolved social multimedialthses require also
new approaches of organising the content in order to enabkfficient search and

retrieval.

The study of Lin et al. [74] addressed the social multimediaigval problem
from exactly this viewpoint. The authors consider Flickptsto groups as mixtures
of themes with similarities in content and context. Theialgowere: a) to better
organize the content inside each photo group, since thenexpial growth of the
content make exploration and searching inside a group ¢edlgihg task; and b) to
reveal the changing interests and trends inside the photgpgind reveal the photo
genres that a group contains. In order to exploit both cdraed context informa-
tion, the authors extracted content features from images, towner information,
and post time to build four matrices: a photo-features marphoto-user matrix, a
photo-tag matrix and a photo-time matrix. Then, a non-riegiint matrix factor-
ization procedure was applied on these matrices to extthetifes” of photos that
change over time. As they clearly stated, their motivati@s the development of a
method to answer difficult, for pure multimedia retrievas®ms, questions. Such
questions wereare there typical patterns in the photo stream? how thestepa
evolve over time? how can we extract the patterns and whiersud photos fol-
low them? As it is clear, such questions are becoming typical anceexgty useful
in global-scale databases and as such, they add value teistie@social multime-
dia sharing services.

Another interesting study on multimedia retrieval from soeial web is the work
of De Silva et al. [75], which proposed interactive spagaiporal query formula-
tion for quick multimedia retrieval from large multimediatdbases. De Silva et al.
stated that the presentation of an one-dimensional rd&ilis inadequate for such
rich multimedia databases since the query was tested agairiple dimensions
(content, tags, time, space, etc.). The proposed inteeiaables the iterative search-
ing and browsing of content with query refining in any of thaitable modalities
(content, social relations, time, etc.).

Since temporal information is widely available in the sliamaultimedia content
through social media, new approaches emerge exploitingethporal information
to extract usage and sharing patterns or visualize the batel extract valuable
information that may be used to cluster multimedia contechsas the works of
[76, 77].

5 Conclusions and Future Challenges

Multimedia indexing and retrieval is a challenging task tsnawn, and thus differ-
ent solutions have been proposed, trying to address differgles of the problem.
Further, Social Multimedia indexing and retrieval in thegkadatabases of the social
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networks, advanced the challenges to form a new problermtreds special han-
dling. Social Multimedia indexing, search and retrievaasly stated its “unique-
ness” mainly in two dominant axes: a) as multimedia analgsk with heteroge-
neous, noisy and ambiguous modalities such as text, imagiss, audio along
with tags, free-text, geotags, geo-coordinates, timemétion, social relations and
communities; and b) as a web-scale information retriexs teth all the scalability

and performance issues carried along.

The majority of the works presented in this chapter wereuatall using Flickr
images. The Flickr image sharing service has a charadtesstially “sound”, de-
sign that enables the evolution of the database in termsna, tthemes, groups,
trending tag annotations and of course users that form caniti@sl and groups,
follow other users’ works and give ratings.

In this chapter, Social Multimedia indexing, search andeeal techniques and
algorithms were presented, aiming to shed light to diffevégwpoints of the prob-
lem. Sect 2 discussed shortly the state-of-the-art motédisional indexing struc-
tures by classifying them in the exact and approximate amtres. Then, in Sect. 3,
Social Multimedia content was used to present a case stuitiglexing 1 Millions
images from Flickr photo sharing site. In this case studyexing was performed
based only on the content of the multimedia objects. This@agh showed that in
the large social multimedia databases of billions of respthdese approaches are
inefficient in terms of response time and memory/storagels@ad/or accuracy
of the retrieved results. The major issue though, is thal sndexing methods do
not consider the available social metadata that enclodgéestive” user semantics.
However, these semantics are crucial for improving bottytredity of the retrieved
results and the performance in qualitative aspects. Squtegented exactly these
aspects of social multimedia retrieval. Moreover, in thategt of social media,
multimedia retrieval was explored as another means of aehighel query formu-
lation to answer complex questions.

Since the social multimedia databases will continue to gzeponentially to un-
manageable volumes, revolutionary approaches in congéamtls and retrieval are
necessary. Future challenges to this field include: seagdghimultimedia streams,
classification of ephemeral data for subscription purpasesktrending algorithms
for identifying popular multimedia content. Moreover, afghms, techniques and
search schemes that enable users to improvise in quengrentirmous social mul-
timedia collections are also sought.
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