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Abstract Social networks are changing the way multimedia content is shared on the
web, by allowing users to upload their photos, videos, and audio content, produced
by any means of digital recorders such as mobile/smart-phones, and web/digital
cameras. This plethora of content created the need for finding the desired media in
the social media universe. Moreover, the diversity of the available content, inspired
users to demand and formulate more complicated queries. In the social media era,
multimedia content search is promoted to a fundamental feature towards efficient
search inside social multimedia streams, content classification, context and event
based indexing. In this chapter an overview of multimedia indexing and searching
algorithms, following the data growth curve is presented indetail. The chapter is the-
matically structured in two parts. In the first part pure multimedia content retrieval
issues are presented, while in the second part, the social aspects and new, interesting
views on multimedia retrieval in the large social media databases are discussed.

1 Introduction

Social networking sites enabled multimedia content sharing in large volumes, by al-
lowing users to upload their photos, videos, and audio data,produced by any means
of digital recorders. Moreover, the huge volumes of information in the social me-
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dia inspired users to formulate new types of queries that pose complex questions to
these heterogeneous databases.

An attempt to index and retrieve multimedia content shared through the social
media, using techniques of the Content Based Multimedia Retrieval community,
shows clearly the inability to do so. The parameters and constraints posed from the
social media aspect reformed the multimedia indexing and retrieval processes in a
new problem seeking for new solutions. The major problems ofsocial multimedia
indexing and retrieval exist due to a) the enormous volumes of information that push
existing techniques to their edges; b) the well known semantic gap [55] between the
low-level multimedia descriptors and the higher level concepts that exist in each
multimedia content. These facts do not imply that previous knowledge and tools are
totally useless, rather that they should be used in a different way.

This chapter aims to structure the concept of multimedia indexing, search and
retrieval, based on the data growth curve from the small, locally stored, multimedia
collections to the huge, heterogeneous and context-rich social multimedia collec-
tions and to present interesting works along the way.

Multimedia indexing, search and retrieval is a multi-step process that deeply de-
pends on the content type and its characteristics. The typical content-based mul-
timedia indexing (CBMI) and retrieval methods apply the well studied query by
example (QBE) paradigm, where a multimedia (MM) object is used as a query to
retrieve similar multimedia objects (See Fig. 1). In this chapter we mainly focus on
image indexing, search and retrieval, yet the concepts, workflow and conclusions
are valid also for other multimedia objects such as video, audio, 3D, etc. A common
initial step of multimedia indexing is the extraction of characteristic features from
the content in order to describe it in a more compact and discriminative manner. A
plethora of works has been published on the field, and many robust and well eval-
uated multimedia content descriptors exist that encode dominant features such as
color information, texture and edge, spectral characteristics, motion, etc (e.g. SIFT,
Self-Similarity, CEDD [41, 40, 79, 80]) targeted to specificapplication areas [78].
The next step is to define a distance function (such as L1, L2, Mahalanobis, etc.)
between these descriptors in order to compare the similarity between multimedia
objects. As it is obvious, when volumes of data increase dramatically (as in the case
of social media data) this part of the process becomes extremely time-consuming
to be performed in real-time. Indexing structures (discussed in Sect. 2) are data
structures aiming to reduce comparisons and consequently reduce the search time.
However, content based multimedia retrieval restricts user queries to the QBE ap-
proach which is not sufficient for the environment of the large social multimedia
databases for various reasons. The responsiveness of the services in a timely man-
ner, the inability to map with thesubjectiveuser semantics to enhance the quality of
the retrieved results and the new, complex types of user queries are some of them.
In the context of large Social Multimedia databases, the available social metadata
are used to give answers to these challenging problems.

Sect. 2 and 3 present in a compact way, indexing structures aiming to address
the problem of searching inside large collections of multimedia objects. Sect. 2 dis-
cusses multidimensional indexing structures, by classifying them either in exact or
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Fig. 1 A typical content based multimedia retrieval process.

approximate approaches. Next, in Sect. 3, a use case of 1 Million images from the
Flickr collection is examined to evaluate indexing in both exact and approximate
approaches. In these two sections, the aim of the algorithmsis to reduce search time
and storage/memory overhead while keeping accuracy as close as possible to the
baseline which is the exhaustive search. Exhaustive searchis the process of compar-
ing the query descriptor vector with the descriptor vectorsof all multimedia objects
of a database, i.e. one-to-one comparison without using anyindexing structure. Al-
though this gain is very important for the volumes of real world databases such
as the social multimedia databases, the other major issue ofbridging the seman-
tic gap between the low-level multimedia descriptors and the concepts included in
the multimedia objects remains unsolved. Towards these objectives, a new area of
multimedia computing that clearly takes into consideration the social aspects of the
social media data, has recently emerged [66, 65]. Sect. 4 examines exactly this part
of social multimedia indexing and retrieval and categorizes the methods presented
in three subsections: a) context-based multimedia retrieval, where the contextual in-
formation stored in social media is used to semantically enhance the retrieved results
and thus improve the overall accuracy; b) event-based indexing, as another way of
indexing multimedia content in a more user-oriented conceptualization; and c) time-
related multimedia indexing and search for evolving socialmultimedia collections.
Finally, Sect. 5 discusses the conclusions drawn from this work and presents future
challenges towards efficient social multimedia indexing, search and retrieval in the
ever growing social multimedia collections.

2 Content-based Multimedia Indexing

The availability of multimedia in the large databases of social networks emerged
the imperative need to address the challenge of content-based searching, where
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users pose multimedia objects as queries, in order to find relevant content (See
Fig. 1). However, exhaustive searching is infeasible for the large scale applica-
tions of social networks due to the extensive time consumption it requires. Thus, the
large databases of social networks should be supported by indexing schemes which
are able to provide: (a) low space requirements for storing the multimedia content
within the indexing scheme; (b) efficient search time; and (c) high retrieval accuracy.
Nevertheless, multimedia objects like compressed images,video and audio streams
are usually described by sequences of descriptor vectors with over than a thousand
dimensions. In this high dimensional space, the performance of existing indexing
schemes deteriorate significantly, since content-based similarity search in high di-
mensions (≥ 1000) is challenging, due the well known problem of Dimensionality
Curse [4, 10]. In order to address the aforementioned challenges, the existing index-
ing schemes are divided into two main categories: those thatfollow (a) exact and
(b) approximate similarity search strategies.

The family of exact similarity search, despite achieving identical retrieval ac-
curacy to exhaustive search, fails to support the high dimensionality. Meanwhile,
storage space and search time are dramatically increased. The family of indexing
schemes that follow the approximate search strategy, despite reducing the space and
search time requirements, fails to preserve the retrieval accuracy of the exhaustive
search.

2.1 Exact Similarity Search

In the family of exact similarity search indexing schemes, astate-of-the-art approach
is the M-Tree and its variants [29, 15, 14]. The most efficientway to construct the
M-Tree is using the bulk-load method [15]. The M-Tree structure manages the query
processing according to the distances between multimedia objects, which are stored
as nodes. Additionally, the M-Tree has been further extended, in order to support
both exact and approximate strategies, while preserving the same indexing structure
of the M-Tree file. Furthermore, M-Trees have been introduced to perform indexing
and searching, not only in content-based multimedia applications, but also in other
similarity search applications, due to their dynamic ability to support insertions and
deletions efficiently [11]. Recently, M-Trees were evaluated in distributed environ-
ments, in order to support web-scale applications [3]. The idea was to build small
M-Trees in each node of the distributed environment and perform the similarity
search strategy to all relative nodes.

Moreover, a plethora of alternative exact similarity search indexing schemes have
been proposed in the literature. The most important of them are presented in Table
1. However, in these schemes there are several constraints.In particular, the family
of BKT, FQT, FHQT, FQA is constrained to metric spaces derived by a distance
measure that necessary returns discrete values. In case that a continuous distance
function is applied or a large amount of different discrete values are returned, it is
infeasible to exploit these indexing schemes, as explainedin [11]. The rest of the
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aforementioned methods support continuous distances, applicable to general met-
ric spaces. However, the dynamic capabilities of insertions and deletions, and the
input/output (I/O) cost must also be considered. The VPT, MVPT, VPF methods
support latter insertions insufficiently [11]. Additionaland more complicated prob-
lems appear in methods like GHT, BST, VT, GNAT, VPT, MVPT, VPF, PMT, NNG
for deletion operations [11].

Table 1 Exact similarity search indexing schemes.

Method Name Abbreviation Reference

R-Tree R-Tree [21]
KD-Tree KD-Tree [5]
Quad-Tree Quad-Tree [36]
Burkhard-Keller Tree BKT [7]
Fixed Queries Tree FQT [1]
Fixed Height FQT FHQT [2]
Fixed Queries Array FQA [10]
Vantage Point Tree VPT [12]
Multi-Vantage Point Tree MVPT [8]
Vantage Point Forest VPF [45]
Bisector Tree BST [31]
Generalized Hyperplane Tree GHT [6]
Geometric NN Access Tree GNAT [9]
Voronoi Tree VT [17]
Pivoting M-Tree PMT [38]
Nearest-neighbor Graphs NNG [39]

Therefore, the M-Tree is the unique exact indexing scheme, which supports dy-
namic operations efficiently [11]. The M-Tree and its variants have been designed
specifically for secondary memory operations and can be balanced to maintain the
I/O cost low, compared with the aforementioned exact similarity search indexing
schemes. However, due to the problem of Dimensionality Curse [4, 10], M-Trees
are transformed to high level trees with many internal nodes, resulting in enormous
increase of the I/O cost, unsuitable for performing efficient content-based search and
retrieval in databases with billions of records such as the ones in Social Networking
Sites.

2.2 Approximate Similarity Search

In the family of approximate methods, a state-of-the-art approach is the Locality
Sensitive Hashing (LSH) [20] and its variants, which are used for indexing of high
dimensional data for multimedia search and retrieval. The basic idea of LSH is (a) to
encode the distances between the multimedia objects into the form of compressed
sequences of bits, while using hash functions, and (b) to store the encoding dis-
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tances into tables, in order to ensure that the probability of collision is much higher
for multimedia objects that are close to each other than those that are far apart.
Therefore, the LSH-based indexing schemes vary according to the respective hash-
ing function, trying to reduce the search time, while maximizing the retrieval ac-
curacy, by minimizing the approximation error. Thus, the LSH variants are catego-
rized in data dependent [16, 13, 34, 43, 25, 33, 22, 37] and data independent ones
[32, 44, 23, 35, 26], where efficiency improvements of data dependent methods over
independent ones have been proved in several studies [23, 44, 35].

Alternative approximate techniques have also been introduced in the literature,
such as the Spatial Approximation Tree (SAT) [30], the Approximating Eliminating
Search Algorithm (AESA) [42] and the Linear Approximating Eliminating Search
Algorithm (LAESA) [28]. The main advantage of these approximate methods is
the significant reduction of search time, while their main disadvantage is the low
retrieval accuracy. Moreover, such approximate methods require a time consuming
preprocessing step of the multimedia content, in order to increase the retrieval ac-
curacy [27]. Additionally, these methods are not able to efficiently support dynamic
changes of the insertion and deletion operators, since for each change a full pre-
processing step is required [11]. For example, SAT does not support insertions and
consequently, the whole indexing structure has to be built from scratch [11]. Despite
the fact that AESA and LAESA support dynamic operations, during their search ap-
proach all disk pages of the indexing structure have to be read, which results in
limited I/O performance and consequently, the search time is highly increased [11].
Therefore, research has been focused on LSH-based approaches, which are able to
support both dynamic operations and efficient search time. However, their achieved
retrieval accuracy is rather low.

3 Use case: Flickr’s 1 Million Images

In this Section we present a case study of Flickr’s 1 Million image dataset1 [18, 19].
The photo sharing website Flickr has over 6 billion images and is a representative
example of the large scale problem in multimedia indexing, search and retrieval in
the large databases of social networks.

In order to build the evaluation dataset, a recent variant ofSIFT descriptors
[40] was used. Consequently, several collections of descriptor vectors were con-
structed, by varying the number of dimensions from 64 to 1024, where the resulted
datasets are denoted by: SIFT-64dim, SIFT-128dim, SIFT-256dim, SIFT-512dim,
SIFT-1024dim, respectively. All collections were indexedby the exact approach of
M-Tree and the approximate approach of Locality Sensitive Hashing, since both
methods are superior over other indexing schemes in exact and approximate simi-
larity search approach, respectively.

1 For further details visit ImageCLEF 2011, the “Visual Concept Detection and Annotation” task.
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However, in the case of M-Tree, it is infeasible to preprocess the 1M SIFT-
1024dim dataset for any parameter combination, like node size, utilization, split
strategy, etc. [15]. Therefore, we measured the corresponding results similar to the
case of 100K multiplied by 10, assuming that 10 M-Trees are built, by splitting the
SIFT-1024dim dataset into equal size datasets of 100K. For the remaining datasets
we report directly the performance of M-Tree, by identifying the optimal parameter
selection.

Moreover, in the case of LSH, we varied the number of hash tablesL, to achieve
the maximum retrieval accuracy, while preserving the search time below the respec-
tive search time of exhaustive search. Therefore, we concluded that in the case of
SIFT descriptors, the maximum number ofL hash tables equals 2, since further in-
crease results in exceeding the search time of exhaustive search. Additionally, in
order to encode the multimedia distances, hash keys of 1024 bits were used, result-
ing in the maximum retrieval accuracy of LSH.

In order to demonstrate and identify the aforementioned challenges, as presented
in Sect. 2, three respective experiments were conducted, concerning: (a) space re-
quirements; (b) search time; and (c) retrieval accuracy.

Firstly, in Table 2 we present the construction requirements for (a) the exact
method of the M-Tree family and (b) the approximate method ofthe LSH family.
The column “exhaustive” denotes the case of performing exhaustive search and con-
sequently, an indexing scheme is not required. Therefore, the required disk space is
equal to the size of each dataset. Based on the experimental results shown in Table
2, we conclude to: (a) the M-Tree indexing scheme requires a significant amount of
space, 10 times greater than the corresponding dataset space, since high level trees
are constructed, consisting of many internal nodes and (b) LSH requires an impor-
tant amount of additional space for storing the constructedhash tables, linked to
buckets, in which the IDs of the corresponding multimedia are stored.

Table 2 Disk Space Requirements in GB.

SIFT-dataset Exhaustive M-Tree LSH-1L LSH-2L

SIFT-64 dim 0.238418579 2.088517205 0.556949615 0.871504784
SIFT-128 dim 0.476837158 4.239689925 0.795368195 1.109923363
SIFT-256 dim 0.953674316 8.097807758 1.272205353 1.586760521
SIFT-512 dim 1.907348633 15.95268128 2.225879669 2.540434837
SIFT-1024 dim 3.814697266 30.94820169 4.133228302 4.44778347

Next, we evaluate M-Tree and LSH against the exhaustive search approach, in
terms of search CPU time and disk accesses, by varying the size of the SIFT-
1024dim dataset. For measuring the search time, CPU and I/O time are separately
reported, following either a memory-based or a disk-based approach. Since, the I/O
time is completely dependent on (a) the running operating system; (b) memory/disk
cache; and (c) hard disk specifications, the corresponding disk accesses (DA) are
measured, assuming that a disk page is equal to 4KBytes. Moreover, to produce the
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Fig. 2 Search CPU time versus dataset size for 100-NN queries in SIFT-1024dim dataset.

different datasets, 103
,104

,105 images were randomly selected from the initial 106

SIFT-1024dim dataset. In Fig. 2 and 3, the respective results are presented (note
that the exhaustive search method is omitted from Fig. 3, since the disk-level imple-
mentation is not feasible without using an external indexing scheme). We can make
the following observations: (a) in each method, search CPU time and disk accesses
are increased with respect to the dataset size; (b) the M-Tree requires significantly
high search times and disk accesses, even higher than the respective times of the ex-
haustive approach, verifying the Dimensionality Curse problem faced by the family
of exact similarity search methods; and (c) LSH has high performance, since the
respective search time is highly reduced.

Finally, in Fig. 4, we evaluate the retrieval accuracy of LSH, by performing 1000
top-100 queries (denoted by 100-NN queries) and varying thedimensionality of
the SIFT datasets. The retrieval accuracy is measured according to the ratio of the
top-k results retrieved by the exhaustive search over the top-k results retrieved by
the proposed indexing method. Based on the experimental results in Fig. 4, an im-
portant observation is that LSH, despite using the maximum number of hash tables
(L = 2), achieves retrieval accuracy below 40% in all datasets. The low accuracy
of LSH is affected by the poor encoding of the multimedia distances. Additionally,
by increasing the number of dimensions, LSH’s accuracy is reduced. Note that the
comparison with M-Tree is omitted, since M-Tree belongs to the family of exact
similarity search and its retrieval accuracy is always equal to 100%.

Summarizing our conclusions, in the case study of Flickr’s 1million images, the
family of exact similarity search, despite achieving identical retrieval accuracy to
exhaustive search, fails to support the high dimensionality and as a consequence,
storage space and search time are dramatically increased. Moreover, the approxi-
mate search strategy of LSH, achieves to reduce the search time requirements. Nev-
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ertheless, there is no analogous progress in terms of retrieval accuracy, since LSH
fail to preserve the retrieval accuracy of the exhaustive search.

Clearly, this case study revealed the fragility of multimedia retrieval in large vol-
umes of data at the scale of millions of records. However, theamounts of multi-
media objects that should be indexed and retrieved in the large social multimedia
databases such as Flickr and youTube are in the scale of dozens of billions making
it extremely challenging. Moreover, the retrieved resultsin the presented multime-
dia retrieval tasks, did not preserve any of the “subjective” user semantics that were
made available through the sharing process in social networking sites.
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4 The Social Media Era

When social networking sites enabled users to share and publish their content on-
line, multimedia search and retrieval became one of the mostimportant and desired
features on the Web. However, the volumes of data shared, introduce new challenges
in multimedia retrieval. Some recent YouTube statistics [47] show clearly that the
existing multimedia indexing and retrieval methods are notadequate for these vol-
umes of information. According to YouTube, 48 hours of videoare uploaded every
minute. This is approximately 8 years of content every day orthe equivalent of
240,000 full-length films every week. The video uploaded on YouTube per month
exceeds the content created by the 3 major US networks in the last 60 years. In Au-
gust 2011 Flickr reported that it reached more than 6 billionuploaded images and
the number continuous to grow steadily [48, 46].

Moreover, the amount and diversity of metadata collected and shared through
these enormous social media collections pose more parameters to consider towards
efficient indexing and retrieval. In a first evaluation, thisextra information increases
the complexity of the retrieval tasks dramatically. However, the differentiation of
the metadata sources (user tags, sensors’ information, social graph relations etc.)
construct a rich environment that helps to narrow down thesesets to manageable
clusters of information.

All these numbers and facts reveal that multimedia usage andapplications
changed drastically on the social media era, thus revolutionary multimedia index-
ing, search and retrieval approaches are needed. What we should clearly state here
is that not only did the multimedia collection change shape and size but also the
users’ needs and goals evolved through the available web applications.

In the following subsections, recent works are presented roughly classified based
on the usage of social metadata and targeted applications. Sect. 4.1 presents some
recent works which aim at involving contextual informationto semantically en-
hance the retrieved results. Sect. 4.2 discusses works on the relevantly new approach
of recognizing and indexing events recorded in social multimedia content. Finally,
Sect. 4.3 discusses the works conducted on time-related multimedia retrieval from
social streams and ephemeral collections.

4.1 Context-based Multimedia Indexing and Retrieval

In an environment as wide and heterogeneous as the World WideWeb is, contextual
information is known to be inherently noisy, subjective andambiguous. However,
the information carried out through the context of the various web applications may
be overly helpful after applying some filtering and post-processing.

One of the most used and well studied contextual data is the user tags. Users tend
to tag content in a very personalized way based on their interests, culture, education,
etc., thus the relevance of each tag to the actual content is clearly subjective. In order
to build a system able to exploit user tags, so as to enhance multimedia retrieval,
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Fig. 5 Learning tag relevance by neighbor voting. The relevance iscomputed as the accumulated
neighboring votes from visually similar image of the seed image [49].

tags should be found that are relevant to the majority of the users of the system in an
objective way [49]. Towards this goal, several methods [50,51] proposed learning a
mapping of low-level visual features to semantic concepts.

Li et al. [49] proposed a technique for learning tag relevance by neighbor voting.
The authors rely on the intuition that a relevant tag may be inferred based on the
tags of the visual neighbors of that image. The major difference from the related
works of [82, 81] is that only common tags between visually similar images are
propagated. With this approach no new tags are introduced tothe image and thus
the technique protects from incorrectly assigning irrelevant tags.

The algorithm reads as following: firstly, top-K visually similar neighbors of the
image are found, using common visual features and k-means clustering to divide
the dataset into small blocks of clusters. Then, for each neighboring image, only the
common tags vote to the examined image tags, i.e. each tag of the examined image
accumulates votes from the common tags of the neighbor images (see Fig. 5). Since
the approach started with the intuition that common tags from differentusers impose
a strong relevance of the tags on the visual content, images in the K-nn set that come
from the same user as the examined image are ignored.

For evaluating their method, the authors compiled a database of 1 Million im-
ages with tags from Flickr and separated a ground truth set for evaluation. Their
experiments were evaluated in a tag-based social image retrieval framework where
the well known Okapi BM25 ranking function for text retrieval was used [52]. The
authors compiled three different experimental set-ups, aiming to identify different



12 T. Semertzidis et al.

aspects of tag-based multimedia retrieval. In the first experiment, a single word was
selected as query and various numbers of neighbors were alsoselected. In the sec-
ond experiment, the initial queries were expanded with synonyms using WordNet
[53] and an online dictionary (http://dico.isc.cnrs.fr/dico/en/search). Finally in the
third experiment the impact of database size was examined bydividing the database
in 100K parts and increasing the database by incrementally adding the parts to reach
the whole 1M images. Both experiments showed clearly the advantage of learning
the relevant tags from the visually similar neighbor images, since there was a sig-
nificant improvement in retrieval accuracy. However, the most interesting result, in
terms of scalability of the method, came from the third experiment showing that
search performance (in terms of Mean Average Precision) increases as the database
size does.

4.1.1 Latent Semantic Spaces

A popular approach used in multimedia indexing and retrieval, casted as clustering
and classification, is the extraction of the latent semantics of the explored data to
reveal hidden relationships, concepts and possible structures that a human mind
would easier understand [70, 69]. Revealing the hidden semantics in data is a well
studied research field with some interesting statistical tools available [71, 72, 73].
However, the formation of a problem to fit such a tool and the decisions on the
design and the social media data to be used, is a very interesting and challenging
task.

Bosch et al. [68] performed scene classification using probabilistic Latent Se-
mantic Analysis (pLSA) [72] on visual vocabularies extracted directly from the
images. The visual vocabularies were extracted by quantizing content descriptors
using k-means and a Bag-of-word model. The results of the classification showed
promising performance in categorizing images, however thealgorithm does not take
advantage of the available knowledge in social media and thus it is not capable to
accurately reveal the semantic concepts. On the contrary, Sizov [67] proposed the
GeoFolk model for classification of social media documents using only the contex-
tual information of tags, unstructured text, etc. and spatial knowledge (geotags and
geo-coordinates). Moreover, in order to reduce problems such as ambiguity of tags
or geolocation information and the sparseness of the available metadata, a model
that use both meta-information was developed. Yang et al. [69] proposed Heteroge-
neous Transfer Learning for image classification using bothcontextual and content
information. Their approach was to extract visual words from the images and addi-
tional tags from the social web in order to build their annotation-based pLSA imple-
mentation, which showed significant improvement compared to k-means clustering
and plain pLSA. The authors introduced aPLSA as a combination of two separate
pLSA models, one for image to visual features co-occurrencematrix and one for
text feature to visual feature co-occurrence matrix, with the same latent variables.

A very interesting study on the combination of Content and Context information
to learn a Latent Semantic Space for use in social multimediaretrieval environments
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Fig. 6 Learning Latent Semantic Space from a content and context links.[54]

is the work of Guo-Jun Qi et al. [54]. Most of the works in the field, exploit social
metadata (tags, geolocation etc) or content features to learn latent spaces, however
they have not addressed problems, directly inherited from the use of content or con-
text data sources. Moreover, the sparsity of the annotated objects (contextual infor-
mation) is one of the major problems that machine learning algorithms suffer from.
In their work, Qi et al. [54] aim to address the metadata sparsity problem. They
present the multimedia resources in the form of Multimedia Information Networks
with two types of objects - multimedia and context objects linked together (see
Fig. 6). While the content similarity links are important for retrieval, the context
links are the ones that bring quality to the retrieved results. The proposed algorithm
learns a latent space where content and context informationis encoded and mapped
to it. Then, the multidimensional vectors describing the multimedia objects can be
indexed, classified and retrieved with common vector-basedmethods as the ones
described in Sect. 2. The authors make the assumption that similar multimedia ob-
jects should be closer to each other in the latent semantic space. This assumption
acts as a regularization factor to avoid overfitting problems derived from the sparse
context links. To evaluate the algorithm, a database of Flickr images along with their
tags was used. A comparison of the different multimedia retrieval schemes was con-
ducted to show the promising results of the approach. The tested retrieval schemes
were a) content based multimedia retrieval (CMR); b) context based multimedia re-
trieval (CxMR); and c) both content and context multimedia retrieval (C2MR). 81
concepts were manually defined in the database and experiments were formulated
as multimedia annotation problems. As a performance metric, Average Precision
(AP) was selected to measure the retrieval accuracy of each concept. A supervised
and an unsupervised method of the model were presented (S-C2MR, U-C2MR) and
both had clear improvements against CMR and CxMR. The U-C2MRmethod im-
proved CMR results by 246.8% and 37.6% CxMR, while S-C2MR improved CMR
by 264.2% and CxMR 44.5%.
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4.2 Event-based Multimedia Indexing and Retrieval

Event detection from web data has attracted a lot of researchattention recently
[62, 63, 64] due to the immense amount of available information and desire of users
to extract/exploit structured information. Moreover, a relatively new approach in
detecting, identifing and indexing social events [56, 57, 58, 59], is through the us-
age of social metadata along with the shared multimedia content. Towards bridging
the semantic gap between human perception and plain multimedia analysis, social
multimedia researchers developed methods to detect and link events to multime-
dia objects in order to support a more human-centered retrieval process and new
query types. Since humans tend to structure their knowledgeand memory based on
specific events and experiences, event identification and indexing should become a
realistic way to retrieve multimedia content that we perceive as relevant.

Users aiming to decide weather they will attend a concert/show, are interested to
feel the atmosphere of previous events based on images and videos available in so-
cial networks. In [58], Liu et al. use content and metadata information from Flickr,
Last.fm, Eventful and Upcoming to identify events (concerts, shows, etc.) in 9 pre-
selected venues, in order to present characteristic content to interested users. Their
work is a two step process. In the first step they measure photosharing activity in
known venues, to detect an event occurrence. As a prior knowledge for this measure
a bounding box of a venue geo-location is used. To extract this information, the au-
thors use GPS information from Last.fm and Flickr metadata so as to discard any
other information that was recorded outside this area.

This approach achieved to reduce the initial collection of images about the venues
to only 4604 geo-tagged images from the huge collection of Flickr images. Next,
they collected more relevant photos, by querying Flickr with each venue name to
finally build a photo collection of approximately 9 thousandimages in total. By
tracking the number of shared images per day, number of owners and the product of
the previous two, the event days were identified with appropriate thresholding. The
next step of the process was to use seeds images (representative images) that were
explicitly linked to an event (in the events database), to retrieve visually similar im-
ages from Flickr. In order to calculate visual similarity, low level visual descriptors
such as color moments, gabor texture and edge histograms were used. Note here that
the search space was largely reduced due to the first step of keeping only images that
were inside the venue bounding box or had venue name as their tag.

In [59], Becker et al. discussed also the problem of event detection and iden-
tification by learning similarity metrics and cast it as a clustering problem. The
features used for clustering the social media objects to events’ clusters, were con-
text features such as tags, descriptions, time/date, location, etc. Moreover, they used
anall-text feature where all the textual representation of document features are in-
cluded (title, description, tags, time/date, location). The textual features were used as
t f · id f weight vectors, while typical text processing (stop-word elimination, stem-
ming) steps were applied when needed. In order to support a scalable clustering
approach, they proposed a single-pass incremental clustering and tested it into two
different scoring cases. In the first case, each examined document was compared
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to every other in the cluster so as to generate an overall score, while in the second
approach only a document to cluster centroid comparison wasperformed. For the
selection of similarity metrics ensemble-based similarity and classification based
similarity were also examined for the final results. The experimental results showed
that All-text individual clusterer outperformed the other clusterers while the simi-
larity based combination outperformed the individual clusterers (includeAll-text ).
Overall, the classification method showed significant improvement over the typical
text-based similarity approaches.

The work of Papadopoulos et al. [60] approached event detection in social mul-
timedia as a graph-based image clustering problem. Their approach combined vi-
sual similarity along with tag-based similarity to build two image similarity graphs
which are then merged to a unified hybrid image similarity graph. Then, a com-
munity detection algorithm was applied to detect clusters of similar images in the
hybrid image similarity graph. The authors examined two different cases of im-
age clusters, which are commonly found in social multimediasharing sites such as
Flickr. These are “Landmarks” and “Events”. For classifying the image clusters as
Events or Landmarks, four features were used. The first two, introduced in Quack
et al. [61], are the duration of the cluster in terms of creation timestamps of the in-
cluded images and the ratio of owners over the number of the images in the cluster.
According to the authors these two features were not adequate to discriminate effi-
ciently “Landmark” clusters from “Event” clusters. Additionally, they also created
two tag vectors corresponding to each class and then removedthe common tags
to build class-specific tag vectors. Finally, the other two features were the counts of
tags of the images clusters that belong to the one set of the other. With the classifica-
tion step, the Event detection task was finished. However, inthe case of Landmark
detection, another step was also required. Although the method aimed to cluster
the image collections in meaningful groups, the authors observed that some of the
Landmark clusters referred to the same object. Towards facing this inefficiency, a
merging step was applied. By using geolocation information, a new spatial proxim-
ity graph was built and the community detection algorithm was used to form new
clusters of images. The experimental results compared withk-means clustering of
both the visual and the tag features appear to have better geo-spacial focus (which
is significant to events and landmarks) and overall higher precision in the subjective
evaluation.

4.3 Time-related multimedia indexing and search for evolving
social multimedia collections

The speed of multimedia content sharing in the Social web, bloats the Social media
databases with enormous volumes of data in very short time windows. Thus, a major
difference between the Social web databases and the common multimedia databases,
is the fact that they are constantly increasing, populated with fresh content. This fea-
ture inspires users to ask for complicated queries that include time/date related infor-
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mation. Moreover, these ever evolving databases store millions of records every day,
with ephemeral interest to the users and useless if not consumed in a certain period
of time. Thus, queries that filter the retrieved content in specified time windows are
also needed. However, the time-evolved social multimedia databases require also
new approaches of organising the content in order to enable for efficient search and
retrieval.

The study of Lin et al. [74] addressed the social multimedia retrieval problem
from exactly this viewpoint. The authors consider Flickr’sphoto groups as mixtures
of themes with similarities in content and context. Their goals were: a) to better
organize the content inside each photo group, since the exponential growth of the
content make exploration and searching inside a group a challenging task; and b) to
reveal the changing interests and trends inside the photo group and reveal the photo
genres that a group contains. In order to exploit both content and context informa-
tion, the authors extracted content features from images, tags, owner information,
and post time to build four matrices: a photo-features matrix, a photo-user matrix, a
photo-tag matrix and a photo-time matrix. Then, a non-negative joint matrix factor-
ization procedure was applied on these matrices to extract “themes” of photos that
change over time. As they clearly stated, their motivation was the development of a
method to answer difficult, for pure multimedia retrieval systems, questions. Such
questions were :are there typical patterns in the photo stream? how these patterns
evolve over time? how can we extract the patterns and which users and photos fol-
low them?. As it is clear, such questions are becoming typical and extremely useful
in global-scale databases and as such, they add value to the existing social multime-
dia sharing services.

Another interesting study on multimedia retrieval from thesocial web is the work
of De Silva et al. [75], which proposed interactive spatio-temporal query formula-
tion for quick multimedia retrieval from large multimedia databases. De Silva et al.
stated that the presentation of an one-dimensional resultslist is inadequate for such
rich multimedia databases since the query was tested against multiple dimensions
(content, tags, time, space, etc.). The proposed interfaceenables the iterative search-
ing and browsing of content with query refining in any of the available modalities
(content, social relations, time, etc.).

Since temporal information is widely available in the shared multimedia content
through social media, new approaches emerge exploiting thetemporal information
to extract usage and sharing patterns or visualize the content and extract valuable
information that may be used to cluster multimedia content such as the works of
[76, 77].

5 Conclusions and Future Challenges

Multimedia indexing and retrieval is a challenging task on its own, and thus differ-
ent solutions have been proposed, trying to address different angles of the problem.
Further, Social Multimedia indexing and retrieval in the large databases of the social
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networks, advanced the challenges to form a new problem thatneeds special han-
dling. Social Multimedia indexing, search and retrieval clearly stated its “unique-
ness” mainly in two dominant axes: a) as multimedia analysistask with heteroge-
neous, noisy and ambiguous modalities such as text, images,videos, audio along
with tags, free-text, geotags, geo-coordinates, time information, social relations and
communities; and b) as a web-scale information retrieval task with all the scalability
and performance issues carried along.

The majority of the works presented in this chapter were evaluated using Flickr
images. The Flickr image sharing service has a characteristic, socially “sound”, de-
sign that enables the evolution of the database in terms of time, themes, groups,
trending tag annotations and of course users that form communities and groups,
follow other users’ works and give ratings.

In this chapter, Social Multimedia indexing, search and retrieval techniques and
algorithms were presented, aiming to shed light to different viewpoints of the prob-
lem. Sect 2 discussed shortly the state-of-the-art multidimensional indexing struc-
tures by classifying them in the exact and approximate approaches. Then, in Sect. 3,
Social Multimedia content was used to present a case study ofindexing 1 Millions
images from Flickr photo sharing site. In this case study, indexing was performed
based only on the content of the multimedia objects. This approach showed that in
the large social multimedia databases of billions of records, these approaches are
inefficient in terms of response time and memory/storage needs and/or accuracy
of the retrieved results. The major issue though, is that such indexing methods do
not consider the available social metadata that enclose “subjective” user semantics.
However, these semantics are crucial for improving both thequality of the retrieved
results and the performance in qualitative aspects. Sect. 4presented exactly these
aspects of social multimedia retrieval. Moreover, in the context of social media,
multimedia retrieval was explored as another means of a higher level query formu-
lation to answer complex questions.

Since the social multimedia databases will continue to growexponentially to un-
manageable volumes, revolutionary approaches in content search and retrieval are
necessary. Future challenges to this field include: searching in multimedia streams,
classification of ephemeral data for subscription purposesand trending algorithms
for identifying popular multimedia content. Moreover, algorithms, techniques and
search schemes that enable users to improvise in querying the enormous social mul-
timedia collections are also sought.
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