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Abstract—During the last decades, massive amounts of satellite
images are becoming available that can be enriched with seman-
tic annotations for the creation of value-added earth observation
products. One challenge is to extract knowledge from the raw
satellite data in an automated way and to effectively manage the
extracted information in a semantic way, to allow fast and accurate
decisions of spatiotemporal nature in a real operational scenario.
In this work, we present a framework that combines supervised
learning for crop type classification on satellite imagery time-series
with semantic web and linked data technologies to assist in the
implementation of rule sets by the European common agricultural
policy (CAP). The framework collects georeferenced data that are
available online and satellite images from the Sentinel-2 mission.
We analyze image time-series that cover the entire cultivation
period and link each parcel with a specific crop. On top of that,
we introduce a semantic layer to facilitate a knowledge-driven
management of the available information, capitalizing on ontolo-
gies for knowledge representation and semantic rules, to identify
possible farmers noncompliance according to the Greening 1 (crop
diversification) and SMR 1 rule (protection of waters against pol-
lution caused by nitrates) rules of the CAP. Experiments show the
effectiveness of the proposed integrated approach in three different
scenarios for crop type monitoring and consistency checking for
noncompliance to the CAP rules: the smart sampling of on-the-spot
checks; the automatic detection of CAP’s Greening 1 rule; and the
automatic detection of susceptible parcels according to the CAP’s
SMR 1 rule.

Index Terms—Crop type classification, data fusion for decision-
making, European Union (EU) common agricultural policy (CAP)
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noncompliance checking, linking earth observation (EO) data and
web content, semantic enrichment.

I. INTRODUCTION

IN RECENT years, a massive quantity of georeferenced data
is generated from many different sources like human activity

and earth observation (EO), in situ sensors, satellite missions
(e.g., Copernicus), and mobile phones. The semantic enrichment
and linking of these free and open data of this scale, frequency,
and quality constitute a fundamental challenge for interoper-
ability and automation in decision-making. EO data become
useful only when analyzed together with other sources of data
(e.g., geospatial data, in situ data) and turned into actionable
information and knowledge for decision-making. In this context,
linked data1 is a data paradigm that studies how one can make
resource description framework (RDF) [1], [2] data available
on the web and interconnect it with other data with the aim to
increase its value. In the last few years, linked geospatial data has
received attention as researchers have started tapping the wealth
of geospatial information available on the web using semantic
web technologies [3], [4]. Nevertheless, there are only a handful
of applications that showcase the semantic integration of linked
EO and non-EO products. The scalability to accommodate big
linked EO data also remains an open issue [5].

One of the domains that is already heavily dependent on the
effective and efficient knowledge extraction from EO data is
the control of the common agricultural policy (CAP) [6]. The
European Union (EU), through the CAP, aims at increasing the
European agricultural productivity under sustainable practices
while at the same time making sure that the farmers maintain
a decent standard of living.2 It is the EU’s aim to reinforce
the competitiveness of European agriculture, whilst maintaining
and strengthening its sustainability. This manifests as a major
priority, with CAP’s annual budget amounting to approximately
59 billion Euros. The Integrated Administration and Control
System (IACS) of the CAP consumes the majority of its an-
nual budget. The IACS functions as the management system
for the CAP payments, and is implemented by the national

1[Online]. Available: https://www.w3.org/standards/semanticweb/data
2[Online]. Available: http://esa-sen4cap.org/
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paying agency of each EU member state (MS).3 The CAP
legal framework is transitioning to its new form, the post-2020
CAP reform, which aims to modernize and simplify the current
operating model.4 Based on the post-2020 CAP ambitions and
toward the direction of the so-called monitoring approach for
the implementation of IACS, EO has been identified as a key
enabler.

Multiple EC funded projects have employed Copernicus data,
using advanced ICT and artificial intelligence technologies, to
address the monitoring of the CAP. The RECAP project5 has
been one of the first to develop Copernicus based machine
learning pipelines to assist the paying agencies in reducing
the costs and increasing the efficiency of the control of CAP’s
Cross-Compliance. Additionally, the Sen4CAP project,6 build-
ing on the legacy of RECAP, has focused on reducing the costs
of IACS toward the post-2020 CAP objectives; exploring the
applicability of an evidence-based monitoring approach. To the
best of our knowledge, none of the existing approaches are
able to support the following CAP scenarios to deliver true
business value. The selected scenarios require significant human
resources, with on-the-spot checks (OTSCs) on only a small
sample of the farmers’ applications.

A. Smart Sampling of OTSCs

Farmers declare the cultivated crop type for their arable land
each year, around the months of May and June. Paying agencies
are responsible for validating the declarations to then grant the
requested subsidy to the farmer. The MSs randomly sample
and inspect 1%–5% of the total number of declarations. It is
necessary to automatically monitor the farmers’ declarations,
using and linking additional and online available data, in order
to create a targeted, instead of random, sample set that requires
OTSC.

B. Automatic Detection of CAP’s Greening 1 Rule

This rule seeks to improve biodiversity and reduce soil erosion
by imposing limits in the size and number of the different
cultivations in a farm. Specifically, the farmers that own 10–30
ha of arable farm should grow at least two different crop types,
whereas farmers that own more than 30 ha should grow at least
three different crop types. In the first case, the main crop should
not cover more than 75% of the land, whereas for the latter case
the two main crops should additionally not exceed 95% of the
total land.7 This rule requires accurate and semantically enriched
geospatial data, so as to both detect correctly the crop types and
perform semantic reasoning to infer the consistency between the
farmers’ declaration and the Greening 1 rule.

3[Online]. Available: https://ec.europa.eu/info/food-farming-fisheries/
key-policies/common-agricultural-policy/financing-cap/controls-and-
transparency/managing-payments_en

4[Online]. Available: https://www.consilium.europa.eu/el/policies/cap-
future-2020/

5[Online]. Available: https://www.recap-h2020.eu/
6[Online]. Available: http://esa-sen4cap.org/
7[Online]. Available: https://ec.europa.eu/info/food-farming-fisheries/key-

policies/common-agricultural-policy/income-support/greening_en

C. Automatic Detection of Susceptible Parcels According to
CAP’s SMR 1 Rule

This particular CAP requirement expects from the farmers,
among other things, to perform a risk assessment on the suscep-
tibility of their parcel to contribute nitrate-rich soil to nearby
surface waters. The farmer should account for the slope of
land, the ground cover, the proximity to surface water, weather
conditions, soil type and conditions and the presence of land
drains.8 The SMR 1 requirement defines buffer zones, which
shall be respected in terms of fertilizer spreading. Specifically,
1) manufactured fertilizer spreading should be at least 2 m
from surface water and 2) organic manure spreading should be
at least 10 m from surface water.9 Therefore, measuring the
proximity of the parcel boundaries to the nearest surface water
is of great significance both for the inspections of the paying
agency, but also for the farmer who wishes to better comply
with the requirement. To that end, the semantic data fusion of
Sentinel images and other linked open geospatial data would
lead to a more efficient monitoring of SMR 1.

In this work, we adopt and extend the linked open EO data life
cycle paradigm [3], and provide for the first time an end-to-end
implementation to address the operational needs of the CAP.
Motivated by the above-mentioned use cases and their inherent
requirements to effectively and intelligently combine and inter-
link various geospatial data sources (e.g., land parcel identifica-
tion system (LPIS), hydrographic network, Natura2000 zones,
etc.), we instantiate the linked open EO data life cycle in the
domain of CAP. To this end, we propose a hybrid data- and
knowledge-driven framework, developing concrete CAP-related
scenarios and demonstrate automatic pipelines for satellite data
processing, content extraction, semantic annotation and trans-
formation to RDF, interlinking layer, validation and querying of
linked open spatiotemporal data.

Our contributions are summarized as follows.
1) In the context of CAP monitoring, to check compli-

ance with Greening-1 requirements, taking into account
satellite-derived products and ancillary geospatial data.

2) We demonstrate the use of spatial relationships in LOD
(GeoSPARQL) toward assessing vulnerable parcels ac-
cording to CAP SMR-1 specifications.

3) We propose the smart sampling scheme, i.e., the use of
spatiotemporal queries to define a new, educated sampling
of parcels that need to be checked for compliance with
CAP rules with in-field visits.

4) We evaluate our framework under the light of national
scale application, in line with post-2020 CAP monitor-
ing needs. Therefore, we discuss scalability implications
for both the knowledge extraction from satellite imagery
module and the semantic reasoning framework.

The rest of the article is structured as follows. Section II
presents related technologies considering both the EO-based

8GCCE 2017 v1.0, “The guide to cross compliance in England 2017,” pro-
duced by the Department for Environment, Food and Rural Affairs.

9[Online]. Available: https://www.gov.uk/guidance/using-nitrogen-
fertilisers-in-nitrate-vulnerable-zones

https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/financing-cap/controls-and-transparency/managing-payments_en
https://www.consilium.europa.eu/el/policies/cap-future-2020/
https://www.recap-h2020.eu/
http://esa-sen4cap.org/
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/income-support/greening_en
https://www.gov.uk/guidance/using-nitrogen-fertilisers-in-nitrate-vulnerable-zones


ROUSI et al.: SEMANTICALLY ENRICHED CROP TYPE CLASSIFICATION AND LINKED EO DATA TO SUPPORT THE CAP MONITORING 531

Fig. 1. Main stages of the complete life cycle of linked open EO data for the
monitoring of the CAP.

CAP monitoring and semantic web technologies. The tech-
nologies are grouped under a common framework, aiming to
cover the whole life cycle of the linked EO data for the con-
trol of the CAP. Section III describes the proposed semanti-
cally enriched crop type classification model for checking the
compliance of farmers’ declarations to the CAP regulations.
Section IV presents experiments and results regarding our pro-
posed methodology, along with the area of interest (AOI), the
considered CAP scenarios, their implementations and results re-
garding the effectiveness and efficiency of our pipeline. Finally,
Section V concludes this article.

II. LIFE CYCLE OF LINKED EO DATA FOR THE

CONTROL OF THE CAP

Existing works for the monitoring of CAP mainly focus
on knowledge extraction technologies, whereas the semantic
technologies cover more generic agricultural needs. However,
our main objective is to cover the complete life cycle of linked
open EO data paradigm, as originally discussed in [3], following
a multidisciplinary approach. The stages of the life cycle of
linked EO data for the control of the CAP are presented in Fig. 1.
The first step covers the content extraction machine learning
methodologies so as to get new information layers out of the
large streams of raw satellite data. The second step involves
the standardized data representation and ontological modeling
for semantic annotation. The semantic annotation is based on
semantic web technologies, which are being adapted and devel-
oped under the EO and agricultural domains. The next step of the
life cycle regards the transformation of the extracted content into
RDF, allowing the population of the knowledge base (triplestore)
to perform semantic queries that offer a better knowledge of the
data (storage/querying). Applying useful interconnections in the
semantic data using external datasets can additionally enrich the
content and extract hidden knowledge (interlinking).

A. Content and Knowledge Extraction: Crop Classification

Over the last decades there have been multiple studies that
have utilized EO data to extract high-level thematic knowledge
for the agricultural land. Recently and since the introduction of
the Sentinel missions, there have been a plethora of scientific
publications that have exploited either Sentinel-1 or Sentinel-2
imagery, or in certain cases both, to classify crop types. The
high spatial and temporal resolution of the Sentinel missions
make them ideal for constructing dense image time-series of high
quality that capture all the phenological stages of the different
crop types and thus allowing for their accurate discrimination.

The state of the art in EO-based and specifically the Sentinel-
based crop classification has advanced significantly over the
last years, with the majority of publications reaching optimal
accuracy levels (>85%) for multiclass problems. The relative
differences in the published approaches are based on the nature
and level of specificity of the investigated crop classes, the
computational complexity restrictions, the scale of application
and the ground truth information that is available for training
and validation.

In order to reduce the computational complexity of crop clas-
sification and develop scalable solutions, multiple studies have
followed object-based image analysis approaches. For instance,
Lebourgeois et al. [7] have segmented their image stack into
objects using spectral segmentation techniques on Very High
Resolution imagery, whereas Sitokonstantinou et al. [8] made
use of the LPIS to partition their feature space into parcel objects.

Synthetic aperture radar and optical imagery, retrieved from
Sentinel-1 and Sentinel-2 missions, respectively, have been used
either individually or combined. In [9], a combination of both
Sentinel-1 and Sentinel-2 is used in order to create very dense
time-series, thus alleviating the cloud coverage limitations. In
[10], Arias et al. employ solely Sentinel-1 data, suggesting a
weather-independent crop classification scheme for the mon-
itoring of the CAP, hence accounting for northern European
countries that suffer from year-round cloud coverage. Other
studies focus on generating multiple diverse features from Sen-
tinel imagery, beyond the most common spectral bands and
vegetation indices (VI). Feng et al. [11] and Akbari et al. [12]
create deep feature spaces, additionally including variations of
VI, texture and phenology parameters. Such methods are shown
to be particularly useful in classifying spectrally heterogeneous
crop classes, i.e., vegetables.

With respect to the classification methods employed, both su-
pervised and semisupervised learning approaches can be found
in the literature. In [13], for example, Tatiana Solano-Correa
et al. have combined a hierarchical correlation clustering with
an artificial neural network. The vast majority of studies, how-
ever, make use of supervised learners, such as support vector
machines (SVM) and random forest (RF) ([8], [7], [11], [12],
[9], [14], [15]). Their effectiveness stems from their ability to
accurately describe the nonlinear relationships between crops’
physical condition and their spectral characteristics while being
particularly insensitive to noise and overfitting. Finally, there are
important studies that have used convolutional neural networks
or recurrent neural networks or a combination of both [16],
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which allow the learning of time and space correlation over the
Sentinel time-series, thus reducing manual feature engineering.

In [8], Sitokonstantinou et al. have developed a scalable crop
identification scheme, employing a second-order polynomial
SVM on a time-series of Sentinel-2 data. Sitokonstantinou et al.
[8] have additionally performed an extensive comparison be-
tween SVM and RF, them being the most widely used clas-
sifiers for crop mapping problems. The results showcased the
superiority of SVM over RF for the classification of multiple
and spectrally similar classes. This conclusion is additionally
supported by Zhang et al. [17].

This study builds on the methods and results that were pub-
lished in [8], following the state-of-the-art in crop classification
as described earlier. The crop classification method of this study,
however, has been applied to three different areas of interest, of
diverse characteristics, thus proving its transferability. Finally,
we perform multiple crop classifications, starting from very early
in the year; therefore with truncated feature spaces. Nonetheless,
the results, even early in the year, are satisfactory for the purposes
of smart sampling the CAP OTSCs.

B. Semantic Web Technologies

Web Ontology Language (OWL) [18] is an ontology language
that provides classes, properties, and individuals under the se-
mantic web aspect. Ontologies offer the taxonomy of semantic
objects and the relationship between them. RDF [19], [20] is
the W3C recommendation standard that offers data representa-
tion under subjectpredicateobject standard, which is known as
triples. Each subject is a resource and each object can be either
a resource, a value, or an empty node. Predicates or properties
express the relationship between a specific subject and object.
Data expressed in this format are saved into RDF triplestores,
named Knowledge Graphs.

SPARQL Protocol and RDF Query Language (SPARQL) [21]
is the most popular querying language for the retrieval and
manipulation of data in RDF format. SPARQL offers a wide
range of query forms and operators to access and retrieve the
data. stSPARQL [22],[23] is a SPARQL version that applies
semantic queries into data in stRDF format. Such formats offer
representation and querying of thematic and spatial data, which
contain a temporal dimension. GeoSPARQL [23] focuses more
on geospatial data querying, by providing a wide list of functions
to support semantic queries execution over geometry and feature
objects. Topological relationships are also taken into account.

Reasoning [24] is the procedure of inferring logical con-
sequences based on asserted facts or axioms. In RDF graphs,
reasoning takes advantage of data triples using in many cases
different data sources to specify the rules that can lead to useful
knowledge extraction. Reasoning with rules is usually based
on description logics (DLs). DLs [25] constitute a family of
logic-based representation formalisms and are usually used to
represent well-structured knowledge over the application do-
main. Its name comes from a combination of descriptions, which
are the expressions namely predicates, and the fact that they
support logic-based semantics. DLs are strongly associated with

structuring ontology languages such as OWL, but are also widely
used in application domain.

The vision of linked data is associated with the transformation
of data into RDF formats. Data in this format can be published
on the web and linked with other existing data that come from
different sources [20]. Linked data are easily accessible using
semantic queries. The main advantage of semantics is that they
have the means to create intelligent interconnections over objects
that come from heterogeneous sources as they support better
information management, complexity limitation, and useful in-
ferences extraction [26]. In this work, we provide a list of
functions and semantic queries, using semantic web technolo-
gies, to support three CAP-related scenarios in real operational
problems, that require content extraction and semantic linking
of data for compliance checking.

C. Semantic Annotation Under the EO and
Agriculture Domains

Building appropriate ontologies to describe the different as-
pects of EO and agriculture are presented in this section. EO
ontologies focus more on the environmental monitoring domain.

The ontology presented in [27] deals with hydrological mon-
itoring issues and captures the main components of hydrological
monitoring, which are the events, the sensors, and the observa-
tions. Sensors and observations are divided into many subcat-
egories such as physical and meteorological, whereas events
are associated with any hydrological cycle change. Modular
environmental monitoring ontology [28] extends the above-
mentioned ontology as, except from sensor and observation
data, it provides a structure to model a plethora of different
aspects that are identified on an emergency situation under
the environmental monitoring domain. The ontology provides
the structures to represent environmental features (procedure
and material), physical conditions (disaster), and spatiotemporal
information (geolocation and time).

An agricultural ontology representation method is described
in [29]. The suggested model contains information such as
cultivation and processing practices, storage, pests control, ge-
netic attributes, etc. OntoCrop ontology [30] offers knowledge
representation for common cultivation practices, pests control
and in general the crops physiology. Each plant is characterized
by properties such as name, growth stage, type of infection,
infected part, information about disorders. Agriculture ontology
for the purpose of agriculture Internet of Things [31] presents
a more product-oriented view of agricultural products contain-
ing information related to the product, the seeding procedures,
the physical conditions, the phase, the location, and temporal
dimensions. The main purpose of this ontology is to support
healthy food management. The ontology presented in [32] of-
fers a uniform representation of text classification and concept
extraction results. The ontology matches specific concepts into
ontology classes, which include many different types of products
such as agricultural, planting, livestock, fishery and agricultural
material.

Most works that have been previously mentioned describe
either EO or agricultural data. What is actually missing is a
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combination of both describing information from EO with infor-
mation from the agricultural domain. In this work, we reuse and
extend the ontology found in [8] that describes the relationship
among crop types, families and season, and create a combination
with GeoSPARQL vocabulary that represents geospatial-related
data such as points in polygon geometry.

D. Transformation Into RDF

Another widely investigated issue is combining semantics
with EO data to discover hidden knowledge. This section de-
scribes some frameworks that deal with data transformation into
semantic format, integration and searching.

Intelligent interactive image knowledge retrieval [33] is a
framework that utilizes EO data archives and applies image seg-
mentation (PCA kernel approach) and classification techniques
(SVM learning method). From the semantic aspect, the system
achieves high-level query processing into context information
from distributed data archives. Domain-specific ontologies pro-
vide the appropriate structures to integrate heterogeneous data
sources in order to support complex semantic queries. A hybrid
ontology approach has been used to integrate data coming from
different ontologies. Semantic restrictions have been applied
using DL reasoning to determine the conditions under which
an instance will belong to a class.

GeoTriples [23] is a tool that deals with the geospatial data
transformation into semantic RDF format. The system gets as
an input a file in various formats and creates a mapping that
is based on GeoSPARQL vocabulary, using RML and R2RML
rules (mapping generator). Users have the opportunity to define
the rules if needed. Initial data are transformed into RDF graph
format using the RML rules defined in previous phase (map-
ping processor). Various RDF syntax formats are supported.
Querying is also available in a relational database using R2RML
mapping (stSPARQL/GeoSPARQL evaluator).

In this study, we use the GeoTriples tool as a basis in or-
der to transform shapefile data into RDF format under the
GeoSPARQL standard for semantic representation.

E. Storage and Querying

In this work, we choose to handle the three different CAP
scenarios using semantic technologies. The problem could have
been solved using relational databases, though this selection
would be accompanied with an inflexible data schema and higher
execution times [34]. Additionally, the relationships between the
entities handled in this work are quite complex to be represented
using SQL keys.10 Information is coming from three layers and,
with the usage of semantics, are combined in the most effective
way, whereas OWL 2 RL rules are used to enrich the data [35].

RDF triplestores are semantic databases that offer data saving
in semantic graph format. Strabon [36] is a geospatialoriented
RDF triplestore that offers a broad amount of querying functions
over georeferenced information, supporting both stSPARQL and
GeoSPARQL. GraphDB11 [37] is also a popular triplestore that

10[Online]. Available: https://www.sqlshack.com/understanding-benefits-of-
graph-databases-over-relational-databases-through-self-joins-in-sql-server/

11[Online]. Available: http://graphdb.ontotext.com/

supports saving and querying over georeferenced and nongeo-
referenced semantic data, supporting native OWL 2 reasoning. It
is considered as one of the best triplestores available in terms of
storage, supported functionalities, performance, and execution
time [38]. Other RDF triple stores that provide geospatial sup-
port include RDF4J,12 Virtuoso13 [39], OntopSpatial14 [40], Or-
acle spatial and Graph,15 AllegroGraph,16 Stardog,17 uSeekM,18

and Parliament.19

The storage and query capabilities of our framework capitalize
on an existing RDF triple store, on top of which SPARQL and
GeoSPARQL standards are used to form the queries that support
the rules of agriculture policies. The current implementation uses
the GraphDB semantic graph database, taking full advantage of
the provided dashboard to explore and manage the RDF reposi-
tories. It also supports different reasoning profiles, such as OWL
2 Rule (RL) reasoning, allowing us to use off-the-shelf reasoning
on top of our domain ontology. It is worth mentioning, however,
that since our framework capitalizes on existing, well-known
standards (RDF, OWL, SPARQL, etc.), it is interoperable and
it does not depend on specific implementations. For example,
it requires minor updates to migrate to different triple stores,
according to the application requirements, such as Strabon and
AllegroGraph, or to use different SPARQL query engines.

F. Interlinking

To exploit the wealth of data, there comes the need of gen-
erating intelligent interconnections between different datasets.
In the literature, many systems have been implemented dealing
with this issue but due to the vast heterogeneity of data, using
existing systems into new datasets does not work in most cases.
Interlinking is achieved based on geospatial data characteristics
in some cases [4], whereas in others specific mechanisms have
been developed to meet the needs of the data [41].

The system that is presented in [4] receives data from het-
erogeneous sources such as meteorological, health and EO.
It creates an appropriate RDF representation and associations
between specific characteristics. Data interlinking is achieved
by calculating the similarity between different datasets. In [41],
a system that integrates EO data to support data management is
introduced. The system receives data from different data sources
and has two different functionalities. For data that are related
with China multiple components have been developed to adapt in
different interfaces, whereas for international data the GEO DAB
agent is used. PREDICAT [28] is a system that focuses on natural
catastrophes prediction. PREDICAT uses different ontologies to
semantically represent the data that are pertinent to the system
(semantic layer). The system overcomes data heterogeneity
and provides a common structure of interconnected objects

12[Online]. Available: https://rdf4j.org/
13[Online]. Available: https://virtuoso.openlinksw.com/
14[Online]. Available: http://ontop-spatial.di.uoa.gr/
15[Online]. Available: https://www.oracle.com/database/technologies/

spatialandgraph.html
16[Online]. Available: https://allegrograph.com/
17[Online]. Available: https://www.stardog.com/
18[Online]. Available: https://www.openhub.net/p/useekm
19[Online]. Available: https://github.com/SemWebCentral/parliament

https://www.sqlshack.com/understanding-benefits-of-graph-databases-over-relational-databases-through-self-joins-in-sql-server/
http://graphdb.ontotext.com/
https://rdf4j.org/
https://virtuoso.openlinksw.com/
http://ontop-spatial.di.uoa.gr/
https://www.oracle.com/database/technologies/spatialandgraph.html
https://allegrograph.com/
https://www.stardog.com/
https://www.openhub.net/p/useekm
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containing spatiotemporal information (data integration layer),
whereas a reasoner and a decision-maker are implemented to
provide the appropriate responses to the user (data processing
layer). In CANDELA project20 semantic search is supported
on EO images and other associated metadata, using existing
technologies, namely GeoSPARQL, OWL-Time, SOSA, DCAT,
and PROV-O. These technologies support a monitoring use case
in agriculture, where the impact of a storm on vineyards is
measured by first extracting knowledge from Sentinel images
and then semantically fusing them with weather reports in the
same AOI.21 However, the semantic search targets mainly to
offer a mature solution for insurance companies, whereas it is not
straightforward to monitor CAP-related regulations that require
to be checked in terms of the farmers’ compliance to CAP rules.

G. Complete Life Cycle for CAP Monitoring Using Semantic
Technologies and Linked Open EO Data

Despite the fact that a lot of progress has been achieved
in different aspects of the individual components mentioned
above (e.g., semantic annotation has been implemented under
the environmental monitoring domain [27], [28], [42], data
integration has been widely investigated (interlinking) [28],
[33], [43]–[46]), not much effort has been achieved in imple-
menting a system that supports the complete life cycle. The
major challenge, which we address in this article, is mostly
related with interlinking phase and dealing with the heterogene-
ity of data (e.g., sensors [46], aerial and satellite imagery [43],
OpenStreetMap data [43], [45], Google Earth imagery [45]) and
defining the ways to exploit these data and enhance knowledge
discovery [33].

Contrary to the presented approaches in this section, in this
work we focus on the linked open EO data life cycle paradigm
proposed in [3], aiming to support impactful use cases in CAP.
To the best of our knowledge, this is the first attempt to reuse
and adapt the proposed architecture to the domain of CAP mon-
itoring. The proposed framework implements a hybrid scheme
of data analysis and annotation: the results of a data-driven
crop classification framework are semantically annotated and
interlinked in order to foster advanced interpretation, such as
improving classification accuracy through domain knowledge,
and querying solutions. We demonstrate the added value and
feasibility of our approach in a number of challenging use cases
in CAP monitoring.

III. METHODOLOGY

The overall framework of our proposed methodology is pre-
sented in Fig. 2. The layers are the image analysis layer, the
mapping layer, the data ingestion and reasoning layer and the
query processing layer. The knowledge extraction phase of the
life cycle, which was presented in Section II, consists of the
image analysis layer using machine learning techniques for
the content extraction. The semantic web technologies in the
context of EO and Agriculture domains involve also the semantic

20[Online]. Available: http://candela-h2020.eu/
21[Online]. Available: http://candela-h2020.eu/content/semantic-search-v2

Fig. 2. System architecture overview.

annotation and transformation into RDF of the Mapping layer.
The data ingestion and reasoning layer populates the knowledge
base with the extracted knowledge, for storage and querying in
a standard data representation model. Finally, the interlinking
is done as part of the query processing layer that allows for
checking the compliance of the farmers’ declarations to the
CAP regulations under the reasoning mechanism of the previous
layers, using the open linked data paradigm. These layers are
presented in detail in the following sections.

A. Satellite Image Analysis for the Monitoring of the CAP

Paying agencies of EU MSs, usually receive the annual sub-
sidy applications in May or June. The paying agency inspectors
require the information of the cultivated crop type, even as
early as May. This way, inspectors can select and organize
their OTSCs, which follow in the coming months. Additionally,
crop classification results, received prior to the annual farmer
declarations, can assist as an alerting mechanism during the
application process. The image analysis layer is the first layer of
our proposed pipeline (see Fig. 2), where a Sentinel-based crop
classification system for the monitoring of the CAP is developed.

The AOI is located in northeastern Spain and specifically the
district of Navarra (see Fig. 3). The AOI covers the agricultural
land surrounding the city of Pamplona, capital of Navarra.

http://candela-h2020.eu/
http://candela-h2020.eu/content/semantic-search-v2
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Fig. 3. Study area located in northeastern Spain and specifically in the Navarra
district. The parcels of interest are shown in light blue color.

In detail, the dataset includes 9052 parcels and amounts to
approximately 215 km2 of total land area. The Northern part
of Navarra is surrounded by the Pyrenees Mountains, as they
stretch southward from France. The landscape of the district is a
mixture of forested mountains and watered valleys, whereas the
agricultural land is characterized by substantial fragmentation
[47]. This study builds upon the crop classification results of [8],
as described in Section II. SVM-based crop maps are produced,
including the crop types of soft wheat (50%), barley (26%),
oats (8.4%), maize (1.4%), sunflower (3.2%), vineyards (1.3%),
broad beans (4.5%), rapeseed (5.4%), and cherry trees (0.2%).
The aforementioned crop types are the lowest level of ontology,
as shown in Fig. 5.

The dataset for training the SVM classifier is based on the
LPIS, which includes the parcel polygons in vector format and
the associated farmer declaration for the 2018 CAP subsidy
applications. The parcel polygons are used for segmenting the
stack of Sentinel imagery to objects. The LPIS was provided
by INTIA,22 a public company, part of the Department of Rural
Development, Environment and Local Administration of Spain.
INTIA serves the role of paying agency for the district of
Navarra, performing all CAP compliance inspections for the
area. INTIA has additionally provided the timeline of growth for
the major crops of the area. Fig. 4 illustrates the acquisitions of
Sentinel-2 images, spanning over the entirety of the various crop
cycles. The feature space used for the crop classification includes
the Sentinel-2 images for the acquisitions depicted in Fig. 4. The
acquisitions have been selected to have minimal cloud coverage
over the AOI. All spectral bands, except B09 and B10, were
used, along with the VI normalized difference vegetation index,
normalized difference water index (NDWI), and plant senes-
cence reflectance index. In this study, NDWI is used as defined
by Gao [48]. Sentinel-2 images are atmospherically corrected to
bottom of atmosphere reflectances using the Sen2Cor tool, and
all bands are resampled to 10 m spatial resolution. The feature
space comprises parcel entities described by the mean value, for
all features, of the pixels that fall within their LPIS boundaries.

22[Online]. Available: https://www.intiasa.es/en/

Fig. 4. Timeline of the growth cycle of major crops in Navarra, reworked from
[8], together with the acquisition dates of the Sentinel-2 images.

The proposed methodology is based on a traffic light sys-
tem approach. Specifically, each parcel is categorized into four
groups, each offering different levels of confidence. These cat-
egories comprise the green, yellow, red, and unreliable classes,
indicating high to low levels of confidence, in that order. The
categorization of each parcel is based on the difference between
the two highest SVM scores. This study focuses predominantly
on the green category, namely the decision of highest confidence.
It is on those most confident samples that we then record the
mismatches of model predictions and the farmer declarations.
An alarm mechanism is then introduced, identifying the green
parcels that have been systematically misclassified (mismatch
of declaration and prediction) during the cultivating season.

In the proposed algorithm (Algorithm 1), the alarms of po-
tential false declarations are detected for any time instance
throughout the year, with variable accuracy considering the
satellite imagery available to date. The Xtrain and Xtest are the
training and test feature spaces, respectively. The feature spaces
are dynamically populated with all new acquisitions. Therefore,
when the algorithm is executed (currentDate), it uses the up to
date feature spaces as input, containing imagery until the latest
available acquisition

acqDate = acqDatek, k = 1, . . . , λ, . . . , A (1)

where A is the index to the latest acquisition prior to
currentDate and λ is the index to the acquisition that defines
the starting feature space, early in the year.

The algorithm iterates A-λ times, each time recording the
misclassifications (mis). Misclassifications, in this context and
as previously stated, refer to the mismatch between the SVM
model’s prediction and the farmers’ declaration. For each itera-
tion, a second-order polynomial SVM model is trained based on
Xtrain(t) (2) and the SVM scores are computed after applying
the model to Xtest(t) (3). Xtrain(t) and Xtest(t) are the training
and test data for each iteration, and f is the number of individual
features for each acquisition. The farmer declarations, as part of
the annual subsidy application for the CAP, are used for labeling
the parcels and thus training the model. A stratified random split
was performed to split the samples into 30% and 70% subsets for
Xtrain(t) andXtest(t), respectively. This amounts to 2716 parcels,
which have been used for training. All classification metrics that
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Algorithm 1: Smart Sampling.

Input: Xtrain = {(xi, di), xi ∈ Rl, di ∈
{1, 2, . . . ,m}, i = 1, . . . N}, Xtest = {(xi, di), xi ∈
Rl, di ∈ {1, 2, . . . ,m}, i = 1, . . . ,M},
acqDate = {acqDatek, k = 1, . . . , λ, . . . , A}, number of
iterations t = 0, the acquisition number that bounds that
starting feature space λ, the date the algorithm is executed
currentDate, persistence threshold for each iteration
Pt = 0, number of misclassifications
mis ={misi, i = 1, ...M}

Output: Alarms for potential breaches of compliance
while acqDatet ≤ currentDate do
Xtrain(t) = {(xi, di), xi ∈ R(acqDate(t+λ)·f), di ∈
{1, 2, ..m}, i = 1, ...N}
Xtest(t) = {(xi, di), xi ∈ R(acqDate(t+λ)·f), di ∈
{1, 2, ..m}, i = 1, ...M}
h(−→x ) =

∑
αiyi(

−→xi · −→x + b)2 + b (Train SVM)
πd = P (d|Xtest(τ)) =

1
(1+e(A∗f(Xtest(t))+B)

(Calculate SVM Scores)
score = maxπd −max(πd −maxπd)
if t mod 2 = 1 then
Pt = Pt + 1

end if
alarms = {}
for i =1 to Mdo

if not score ≥ threshold then
continue (Bypass unreliable decisions)

end if
if parcel is misclassfiedthen
misi = misi + 1

end if
if misi ≥ Pt and misi > 0 then
alarms = alarms ∪ i

end if
end for
t = t+ 1

end while

are presented in later sections have been averaged for 20 random
splits of different seeds. The percentage of training samples was
ultimately set to 30% after experimenting with larger datasets,
which have provided only a marginal increase in performance

Xtrain(t) = {(xi, di), xi ∈ R(acqDate(t+λ)·f), di ∈ {1, 2, ..m},
i = 1, ...N} (2)

Xtest(t) = {(xi, di), xi ∈ R(acqDate(t+λ)·f), di ∈ {1, 2, ..m},
i = 1, ...M} (3)

where xi is the feature representation of the ith out of N parcels,
belonging to R(acqDate(t+λ)·f). The superscript represents the
dimensionality of the feature space. In each iteration, starting
with t = 0, the feature space comprises the starting feature
space, i.e., the one including all features, f , of all acquisitions
untilacqDateλ, plus all features, f , of acquisitionsacqDateλ+t;

Algorithm 2: Smart Sampling Fine Tuning.

Input: alarms from Algorithm 1, Ytest = {(yi ∈ 1, 2, ..m}
the actual estimations of the classifier,
Dtest = {(di ∈ 1, 2, ..m} the declared labels

Output: Updated alarms for potential breaches of
compliance
updatedAlarms = {}
i = 1
n = size(alarms)
while i ≤ n

ifseason of yi �= season of di then
updatedAlarms = updatedAlarms ∪ i

end if
i = i+ 1

end while

di is the label for each parcel, ranging from 1 to m (=10),
representing the different crop types.

The difference between the two highest per class scores
P (d|Xtest(t)) for each sample is recorded as the overall score
value (4) for the selection of the most confident decisions against
a threshold. These parcels constitute the green labels in the
aforementioned defined traffic light system. We denote byπd the
difference scores, i.e., πd = P (d|Xtest(t)), so the overall score
is given by

score = maxπd −max(πd −maxπd). (4)

The algorithm returns the misclassifications of the last itera-
tion, namely the confident decisions of mismatch between the
prediction and the declaration, which are classified as alarms.
alarms are the samples that have been found misclassified at
least Pt times, in all previous iterations. Pt is varying based on
the time within the year the algorithm is executed

Pt =

A−λ∑

t=1

t mod 2. (5)

Early classifications are characterized by limited reliability,
as the imagery included the training datasets does not cover the
entirety of crops’ growth cycle. For this reason, Algorithm 2 can
be optionally used to further refine the selected alarms.

Algorithm 2 uses the alarms of Algorithm 1 as input and re-
turns an updated set of alarms. In order to increase the reliability
of the smart sampling algorithm, we select alarms for which the
crops are classified to a type of a completely different crop season
class that then one of the type declared.

B. Mapping Layer for Semantic Representation

An important aspect of the framework is the representation of
the available information, e.g., crop classification results, as well
as capturing of domain knowledge needed to further correlated
results. For the former, we use GeoTriples to transform data
into the RDF format, whereas for the latter we developed a
domain-specific ontology. The metadata and analysis results
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Fig. 5. Crop type ontology (knowledge extracted from [8]).

are integrated using geotagged information and analyzed using
semantic queries.

As far as the domain ontology is concerned, it consists of the
following three layers.

I) Data, which describe crop land taxonomy. Fig. 5 shows
the relationship between period, crop family, crop type,
and crop code classes. More specifically, each crop type
(crop type classes) has a unique crop code (crop code
property) and belongs to a specific crop family (family
classes). Crop families are connected with the season that
each crop thrives (period classes). Each crop thrives in
a different season, whereas some crops seem to thrive
in year-round basis. Same crop families may belong
to different seasons when they represent different crop
types.

II) The crop type classification data that contain a linking
of metadata, which describe field information like par-
cel identifier, geometry, slope, aspect and classification
scores for all different crop types.

III) Data collected from OpenStreetMap, containing water
and waterways information in geospatial format, i.e., the
geometries of hydrographic network objects.

Fig. 5 depicts the relationship between crop fields, periods,
families, types, and codes. Crop field is a class that corresponds
to the crop fields that have been identified in a classification run.
Each crop type is a subclass of a specific family and related to a
specific crop code. All periods, families and types are different
classes in the ontology. Crop codes are the main interconnection
point between the crop fields and the characteristics of each
crop type. OWL property restrictions have been identified to
automatically detect the period of the crop code declaration
or classification using the value of the crop code. These rela-
tionships are useful for extending the dataset described in layer
II of the ontology (crop type classification data). For instance,
in the example presented in Listing 2 the crop code that has
been identified by classification is 1082 and the crop field is
associated with the classification period winter. The crop code
that the farmer declared is 1334, whose classification period is

year-round. OWL2 RL is used to make useful inferences and
apply reasoning rules into crop type classification data.

Listing 1: Example OWL2 RL.
:SoftWeat

a owl:Class ;
rdfs:subClassOf :Cereals ;
rdfs:subClassOf [

a owl:Restriction ;
owl:hasValue :winter ;
owl:onProperty :hasClassifica-

tionPeriod ;
] ;

owl:equivalentClass [
a owl:Restriction ;
owl:hasValue ”1082” ;
owl:onProperty vo-

cab:has_CROPTYPE ;
] ;.

In the example presented in Listing 1, the classification period
and hyperclass have been automatically assigned to the crop
field, taking advantage of the dynamics of OWL2 RL. T-Box
reasoning (in the form of OWL 2 RL entailment rules supported
by the GraphDB implementation) is applied to infer that soft
wheat is a cereal, crop type “1082” corresponds to soft wheat
and classification period “winter,” etc. More specifically, the
rdfs:subClassOf has been used to assign the crop family values,
whereas owl:Restrictions have been used to assign the value
“winter” on the property hasClassificationPeriod when the value
of the property vocab:has_CROPTYPE is “1082.”

The transformation of crop type classification data and data
collected from OpenStreetMap into the RDF model has been
supported by GeoTriples. The tool accepts data in shapefile
format and automatically produces an RDF mapping language
(RML) file containing the rules that the RDF file should sat-
isfy. Then, it produces the RDF serialization that satisfies the
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Listing 2: Example of Crop Field Information as Described
in RDF Combining the Crop Type Ontology (I) and the
Results of Crop Type Classification (II).

@prefix : <http://mklab.iti.gr/
ontologies/croptypes/>.
@prefix owl: <http:
//www.w3.org/2002/07/owl#>.
@prefix xsd: <http:
//www.w3.org/2001/XMLSchema#>.
@prefix vocab: <http://example.com/
ontology#>.
@prefix rdfs: <http:
//www.w3.org/2000/01/rdf-schema#>.
@prefix fa: <http://example.com/
farmer_ontology#>.
@prefix map: <http://example.com/#>.
@prefix geo: <http:
//www.opengis.net/ont/geosparql#>.

<http://example.com/parcels_
classification_wscores_v3/Geometry/14356>

a geo:Geometry ;
geo:asWKT

”<http://www.opengis.
net/def/crs/EPSG/0/4326>

MULTIPOLYGON (((-
1.6927107344688275 42.649935712372795,

..., -
1.692387508984902 42.65003808978244,

-
1.692421288894873 42.65001269177615,

-
1.6925231315390605 42.649985701208124,

-
1.6927107344688275 42.649935712372795))

)”^^geo:wktLiteral.

<http://example.com/parcels_
classification_wscores_v3/id/14356>

a vo-
cab:parcels_classification_wscores_v3 ;

fa:hasOwner fa:farmid5 ;
vo-

cab:has_ASPECT 5.33798E1 ;
vo-

cab:has_CROPTYPE ”1082” ;
vo-

cab:has_CROP_CODE_ 1334 ;
vo-

cab:has_ID 773280 ;
vo-

cab:has_SLOPE 5.0291E0 ;
vo-

cab:has_scores_t_1 7.511E-3 ;
vo-

cab:has_scores_t_2 4.33932E-1 ;

vo-
cab:has_scores_t_3 5.4892E-2 ;

vo-
cab:has_scores_t_4 1.41E-2 ;

vo-
cab:has_scores_t_5 4.9191E-2 ;

vo-
cab:has_scores_t_6 3.6199E-2 ;

vo-
cab:has_scores_t_7 2.17041E-1 ;

vo-
cab:has_scores_t_8 2.802E-2 ;

vo-
cab:has_scores_t_9 3.8657E-2 ;

vo-
cab:has_scores_typ 1.20457E-1 ;

:hasClassificationPe-
riod :winter ;

:hasDeclarationPe-
riod :year-round ;

geo:hasGeometry
<http://example.com/parcels_

classification_wscores_v3/Geometry/
14356>.

RML rules. The well-known text representation of coordinate
reference systems standard has been reused to capture location-
related information.

For the classification results, GeoTriples tool is used multiple
times to convert the results of each run into RDF format. Each
file has a unique name and because of that, new instances are
created in the knowledge base. In the end of this procedure, the
Knowledge Base contains many different instances of the same
parcel having in common the parcel identifier. In such way, we
keep crop type classification data of past runs in the knowledge
base, which can be aligned with new classification data.

C. Data Ingestion and Querying Layer for Storage and
Semantic Enrichment

Semantic enrichment aims at interconnecting and further
enriching the contents of the generated knowledge graphs, ap-
plying semantic rules. The focus is given on improving the smart
sampling methodology, executing a set of queries (rules) to
improve the selection process of OTSCs. In the following, we de-
scribe the specifics of the approach, presenting the defined rules.

With every new image acquisition, a new crop classification is
performed and the classification results are dynamically populat-
ing the knowledge base. Procedural code is used to run semantic
queries in sequence and pass the needed values from past queries
(parcel, value1, value2) into next ones (Listings 3–8). The reason
for this decision is that SPARQL lacks in terms of arguments
saving or passing into next queries and these calculations are
better expressed using many SPARQL queries, improving the
execution time. The queries that are presented in this section
are running for each parcel instance. The parcel instances are

http://www.w3.org/2002/07/owl
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2000/01/rdf-
http://www.opengis.net/ont/geosparql
http://www.opengis.net/def/crs/EPSG/0/4326
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retrieved by the query depicted in Listing 3. A parcel instance
(described as< parcel >) may be, for example, http://example.
com/parcels_classification_wscores_v8/id/1109. The first step
(Listing 4) is to retrieve the two highest classification scores
among the ten different crop types, as these are defined in the
ontology (see Fig. 5). This is done in order to compute the score
value in Algorithm 1. This process takes place for each of the
different classification instances in the knowledge base. In this
query, typical SPARQL functions are used, such as BIND, to
group different type results under the same variable, and ORDER
BY to arrange the results in descending order.

Listing 3: Semantic Query to Retrieve All Parcel Instances
for the Latest Classification Run.

PREFIX vo-
cab: <http://example.com/ontology#>
SELECT * WHERE {

?parcel a vo-
cab:parcels_classification_wscores_v8.
}

The difference between the two largest values (Listing 5)
is calculated using the results of the previous query (value1,
value2). If the difference is bigger than a specific threshold, the
query in Listing 6 is used to mark the parcel as “green,” i.e.,
parcels with a high confidence that the prediction is correct.

In addition, each time a green parcel is identified, the query in
Listing 7 marks the parcels that have been incorrectly classified.
In the end, the query in Listing 8 marks the parcels that the
season of the declaration does not agree with the season of
the classification, based on the domain ontology (see Fig. 5).
SPARQL INSERT function is used to enrich the parcels with
“misclassification,” “green parcel,” and “same season” infor-
mation. All in all, semantic enrichment tries to enrich smart
sampling, taking into account the provided classification results
and domain knowledge about crop types, so as to detect parcels
that have a high probability to have a false crop type declaration
by the farmers.

D. Query Processing Layer for Interlinking Spatial Data

By capturing data in the RDF model space, we enable spatial
relationships-based querying and easy integration with other
data sources, such as linked data. We demonstrate the query
answering capabilities of the framework, as well as the ability to
integrate external datasets, by defining queries to detect possible
noncompliance of the farmers according to the specified rules.

1) Greening 1 Requirement: The query in Listing 9 calcu-
lates the number of different crop types that a farmer cultivates
and the total area of their farm. More specifically, the query
detects a breach of compliance when the farmers own a total
farm area between 10 and 30 ha and cultivate at least two
different crop types, but the dominant one is more than 75%
of the total farm area. The crop type as it is calculated in
the SVM classification is expressed in the mapping via the
vocab:has_CROPTYPE property. In the RDF space, we use
count(distinct ?ctype) as ?count to detect the number of the

Listing 4: Semantic Query to Retrieve the Two Highest
Classification Score Values Per Parcel.

PREFIX vo-
cab: <http://example.com/ontology#>
select ?max_types where {

<parcel> vo-
cab:has_scores_t_1 ?type_1.

<parcel> vo-
cab:has_scores_t_2 ?type_2.

<parcel> vo-
cab:has_scores_t_3 ?type_3.

<parcel> vo-
cab:has_scores_t_4 ?type_4.

<parcel> vo-
cab:has_scores_t_5 ?type_5.

<parcel> vo-
cab:has_scores_t_6 ?type_6.

<parcel> vo-
cab:has_scores_t_7 ?type_7.

<parcel> vo-
cab:has_scores_t_8 ?type_8.

<parcel> vo-
cab:has_scores_t_9 ?type_9.

<parcel> vo-
cab:has_scores_typ ?type_10.

{BIND(?type_1 as ?max_types)}
union
{BIND(?type_2 as ?max_types)}
union
{BIND(?type_3 as ?max_types)}
union
{BIND(?type_4 as ?max_types)}
union
{BIND(?type_5 as ?max_types)}
union
{BIND(?type_6 as ?max_types)}
union
{BIND(?type_7 as ?max_types)}
union
{BIND(?type_8 as ?max_types)}
union
{BIND(?type_9 as ?max_types)}
union
{BIND(?type_10 as ?max_types)}

}
ORDER BY DESC (?max_types)
LIMIT 2

different crop type values that are detected for each farmer
(GROUP BY ?owner). Additional queries are applied to also
check, for instance, the farmers that have less than three different
crop types cultivated in a total farm area of more than 30
ha if: {sum > 300000} ∧ {count < 3} ∧ {maxcroptype[1] +
maxcroptype[2] > 0.95 ∗ sum} as it has been described
in Section I. The query (Listing 10) further supports the Greening

http://example.com/parcels_classification_wscores_v8/id/1109
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Listing 5: Semantic Query to Detect the Parcels That the
Difference From the Two Highest Score Values Is Above
Threshold.

PREFIX xsd: <http:
//www.w3.org/2001/XMLSchema#>
SELECT * where {

BIND (xsd:double(value1)-
xsd:double(value2)

AS ?result)
FIL-

TER (?result>”0.5”^^xsd:double)
}

Listing 6: Semantic Query to Mark Green Parcels That
Satisfy the Conditions of the Two Previous Queries.

PREFIX vo-
cab: <http://example.com/ontology#>
PREFIX xsd: <http:
//www.w3.org/2001/XMLSchema#>
PREFIX map: <http://example.com/#>
INSERT {

<parcel> map:risk ”green parcel”.
} WHERE {

<parcel> ?p ?o.
}

Listing 7: Semantic Query to Mark Parcels as Misclassified
When Parcels Have Been Marked as Green and Declaration
Does Not Agree With Classification.

PREFIX vo-
cab: <http://example.com/ontology#>
PREFIX xsd: <http:
//www.w3.org/2001/XMLSchema#>
PREFIX map: <http://example.com/#>
INSERT {

<parcel> map:misclassification ”mis-
classification”.
} WHERE {

<parcel> map:risk ”green parcel”.
<parcel> vo-

cab:has_CROP_CODE_ ?decl.
<parcel> vo-

cab:has_CROPTYPE ?class.
FILTER(?decl!=xsd:integer(?class))

}

1 requirement by detecting the farmers that grow less than three
different crop types in a total area of more than 30 ha and farmers
that grow less than two different crop types in a total area of
10–30 ha.

The area of the fields is calculated using GeoSPARQL ext:area
function, taking advantage of the polygon points coordinates.
The number of different crop types is calculated using the
result of the SVM classification prediction of crop type on the

Listing 8: Marking Parcels Where Declaration and Classi-
fication Belong to Different Seasons.

PREFIX vo-
cab: <http://example.com/ontology#>
PREFIX xsd: <http:
//www.w3.org/2001/XMLSchema#>
PREFIX map: <http://example.com/#>
PREFIX owl: <http:
//www.w3.org/2002/07/owl#>
PREFIX rdfs: <http:
//www.w3.org/2000/01/rdf-schema#>
PREFIX : <http://mklab.iti.gr/
ontologies/croptypes/>
INSERT {

<parcel> map:same_season ”false”.
} WHERE {

<parcel> vocab:has_ID ?id.
<parcel> vo-

cab:has_CROP_CODE_ ?decl.
<parcel> vo-

cab:has_CROPTYPE ?class.

?type a owl:Class.
?type rdfs:subClassOf ?object1.
?object1 owl:hasValue ?code.
?type rdfs:subClassOf ?object2.
?object2 owl:hasValue ?period1.
?period1 a :Period.
FIL-

TER regex (str(?code),str(?decl))

?type2 a owl:Class.
?type2 rdfs:subClassOf ?object3.
?object3 owl:hasValue ?code2.
?type2 rdfs:subClassOf ?object4.
?object4 owl:hasValue ?period2.
?period2 a :Period.
FILTER regex (str(?code2),?class)
FILTER (?period1!=?period2)

}

field, whereas the sum of the fields area using the results of
GeoSPARQL area calculations. All operations are implemented
using SPARQL functions such as count, distinct and sum.

2) SMR 1 Requirement: Another important information for
the end users is the distance of the parcels from the hydrographic
network objects. This is in accordance with the requirements of
SMR1, as described in Section I. In order to effectively identify
the parcels susceptible to contribute nitrate-rich soil to nearby
surface water, a filtering mechanism takes place, accounting for
the slope and aspect of the parcel. Results are important for both
farmers and paying agencies that want to check the compliance
according to SMR 1 requirement.

Listing 11 presents the query that lists the parcel instances
where the distance from surface waters is lower than 10 m,

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2002/07/owl
http://www.w3.org/2000/01/rdf-


ROUSI et al.: SEMANTICALLY ENRICHED CROP TYPE CLASSIFICATION AND LINKED EO DATA TO SUPPORT THE CAP MONITORING 541

Listing 9: Semantic Query to Extract Possible Noncompli-
ance in the Greening 1 Requirement for the Farmers Owning
a Total Farm Area Between 10 and 30 Ha and Cultivating at
Least Two Different Crop Types, Where the Dominant one
Is More Than 75% of the Total Farm Area.

PREFIX geo: <http:
//www.opengis.net/ont/geosparql#>
PREFIX ext: <http:
//rdf.useekm.com/ext#>
PREFIX fa: <http://example.com/farmer_
ontology#>
PREFIX vo-
cab: <http://example.com/ontology#>
PREFIX xsd: <http:
//www.w3.org/2001/XMLSchema#>
select * where {
{

select ?owner (sum(?area) as ?max)
?sum where {

{ se-
lect ?owner (count(distinct ?ctype) as
?count)

(sum(?area) as ?sum) where {
?field fa:hasOwner

?owner.
?field vo-

cab:has_CROPTYPE ?ctype.
?field

geo:hasGeometry ?geo.
?geo geo:asWKT ?polygon.
BIND(ext:area(?polygon)

as ?area).
?owner a fa:Farmer.

}
GROUP BY ?owner
HAV-

ING (?sum > 100000 && ?sum <= 300000
&& ?count>=2)

}
?field fa:hasOwner ?owner.
?field vocab:has_CROPTYPE ?ctype.
?field geo:hasGeometry ?geo.
?geo geo:asWKT ?polygon.
BIND(ext:area(?polygon) as ?area).
?owner a fa:Farmer.
}
GROUP BY ?owner ?ctype ?sum
ORDER BY DESC (?max)

}
FILTER (?max>0.75*?sum)

}

Listing 10: Semantic Query to Extract Possible Noncom-
pliance in the Greening 1 Requirement for the Farmers That
Grow Less Than Three Different Crop Types in a Total Area
of More Than 30 Ha and Farmers That Grow Less Than Two
Different Crop Types in a Total Area of 10-30 Ha.

PREFIX geo: <http:
//www.opengis.net/ont/geosparql#>
PREFIX ext: <http:
//rdf.useekm.com/ext#>
PREFIX fa: <http://example.com/farmer_
ontology#>
PREFIX vo-
cab: <http://example.com/ontology#>
PREFIX xsd: <http:
//www.w3.org/2001/XMLSchema#>
select ?owner (count(distinct ?ctype)
as ?count)

(sum(?area) as ?sum) where {
?field fa:hasOwner ?owner.
?field vocab:has_CROPTYPE ?ctype.
?field geo:hasGeometry ?geo.
?geo geo:asWKT ?polygon.
BIND(ext:area(?polygon) as ?area).
?owner a fa:Farmer.

}
GROUP BY ?owner
HAVING ((?sum > 300000 && ?count<3) ||

(?sum > 100000 && ?sum <= 300000
&& ?count<2))

which is the buffer for organic manure application. Since both
parcel (LPIS) and hydrographic network data23 (data from Open-
StreetMap) contain geospatial information (e.g., multipolygon,
polygon, etc.), the distance is calculated using geof:distance
function of GeoSPARQL. The function accepts two geometries
and calculates the shortest distance between any two points
of the specified geometries. A filtering mechanism selects the
fields according to their distance from the hydrographic network
objects, slope and aspect as described in Section IV-C3. The
GeoSPARQL function ext:closestPoint is used to compute the
closest points of each geometry compared to the other geometry.
A string replacement pattern is used in order to retrieve the
coordinates of the two points, which are utilized to compute
the angle of the two points in degrees. GraphDB math functions
are used to achieve such computations.

3) Smart Sampling: The query in Listing 13 supports the
retrieval of the results of Section III-C. When querying for
the parcels to be inspected through OTSC, at any given time
in the year, all past classification instances until that point
are used. More specifically, the query takes advantage of all
past classification decisions for each parcel to ensure that the
prediction is indeed a misclassification. The threshold, above
which a parcel is considered to be persistently misclassified, is

23[Online]. Available: https://download.geofabrik.de/europe/spain.html
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Listing 11: Semantic Query to Detect Susceptible Parcels
According to the SMR 1 Requirement Taking Into Account
the Slope, the Aspect, the Angle, and the Distance of the
Parcel From Hydrographic Network Objects.

PREFIX geof: <http://www.opengis.net/
def/function/geosparql/>
PREFIX geo: <http:
//www.opengis.net/ont/geosparql#>
PREFIX uom: <http:
//www.opengis.net/def/uom/OGC/1.0/>
PREFIX map: <http://example.com/#>
PREFIX ogc: <http:
//www.opengis.net/ont/geosparql#>
PREFIX ofn: <http:
//www.ontotext.com/sparql/functions/>
PREFIX xsd: <http:
//www.w3.org/2001/XMLSchema#>
PREFIX ext: <http:
//rdf.useekm.com/ext#>
PREFIX vo-
cab: <http://example.com/ontology#>
select ?parcel ?distance where {
BIND(<parcel> AS ?parcel).
?parcel a vo-

cab:parcels_classification_wscores_v8.
?a vocab:has_ID ?id.
?parcel vocab:has_SLOPE ?slope.
FILTER(?slope>12)
?parcel ogc:hasGeometry ?s.

?s geo:asWKT ?o.
?fGeom geo:asWKT ?fWKT.
?fGeom map:containsWater ?b.
FILTER (?fGeom != ?s).
FILTER NOT EXISTS {
?s map:containsWater ?wa.

}
BIND(geof:distance(?o, ?fWKT) as

?distance).

FILTER(?distance<=0.1)
BIND (ext:closestPoint(?o, ?fWKT) as

?clpoint1)
BIND (ext:closestPoint(?fWKT, ?o) as

?clpoint2)

BIND( re-
place( str(?clpoint1), ”^[^0-9\\.-
]*([-]?[0-9\\.]+)

.*$”, ”$1” ) as ?long )
BIND( replace( str(?clpoint1), ”^.*
([-]?[0-9\\.]+)[^0-

9\\.]*$”, ”$1” ) AS ?lat )

BIND( re-
place( str(?clpoint2), ”^[^0-9\\.-

]*([-]?[0-9\\.]+)
.*$”, ”$1” ) AS ?long2 )
BIND( replace( str(?clpoint2), ”^.*
([-]?[0-9\\.]+)[^0-

9\\.]*$”, ”$1” ) AS ?lat2 )
BIND (xsd:double(?lat)-

xsd:double(?lat2) AS ?x)
BIND (xsd:double(?long)-

xsd:double(?long2) AS ?y)

BIND (ofn:atan2(?x, ?y) AS ?atan2)
?parcel vocab:has_ASPECT ?aspect.
BIND(IF(ofn:toDegrees(?atan2)>

”0”^^xsd:double,
ofn:toDegrees

(?atan2),ofn:toDegrees(?atan2)+
”360”^^xsd:double) AS ?toDegrees )

BIND(IF(?aspect-45>0, ?aspect-
45, ?aspect+360-45) AS ?min)
BIND(IF(?aspect+45>360, ?aspect-

360+45, ?aspect+45) AS ?max)

FILTER(?min<?toDegrees &&
?toDegrees<?max)
}
LIMIT 1

defined in Listing 12 and is dynamically updated given the differ-
ent parcel classes, that correspond to different times of the year,
which exist in the triple store. The different classification runs are
saved as instances of vocab:parcels_classification_wscores_v1
for the first run, vocab:parcels_classification_wscores_v2 for the
second, etc. In such a way, using the FILTER function, we select
the number of different runs that currently exist in the triple
store by detecting the number of different classes that contain
the word “parcels. The query in Listing 13 retrieves all the
parcels that have been misclassified in past classifications more
times than the defined threshold. Then the associated season for
the crop type prediction of the latest available classification is
compared with the associated season type of the declarations
using the results of Listing 8. If there is a disagreement, the
parcel is selected as an alert and candidate for OTSC. This query
further narrows the smart sampling filter and is recommended
for query executions early in the year (months before July), when
the classification results are less trustworthy. More information
about this functionality is described in Algorithm 2.

IV. EXPERIMENTS AND RESULTS

A. Hyperparameter Optimization and Performance of the
SVM Classifier

The crop classification model was built using the SVC
function from the scikit-learn library24 of Python. The
hyperparameters were optimized using grid search over a range
of values for each parameter, using fivefold cross-validation.

24[Online]. Available: https://scikit-learn.org/
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Listing 12: Semantic Query to Calculate the Smart Sampling
Threshold According to the Number of Different Parcel
Classes, That Correspondto Different Times of the Year,
Which Exist in the Triplestore.

PREFIX xsd: <http:
//www.w3.org/2001/XMLSchema#>
PREFIX ofn: <http:
//www.ontotext.com/sparql/functions/>

SELECT ?final_threshold WHERE {
{

SELECT (count(distinct ?par-
cel_class) as ?count)

WHERE {
?parcel_instance a ?par-

cel_class.
FILTER con-

tains(str(?parcel_class), ”parcels”)
}

}
BIND(IF(ofn:floorMod(?count,2)=

”1”^^xsd:int,
((?count+”1”^^xsd:int)/2)-

”1”^^xsd:int,
?count/2) AS ?threshold )

BIND(IF(?count=”1”^^xsd:double,
”0”^^xsd:int,

?threshold) AS ?threshold )
BIND(IF(?threshold>”5”^^xsd:double,

”5”^^xsd:int,
?threshold) AS ?fi-

nal_threshold )
}

The hyperparameter combination that was selected was the
one that produced the highest overall accuracy. For the penalty
parameter of the error term, C, we tested values within the range
[2−2, . . . , 29]. For the kernel coefficient, namely the gamma
parameter, the optimal value was examined within the range
[10−4, . . . , 101], whereas for the independent term of the kernel
function, coef0, we searched the range [10−3, . . . , 102]. The best
combination consisted of C = 4, γ = 0.001 and coef0 = 10.

Finally, the SVC function includes a parameter called
class_weight, which was set to “balanced.” Its impact is that
it sets the parameter C of each class i to class_weight[i] ∗ C,
where class_weight[i] is inversely proportional to class fre-
quencies of the input data. This way the negative effects of
an unbalanced dataset, such as the one used for this study, are
ameliorated.

We evaluated our core classification model [8] for three dif-
ferent agricultural areas, in Greece, Lithuania and Spain, for
which we had independent in situ validation data. These areas
present various challenges. In the case of Greece, the agricultural
landscape is significantly fragmented, resulting in small and
narrow parcels, occupied by mixed pixels. In Lithuania, there

Listing 13: Semantic Query to Check Persistent Misclas-
sifications Using the Smart Sampling Threshold and the
Number of Past Classification Instances That Have Been
Misclassified Provided That in the Latest Classification Run
the Period of the Farmer Declaration Does Not Agree With
the Period of Classification.

PREFIX map: <http://example.com/#>
PREFIX vo-
cab: <http://example.com/ontology#>
PREFIX xsd: <http:
//www.w3.org/2001/XMLSchema#>
SELECT ?id (count(distinct ?par-
cel) as ?count) WHERE {

?parcel vocab:has_ID ?id.
?parcel map:misclassification ?o.

?latest_parcel a vo-
cab:parcels_classification_wscores_v8.

?latest_parcel vocab:has_ID ?id.
?lat-

est_parcel map:same_season ”false”.
}
GROUP BY ?id
HAVING (?count>final_threshold)
ORDER BY desc (?count)

is extended cloud coverage throughout most of the season,
resulting in sparse time-series of cloud-free Sentinel-2 imagery.
In total, 10, 11, and 14 crop classes have been classified in the
Spanish, Greek and Lithuanian cases, respectively.

Validated results were consolidated based on OTSCs that
were performed by the respective paying agencies of the three
AOIs, during the 2018 subsidy applications. In the case of the
Spanish AOI, out of the 107 randomly selected parcels for
inspection, 105 were classified correctly. In Greece, inspectors
visited only parcels classified with high confidence, namely of
high posterior probability for the classification decision, to crop
types other than the one declared. These instances are considered
as potential breaches of compliance. It was shown that 76 out of
85 inspected parcels were indeed wrongly declared and correctly
classified by our model. Finally, in Lithuania, the validated
dataset acquired through the inspections resulted in an overall
accuracy of 76.2% in late June and 80% in late August out of
3319 parcels inspected. The results revealed the dependencies
of the crop classification model performance, on the percentage
of truthful declarations, the cloud coverage and the parcel shape
and size.

In the Spanish AOI for which we focus in this work all these
dependencies were optimal, i.e., more than 97% of truthful
declarations, limited cloud coverage, and an average parcel
size of 2 ha. Hence more than 90% classification accuracy was
achieved.

Our model evaluation analysis also revealed that classification
decisions for larger parcels and parcels with straighter borders

http://www.w3.org/2001/XMLSchema
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TABLE I
ACCURACY OF CROP TYPE CLASSIFICATION FOR DIFFERENT PARCEL

AREA RANGES

TABLE II
RELATIONSHIP BETWEEN SVM SCORES AND OVERALL ACCURACY

tend to have higher accuracy than smaller parcels or parcels with
more irregularly shaped boundaries. The parcel area is important
since accuracy depends on the number of image pixels that
fall within the parcel boundaries. Sentinel-2’s 10 m pixel size
equates to 50 image pixels in 0.5 ha of land. Our analysis shows
that having 50 pixels of information provides accurate results,
whereas for smaller parcels the decision is both less confident,
namely of lower SVM score, and less accurate (see Tables I and
II).

In Table II is observed that there is a strong correlation be-
tween the SVM score and accuracy. Indeed, the subset of parcels
with an SVM score larger than 0.85, achieves an overall accuracy
of more than 97%. On the other hand, the subset of parcels with
SVM scores less than 0.7, achieves an overall accuracy of 66%.

B. Scenarios for the Control of the CAP

1) Scenario 1. Smart Sampling of OTSCs: The paying
agency inspectors search for parcels of farmers that have po-
tentially falsely declared the cultivated crop type. The parcels
prone to noncompliance are dynamically provided, starting from
late June until the end of the cultivation period, to allow the
inspectors to better target their inspections.

Farmer profile: Dan is a farmer. He has into his possession a
field containing barley, whereas he has declared that the field’s
crop type is maize.

Analysis results: His field has been selected for OTSC because
the crop classification has classified the cultivated crop type as
barley, with high confidence. Even though the classification is
not particularly trustworthy, being performed in early June, the
parcel is marked as high risk by the smart sampling algorithm, as
the prediction belongs to a different season class, namely winter.

Decision: The paying agency inspector needs to check the
field, as there is a strong possibility that the farmer has wrongly
declared the cultivated crop type.

2) Scenario 2. Greening 1: Crop Diversification: As pre-
viously stated, paying agencies need an automated system to
detect noncomplying farmers with respect to the Greening 1
requirement.

Farmer profile: Bob is a farmer. He has three fields in his
possession covering an area of 27.4066 ha. The total area of

TABLE III
PA AND UA FOR THE CLASSIFICATION OF TEN CROPS TYPES USING THE FULL

SEASON TIME-SERIES OF SENTINEL IMAGERY

the fields that contain soft wheat is 27.1058 ha, whereas for the
crops that contain rapeseed the total area is 0.3008 ha.

Analysis results: According to our analysis there seem to be
two fields with soft wheat and one with rapeseed. The farmer
does not comply with the rule because even though he cultivates
two different crops, the total area of the soft wheat parcels
exceeds the 75% of the total area of the fields that the farmer
has into his possession.

Decision: The paying agency inspectors need to check these
fields because there is a strong possibility that the farmer is not
complying with the Greening 1 requirement.

3) Scenario 3. Detecting Parcels Prone to Noncompliance to
the SMR-1 Requirement: The paying agency inspectors need to
establish the compliance to the SMR 1 defined buffer zones. In
order to do that the distance from the parcels to nearby surface
waters is calculated. The slope and aspect of the parcels are also
taken into account in order to establish if there is an actual risk
for runoff.

Farmer profile: Lucy is a farmer. She has into her possession
a field whose distance from surface waters is almost 3 m. The
slope of the field is 15◦, therefore of high runoff risk, and the
aspect 251◦, namely of western orientation. The aspect of the
proximity line is 267◦.

Analysis results: Since the parcel appears to be very close
to surface waters, within the SMR-1 buffer, and the difference
of the parcel and proximity line aspects is within the range of
potential runoff, the analysis marks it as high risk.

Decision: The paying agency inspectors need to monitor this
parcel because there is a strong risk for nitrate-rich runoff to
surface waters.

C. Implementation of the CAP Scenarios

1) Implementation of Scenario 1. Smart Sampling: In this
scenario, the potential of better targeted, smart OTSCs is ex-
plored, exploiting accurate crop classification results, early in the
year. This is achieved through the proposed semantic enrichment
of classification results and the pertinent smart sampling query.
The idea is to provide alarms, starting from early summer,
when declarations are usually received, and dynamically update
those using progressively larger feature spaces that include new
Sentinel-2 acquisitions.

Table III summarizes the producer’s accuracy (PA) and user’s
accuracy (UA) for the predictions of all crop classes. PA is
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the percentage of correctly classified parcels against the total
number of parcels of a given class. On the other hand, UA is
the percentage of correctly classified parcels for a given class
against the total number of parcels classified to that class. The
metrics in Table III refer to the classification results produced
using the entirety of acquisitions, 24/01/2018–21/10/2018, and
have been averaged over 20 iterations of random training dataset
splits. Additionally, the PA and UA results address the lowest
level of crop taxonomy, as shown in Fig. 5.

Table III summarizes excellent classification performance for
most of the crop types. Specifically, it is observed that the
classifier achieves PA and UA values of more than 80% for all
crop classes while reaching values as high as 95%. It is also worth
noting the excellent performance for the classes oats, soft wheat,
and barley. These crop types belong to both the cereals and
winter superclasses, having similar spectral and phenological
characteristics. Nonetheless, the classifier appears to discrimi-
nate among them easily. Finally, the weakest performances are
observed for the classes of shrub grass, vineyards, and cherry
trees. These are all year-long crop types, with no significant
phenological characteristics to assist the classifier. Additionally,
the shrub grass class, which is an ambiguous crop description,
is characterized by diverse spectral characteristics from parcel
to parcel.

The metrics shown in Table III theoretically allow for the ef-
fective sampling of OTSCs. However, the results presented have
been produced using images until the end of October, when the
notion of smart sampling becomes obsolete, as the inspections
would have preceded. For this reason, the crop classification
is performed at multiple instances throughout the year, starting
as early as May 4. As it would be expected, the classification
results of reduced feature spaces, when executed early in the
year, would achieve suboptimal results of low reliability. In this
regard, per class scores are computed for each sample, using
class membership probability estimates [49]. Therefore each
sample is associated with ten different membership probabili-
ties, as many as the crop classes involved. In order to select the
most reliable decisions, the difference between the two highest
scores for each sample is recorded (score in Algorithm 1). This is
achieved via the semantic enrichment mechanism, as described
in Figs. 4 and 5. Fig. 6 illustrates those differences in the form of
a histogram, using 100 bins, for the entire dataset. The algorithm
classifies most of the data with high reliability. The ones that are
classified with low score are most likely crops that belong to the
same family and some of them with similar spectral signatures
are expected to be misclassified at some level.

The SVM algorithm is trained and tested for progressively
larger feature spaces, whose classification results populate the
knowledge base. The evolution of accuracy is shown inFig. 7, us-
ing the F1-score metric [50]. F1-score, defined as 2× ( PA×UA

PA+UA ),
providing an overall accuracy metric that accounts for both PA
and UA. The first point on the x-axis of Fig. 7 refers to the
F1-score for the classification that uses images until the 4th of
May. For each next run onward, features keep on populating the
feature space, with every new acquisition. It is observed that
the larger feature spaces result in better classification results.
Specifically, feature spaces that include the July 23rd acquisi-
tion, appear to approach optimal F1-scores for most crop classes,

Fig. 6. Histogram of differences between the two highest scores of each
sample decision. The closer is the difference to 1.0, the lower the classification
uncertainty.

Fig. 7. Evolution of F1-score for crop type classification with progressively
larger feature spaces.

Fig. 8. Evolution of the number of constant persistent misclassifications for a
varying threshold of the green category.

creating a plateau on the evolution curve. The majority of these
crops are harvested from late June to early July, and thus our
model can separate the classes more comfortably, when features
that cover this period are added to the feature space.

Accurate crop classification enables the monitoring of the
CAP rules and allows for efficient decision-making on the farm-
ers’ compliance. Toward this direction, the inspected parcels
were assorted based on the previously described traffic light
system. Two highest prediction probabilities or SVM scores (see
Fig. 8) are taken into consideration to pinpoint the parcels of the
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Fig. 9. Evolution of the number of misclassifications under constant (blue
line) and varying thresholds (orange line). The varying threshold increases by
one every two image acquisitions. The thresholds define which parcels are the
misclassifications for each classification instance looking at the number of times
they were found misclassified in previous runs.

highest probability of noncompliance, for which the algorithm
is assumed to predict with high reliability.

At first, for each run with a different feature space in the
knowledge base, the set of green misclassifications is recorded,
namely the reliable instances for which the prediction does not
match the declaration. Then, the set of persistent green mis-
classifications is computed using the semantic query in Fig. 13.
Persistence refers to the number of times a sample has been
found misclassified in the different classification iterations. In
this study, there are two different thresholds of persistence. First,
if a sample has been misclassified more than five times, in all
different runs, from May to late October, then it is considered
to be a validated alert. This is called constant persistent mis-
classification, as shown in Fig. 9, and is assumed to function as
the validation dataset, against which performance metrics are
computed.

Fig. 8 presents the number of constant persistent misclas-
sifications relative to the increasing number of features, for
different threshold values of what is considered a green parcel.
The latter translates to varying values of the difference between
the two highest scores for each sample. As expected, lower
thresholds lead to higher number of misclassifications. It can also
be observed that for each threshold that was tested, the pattern
of the plot line is the same. The number of misclassifications is
constant during May, then it presents an increase at the start of
June, which begins to stabilize toward the start of August. It can
be concluded that it is difficult for the algorithm to identify truly
mislabeled data, really early in the year, but it seems to perform
better with an increasing number of features. This improvement,
which starts around June, is justified because most of the crops
that were examined, are harvested at June, after which our model
can classify the data with higher confidence.

However, in order to calculate the persistence of a parcel as
mentioned above, a full Sentinel-2 series, for any given year
of inspection, is required. Therefore, the constant persistent
misclassifications are merely used as validation dataset of truly
wrongly declared parcels, and are not part of the smart sampling
algorithm. Thus, in order to be able to identify wrongly declared
samples, in real scenarios, the total number of times that a green

TABLE IV
LIST OF FARMERS THAT SEEM TO BE NONCOMPLIANT TO THE CROP

DIVERSIFICATION REQUIREMENT AND INFORMATION ABOUT

THEIR CROP FIELDS

parcel has been misclassified, until the current run, is calculated.
Then, we set a different threshold for each iteration (Pt in
Algorithm 1), which is calculated using the semantic query in
Fig. 12. This is referred to as threshold of varying persistent
misclassifications.

Fig. 9 displays the number of misclassified parcels using both
constant and varying persistence thresholds and a constant green
threshold equal to 0.5. The threshold value was defined based on
the a priori knowledge of the percentage of false declarations,
annually. INTIA has stated that usually no more than 3% of the
agricultural parcels in Navarra are falsely declared. Additionally,
INTIA, as acting paying agency for the Navarra region, is
obligated to conduct randomly selected inspections for at least
1% of applications. Therefore, using 0.5 as the threshold for
the green category, provides 267 constant persistent misclassi-
fications, which amount to 3.1% of the dataset; satisfying both
the expected false declarations percentage and the minimum
number of mandated OTSCs. Inspecting Fig. 9, each point, of
both curves, is associated with the persistence number that is
used to count the misclassifications.

2) Implementation of Scenario 2. Crop Diversification: Ta-
ble IV contains a list of farmers that seem to not comply with
the rule described in Figs. 9 and 10. The first column contains
the farmer identifier that corresponds to a specific farmer, the
second contains the count of different crop types that the specific
farmer cultivates in the fields that he has into his possession and
the third the sum area of the parcels that the farmer has into his
possession. The fourth column contains the area of the main crop
for the cases that the farmer cultivates more than two crop types
in an area of 10–30 ha but the main crop exceeds the 75% of the
total area. It also contains the sum of the two main crops for the
cases that the farmer cultivates more than three crop types in an
area of more than 30 ha but the sum of two main crops exceeds
the 95% of total area. The last column contains the crop types
that the farmer is cultivating in their farm.

Fig. 10 presents the percentage of farmers that seem to be
complying and noncomplying to the Greening 1 requirement.
The number of farmers that there is no need to be checked is
2610 (82%), whereas the number of potentially noncomplying
farmers is 703 (18%). More specifically, 506 (13%) farmers own
10–30 ha of arable farm from which 54 (1%) grow less than two
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Fig. 10. Farmers distribution under Greening 1 requirement according to their
compliance and total arable farm area that have under their possession.

different crop types and 452 (14%) grow two or more different
crop types but the main crop covers more than 75% of the land.
On the other hand, 189 (5%) farmers own more than 30 ha of
arable farm from which 68 (2%) grow less than three different
crop types and 121 (3%) grow three or more different crop types
but the two main crops cover more than 95% of the land. To
perform these calculations we used the data of the classification
run from early July (jul08).

3) Implementation of Scenario 3. SMR 1: In the SMR 1
requirement, we select the parcels that their distances from
surface are under 10 m based on the organic manure spreading
buffer. From these only parcels with slope higher than 12◦ are
recorded, according to the SMR1 specifications. Additionally,
in order to select only parcels with an actual risk for runoff, the
aspect of the proximity line (αdegrees), namely the orientation
of the line connecting the parcel to the water object, needs to
fulfill the relationship

aspect− 45 < αdegrees < aspect+ 45 (6)

where the aspect is given per parcel and the proximity line aspect
is calculated using the following formula:

αradians = atan2(x1 − x2, y1 − y2) (7)

αdegrees = αradians × 180◦/π. (8)

Fig. 11 shows the visual representation of the parcel that was
mentioned in Section IV-B3. According to the aforementioned
rules, this parcel is of high risk.

Fig. 12 presents the percentage of parcels that seem to be of
low and high risk based on the SMR 1 requirement. The number
of low-risk parcels that there is no need to be checked is 14407
(96%), whereas the number of high-risk parcels is 630 (4%).

D. Smart Sampling Accuracy

Table V presents the PA and UA of the misclassified green
parcels, for varying and constant (5) persistence, with the latter
functioning as the ground truth. To calculate the PA, the number
of correctly misclassified green parcels of varying persistence
(Pt) is divided by the total number of misclassified parcels in

Fig. 11. Example of parcel that is susceptible to runoff according to the SMR
1 requirement. The parcel slope aspect (arrow) and the location of the nearby
Regata de Larrea river are also shown.

Fig. 12. Distribution of low-risk and high-risk parcels according to the SMR1
specifications.

TABLE V
PA AND UA EVOLUTION OF THE SMART SAMPLING ALGORITHM
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TABLE VI
PERCENTAGES OF GREEN MISCLASSIFICATIONS FOR EACH SEASON CLASS AND

UA OF PERSISTENT ALARMS FILTERED THROUGH ALGORITHM

the validation dataset (267), whereas for the UA it is divided
by the total number of misclassified green parcels of varying
persistence.

Table V summarizes that suboptimal PAs and UAs are
achieved for classifications early in the year. This indicates
that the smart sampling algorithm will select erroneously a
significant percentage of the suggested OTSCs. Nevertheless,
the smart sampling precision, indicated by the UA, reaches near
perfect values, from early July08 onward.

In an attempt to further filter the OTSCs selection of the
suboptimal smart sampling results, found early in the year, we
exploit the season type of the crop taxonomy, as described in
Fig. 5. Each of the crops that were examined belongs to one of the
three season types and that is summer, winter, and year-round.
Based on that, a false declaration would be more likely, if the
prediction of the algorithm belongs to a different season class as
compared to the corresponding season class of the declaration.
Table VI presents the number of the green misclassifications that
come from each of the different season types as well as the total
sum of them, along with the number of green misclassifications
for which the predicted crop season differs from the declared
one, identified as an alarm. Finally, the last column indicates the
percentage of those alarms that belong to the validation dataset
of more than five persistent misclassifications.

Comparing the “Persistent Alarms UA” column of Table VI
and the “UA” column of Table III reveals increase in the precision
of smart sampling for runs that take place as early as May. Special
attention is given to UA instead of PA, as it demonstrates the
reliability of the system. Since the inspections are not exhaustive
but rather sampled based, it is more important to ensure that most
alerts are indeed wrong declarations. In Fig. 13 is displayed the
evolution of the smart sampling alerts for different classifications
throughout the year. It can be observed that for runs until June 23,
the alerts are only few as they are passed through the Algorithm
2 filter. It can be seen that even though some alerts only appear
early in the year, the critical mass of them can be identified from
as early as July.

Fig. 13. Smart sampling alerts at different instances throughout the year of
inspection. The red parcels indicate to the paying agency inspector where to
target their inspections. Early in the year the alerts are fewer, stemming from
less reliable classifications. With more images as we move along in time,
classifications become more reliable and thus more alerts are identified.

TABLE VII
MEAN EXECUTION TIME OF EACH SCENARIO ACCORDING TO THE SEMANTIC

QUERIES DESCRIBED IN SECTION III-D

E. Scalability

Table VII presents the execution time for each one of the rules
that are described in this work. The execution time for each rule
is calculated as the mean time of each scenario of the queries
presented in Section III-D. Results show that the query that takes
the most time to run is the SMR 1 requirement, taking into
account that this query runs per parcel, compared to the other
queries that run for the whole dataset. The reason is that this
query requires multiple calculations between polygons such as
distance and aspect, which are very time-consuming. The second
column presents the execution time in seconds for the actual
size of the dataset, whereas the last one presents the execution
time in a reduced dataset size in order to further understand the
scalability.

Fig. 14 presents the mean execution time of SMR 1 require-
ment for each parcel according to the risk type (low, high).
The execution time is extremely low when the parcel does not
satisfy the filters (aspect, distance, slope), whereas when the
parcel satisfies the filters the execution time is significantly
higher. Despite this fact, the mean execution time of all parcels
is significantly low, taking into account the large number of
low-risk parcels.

F. CAP Monitoring in Practice

The results in Section IV-C described the implementation of
the practical applications of the proposed system, which have
been showcased in the form of the three scenarios of Section
IV-B. Scenario 2 on Greening 1 and Scenario 3 on SMR-1
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Fig. 14. SMR 1 requirement mean execution time for each parcel according
to the risk type (low, high) compared with total mean execution time.

requirements, respectively, are performed once for every year of
inspection. Therefore, these two scenarios infer a single cycle of
execution, with reference to Fig. 1. On the other hand, the Smart
Sampling application (Scenario 1) is an iterative process. The
first crop classification is performed in early May, coinciding
with the CAP subsidies applications commencement, with sub-
sequent iterations producing progressively more accurate crop
type maps with every new Sentinel-2 acquisition. Hence, there
is a full-cycle execution (see Fig. 1) with every newly acquired
image, from ingestion to interlinking.

According to the results in Table VI, the issued alarms are
adequately trustworthy to suggest potential OTSCs from as early
as July, with a UA of more than 94%. From then on, the paying
agency inspectors can have targeted OTSCs that increase in
number with every new iteration, following their summer-long
inspection process. Alternatively, the results from May until
early July can be used in assistance of the farmer application
process. The applicants and the paying agencies can have an
indication of potential noncompliance even at the application
stage, thus allowing the farmer to make timely changes to their
application.

V. CONCLUSION AND FUTURE WORK

In this article, we presented a semantic-oriented framework
for knowledge discovery using a supervised classification in
the CAP domain. The main focus is given on the detection of
possible violations according to the declaration of the farmers,
the Greening 1 requirement and SMR 1 requirement. The frame-
work can strongly assist in decision-making issues by providing
helpful information to paying agency inspectors and environ-
mental consultant to detect possible breaches of compliance. The
proposed solution relies on data coming from sentinel images
and open data (e.g., OpenStreetMap). Common denominator
between the two datasets is the provision of georeferenced in-
formation. Data refer to a region in northeastern Spain. The SVM
classification method has been applied to classify the cultivated
crop types for multiple instances throughout the cultivation sea-
son. The data, which are in Shapefile format, are converted into
Turtle RDF format using the GeoTriples tool. Results are saved
in GraphDB triplestore. Semantic queries are executed to enrich

the data with information about possible farmers noncompliance
according to agricultural policies.

In this work, we have shown how the paying agencies of the
CAP can benefit from the exploitation of big Copernicus data.
We showcased how with only freely available satellite data and
ancillary LOD one can provide actionable information. Combin-
ing the state of the art in EO-based crop classification, semantic
enrichment and linking free and open data has facilitated the
development of an end-to-end system, from data acquisition
to CAP related decision-making. The main innovations of the
presented methodology include its reusability and transferabil-
ity, using predominantly open data and requiring minimal fine-
tuning when applied to other regions, and scalability, accounting
for all big data considerations and choosing the computationally
efficient alternative every step of the way, toward the monitoring
approach of the new CAP.

Future work includes the investigation of similar datasets that
correspond to other regions to apply the agricultural policies
rules. The proposed framework can also be extended to similar
problems, beyond the control of the EU CAP, using semantic
enrichment and reasoning to support farmers in monitoring their
crops, insurance companies to assess the risk in a specific AOI,
and public agencies that monitor the sustainability of rural areas
as a consequence of climate change.
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