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Abstract—This paper presents an online, real-time, multi-
object tracking algorithm based on a novel method for data
association. Tracking multiple objects in real-world scenes
includes several challenges, such as a) object detectors with
low detection accuracy, b) false alarms, and c) unmatched
tracked objects. In this paper, we propose a novel filtering
method based on the theory of censored data by utilizing an
Adaptive Tobit Kalman filter to estimate the object’s position
with high accuracy. Furthermore, in order to deal with false
alarms and unmatched tracked objects, we use the non-
maximum suppression and a modified Hungarian algorithm,
respectively. Experiments in public datasets show that the
proposed method outperforms state of the art methods in
multi-object tracking with a substantial low computational
cost compared to other methods in the area.

Keywords-Multi-object Tracking; Adaptive Tobit Kalman
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I. INTRODUCTION

Multi-object tracking (MOT) is defined as the esti-
mation of location and size of multiple objects in each
frame of a video sequence while preserving their identity.
Accurate MOT involves several challenges, especially in
crowded scenes, due to multiple occlusions and changes
in the object appearance (different poses) and lightning.
One of the most popular methods that have been proposed
for MOT is tracking-by-detection, where individual object
detections are linked to form trajectories of the detected
objects [1]. Tracking-by-detection can be separated in
two parts, namely the object detection and therefore the
detection association. The accuracy of such a tracker is
highly dependant on the performance of the object detector
(a.k.a. detection sparsity). On the other hand, the task of
the detection association is getting tougher with missing
or noisy detections.

The tracking-by-detection approaches can be catego-
rized in: 1) batch tracking (BT), and 2) online tracking
(OT). In BT approaches, a set of detections from a
window (batch) of frames is exploited to build robust
tracklets using, usually, graph-based techniques to cope
with detection errors caused by occlusions [2] or detection
sparsity. However, BT methods require detection responses
of future frames and are usually computationally expen-
sive. Due to these limitations, BT methods are not suitable
for online and real-time (over 15 fps) applications [3].
On the other hand, OT approaches can used for online
applications since they can track objects in a frame-by-
frame manner using the information available up to the
current frame. Nonetheless, OT methods tend to produce

fragmented trajectories as it is more difficult to handle
inaccurate detections (e.g false alarms) compared to BT
methods [2].

In this paper, we propose an online method for MOT,
which can robustly track multiple objects using noisy
detections with a low computational cost. The proposed
method relies on a previous OT method [4], however, in
order to achieve better tracking accuracy, we use 1) a mod-
ified Hungarian algorithm (HA) [5], and 2) the Adaptive
Tobit Kalman filter (ATKF) [6] instead of a simple Kalman
filter (KF). Recently, it has been shown in [7] that ATKF
outperforms other state-of-the-art methods like [8],[9] in
minimizing the estimation error on noisy observations in
the case of Kinect data for skeleton analysis. The proposed
ATKF takes advantage of the approaches presented in [6],
[7] by providing more accurate state estimations due to
the accurate calculation of the variance of the censored
measurements (Appendix).

In MOT, one of the major challenges is to correctly
associate noisy detections (observations) with previously
tracked objects. In order to achieve the latter, the pre-
diction and the update stage of ATKF are automatically
adapted to the frame rate of the examined video and to a
confidence value of the detection (observation).

1) An improved version of [4] based on ATKF, which
increases the predictions of human’s bounded boxes
in real-time applications.

2) An online and real-time human tracking approach
based on a modified HA.

The rest of the paper is organized as follows. In Section
2, related works are described, while in Section 3, the
proposed methodology on human tracking is presented in
detail. In Section 4, experimental results are illustrated,
using the 2D MOT 2015 benchmark [10]. Finally, Section
5, concludes the paper.

II. RELATED WORK

A considerable amount of solutions have been proposed
in the literature in order to solve the Multi-Object Tracking
problem. Most of them are focusing on improving the
performance of the data association process, including the
proposed work. Others, offer both object detection and
detection association. Existing data association approaches
for MOT are either BT or OT ones. In this section, we
focus on OT approaches since they are the most relevant
to our work.



In [11], [12] two online MOT methods based on
stochastic models are presented. More specifically, in [11]
the authors utilize the Gaussian mixture probability model
density (GM-PHD) filter [13] due to its resistance in noisy
and random data. Nevertheless, this method results in
many false alarms in the detection accuracy. In [12], the
proposed method combines a local and a global tracker in
a comprehensive two-step framework. In the local tracking
step [12], a frame by frame association is used in order to
generate online object trajectories. Each object trajectory
is represented by a set of multimodal feature distributions
modeled by General Mixture Models (GMMs) [14]. In the
global tracking step, occlusions and false alarms are recov-
ered by the tracklet bipartite association method based on
the Mahalanobis metric [15]. Deep Learning approaches
have been, also, proposed as in [16], where a novel online
method based on RNNs is presented. Therein, the authors
describe the way of addressing several challenges, which
arise in training RNNs for MOT. They achieve high MOT
accuracy in the 2D MOT 2015 benchmark [10], however,
in corresponding testing data (including more complex
scenes), the MOT accuracy is significantly lower.

The closest work to the proposed method is presented
in [4], where HA and KF are used for MOT. Tracklets
are formed by associating detections throughout adjacent
frames, where both geometry and appearance cues are
combined to associate detections with previously tracked
objects. Furthermore, Faster Region CNN (FrRCNN) [17]
is used in order to produce higher quality detections. The
proposed method, while inspired by [4], introduces sig-
nificant improvements by using a pragmatic and adaptive
tracking approach based on censored data theory [18] that
is especially robust to noisy detections. The method is
described in detail in the following section.

Many filtering methods exist for MOT either from
images, videos or depth information. In the rest of this
section, we mention the most known and well established
filtering methods.

One of the most known filtering method is KF. In
order to overcome several drawbacks of KF (mainly due
to its linear nature), the Extended Kalman Filter (EKF)
was proposed in [19]. Although EKF is not an optimal
estimator as its linear counterpart, it has been proved
that it performs better than KF in terms of smoothing
and correcting signals in problems that are non-linear.
However, EKF tends to be unstable in many applications
due to its local nature, leading to incorrect smoothing of
a signal that exhibits a high degree of non-linearities. To
overcome these problems, the Unscented Kalman Filter
(UKF) was proposed in [20]. UKF uses a deterministic
sampling technique known as unscented transform [21] to
gather a minimal set of points around a local mean. By
doing so, it provides better results than EKF when the
predict and the update functions are highly non-linear, al-
though, UKF requires more computational cost than EKF.
Finally, a very successful method is the Particle Filtering
(PF) [22], which is a Monte Carlo based filtering method.
Though PF is generally very adaptable, it requires a high

computational burden, making it practically unsuitable for
many real-time and online applications.

In the area of censored statistics [23], all the above
mentioned methods have their drawbacks. In [24], it is
stated that the formulation of a standard KF, as an estima-
tor for censored data, results in a biased estimation of the
unknown state. EKF suffers from an undefined Jacobian at
the censored region, resulting in an ill-posed Jacobian. On
the other hand, it is proven, that UKF is non-robust when
the measurements are close to the censored region [24].
Finally, ATKF provides unbiased, recursive estimates of
the latent state variables when the measurements are close
to the censored region. ATKF is completely recursive and
computationally inexpensive, making it a perfect candidate
for real-time and online MOT. Furthermore, the proposed
ATKF provides 1) a more accurate estimation of censored
variance measurement (Appendix) and 2) adaptive cen-
soring limits at each time step, compared to Tobit Kalman
Filter (TKF) given in [24].

III. METHODOLOGY

The proposed method includes three steps: 1) the re-
jection of detections corresponding to false alarms, 2) the
association of current detections with the existing trackers,
and 3) the update of the predicted bounding box position
using the ATKF process.

A. Detections

Detectors, such as [10], do not provide accurate pre-
dictions of humans’ detections, making the tracking prob-
lem even harder. The main issue is the big amount of
multiple overlapping detections that appear in the data.
In order to avoid multiple overlapping detections, we
use the non maximum suppression (NMS) algorithm [25]
for the detections at every frame. The NMS algorithm
is responsible for merging detections that belong to the
same object, through a simplistic process that is based
on a greedy clustering with a fixed distance threshold
TNMS . Furthermore, a confidence value is associated with
each bounding box, which is taken into account from our
method for their rejection.

B. Data Association

As described in [4], the detections at time frame k are
associated with the predicted objects’ position, derived
from (1)-(2) (predicted trackers). The trackers’s bound-
ing boxes’ coordinates are predicted as follows (Predict
function):

x̂−
k = Ax̂k−1 (1)

P−
k = APk−1AT + Q, (2)

where xk = [xk,1, xk,2, xk,3, xk,4, ẋk,1, ẋk,2, ẋk,3, ẋk,4],
x̂−
k and x̂k are the state vector, the a priori and the a

posteriori estimation at time frame k, respectively, while
P−
k ,Pk−1 are the covariances of a priori and a posteriori

error estimation, respectively. Q is called the covariance
of error process and for convenience we suppose that it is



constant for every video sequence in [10] since it models
the equipment used to acquire the videos and is set to:

Q =



1
2 0 0 0 1 0 0 0
0 1

2 0 0 0 1 0 0
0 0 1

2 0 0 0 1 0
0 0 0 1

2 0 0 0 1
1 0 0 0 2 0 0 0
0 1 0 0 0 2 0 0
0 0 1 0 0 0 2 0
0 0 0 1 0 0 0 2


(3)

A is the transition matrix of the ATKF process and takes
the form:

A =



1 0 0 0 1
fps 0 0 0

0 1 0 0 0 1
fps 0 0

0 0 1 0 0 0 1
fps 0

0 0 0 1 0 0 0 1
fps

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(4)

where fps stands for frames per second at each video
sequence.

In the next step, the predicted trackers as resulted by
(1) are assigned with the detections. To that end, an
assignment cost matrix is computed, as the intersection-
over-union (IOU ) [4] between each detection and all
predicted bounding boxes from the existing targets. For
the assignment between tracker and detection, HA is used.
In HA [26], a detection can be assigned only once to an
existing tracker. Thus, in many cases where two objects
(humans in our case) are too close, the detector provides
only one detection. This has the consequence of assigning
the detection to only one tracker, thus missing the second
person’s tracks. In order to deal with these cases, we
altered HA so as to assign the unmatched tracked objects
with detections when the corresponding IOU is large
enough (over a threshold).

C. Estimation of bounding box position

In the final stage, the predicted trackers are updated
with the assigned detections, by using the ATKF update
function. In order to be more precise with the update
function of ATKF, we provide some background of the
censored data theory [18]. In statistics research, censoring
is a condition in which the value of a measurement or
observation is only partially known. Censoring occurs
when a value falls outside the range of a measuring
instrument. For example, a bathroom scale might only
measure up to 140 kg. If an 150 kg individual is weighed
using that scale, the observer would only know that the
individuals weight is at least 140 kg (partially known).

We denote by z∗k = [z∗k,1, z
∗
k,2, z

∗
k,3, z

∗
k,4] and zk the

(latent) measurement-detection given by the detector and
the censored detection-measurement, respectively, at time
frame k. The Tobit model is called censored regression

model and is characterized by the stochastic difference
non-linear equation:

z∗k = Hxk + vk, (5)

zk,i =


z∗k,i, T ilowe,k < z∗k,i < T iupper,k
T ilower,k z∗k,i ≤ T ilower,k
T iupper,k, z∗k,i ≥ T iupper,k

i = 1, 2, 3, 4

(6)
where vk ∼ N(0,Rk) and the adaptive censored limits
T ilower,k, T

i
upper,k are given by:

Tupper,k = Hx̂−
k + a (7)

Tlower,k = Hx̂−k − a, (8)

where a = (ai)
4
i=1 is a vector.

The observation matrix of ATKF is defined as:

H =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 (9)

The update function of ATKF is given by:

Rk,1 = E
(
(xk − x̂−k )(zk − E(zk))T |zk−1

)
, (10)

Rk,2 = E
(
(zk − E(zk))(zk − E(zk))T |zk−1

)
, (11)

Kk = Rk,1R−1
k,2, (12)

x̂k = x̂−k + Kk(zk − E(zk)), (13)

Pk = P−
k −KkRTk,1, (14)

where the matrices Rk,1,Rk,2 = (Rik,2)i=1,...,4 and the
censored mean E(zk) are given in the Appendix. Kk and
x̂k are the Kalman gain and the state vector at time frame
k, respectively. Finally, Rk,2 depends on the covariance
matrix of measurement error, Rk. As we mentioned before,
the detector includes a confidence value, Ck, for each
detection-measurement, which lies within a predefined
bound. Therefore, it is reasonable for Rk to be inversely
proportional to Ck, thus, Rk is defined as:

Rk =


1.5 0 0 0
0 1.5 0 0
0 0 1.5 0
0 0 0 1.5

 · (1− Ck
140

) (15)

It is clear that the above process can provide accurate
estimations only when the predicted tracker is assigned to
a detection. Thus, we use the a priori estimation, (x̂−k,i)

4
i=1,

as the latent detection, z∗k, for T time frames 1) when the
predicted tracker is not assigned to any detection and, 2)
when it has been detected for at least 2fps

3 consequent
times. The number T depends on the fps of the video
sequence and the velocity of the unmatched tracked object
for two reasons: firstly, if the velocity of the predicted
tracker is small, then the a priori error prediction by (1)-
(2) is reduced. Secondly, the spatial displacement between



two consecutive bounding boxes’ positions (of the same
object) is reduced as fps is increased, therefore:

T =

{
max(3, fps6 + 1), ˆ̇x−k,1 < 5 and ˆ̇y−k,1 < 5

max(3, fps8 + 1), otherwise
(16)

In the case where the fps is too small (<7), it is clear
that the error estimation of the bounding box position may
increase rapidly if the predicted tracker is not assigned
to any detection, therefore, we assume that T = 1. In
Figure 1 a framework of the proposed method for MOT
is illustrated.
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Figure 1. Framework of proposed method.

IV. EXPERIMENTS

We evaluate the performance of our tracking implemen-
tation on the MotChallenge 2015 database [10], which
contains both moving and static camera sequences. To
initiate tracking, we assume that the minimum IOU is
equal to 0.15 (as in [4]). Then, we define the minimum
IOU for an unmatched tracked object (IOUunm) and
TNMS in such a way in order to achieve the highest
MOT accuracy. Using random search, the best values for
IOUunm and TNMS are experimentally (training data
[10]) found to be:

IOUunm = 0.60, (17)

TNMS = 0.55 (18)

Low values for IOUunm, close to 0.40, mean that an
unmatched tracked object can be matched by an inappro-
priate detection. On the other hand, high values, close
to 0.80, mean that an unmatched tracked object cannot
be matched to any nearby detection. Furthermore, low
values for TNMS , close to 0.35 mean that detections
corresponding to different objects will be merged. On the
other hand, high values, close to 0.75, mean that different
detections corresponding to an object (false alarms) will
not be merged (Figure 2). It is worth mentioning that a
higher value for TNMS can be selected, if the detector

does not produce many false alarms. Finally, vector, a, in
(7)-(8), is experimentally (training data [10]) chosen to be:

a = [40, 25, 40, 25]T (19)
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Figure 2. MOT Accuracy for various values of parameters TNMS and
IOUunm, perspectively.

A. Tracking Performance Evaluation

We utilize the following evaluation metrics defined in
[32], [33] :

• MOTA: Multi-object tracking accuracy.
• MOTP: Multi-object tracking precision.
• FA: The average number of false alarms per frame.
• MT: The ratio of ground-truth trajectories that are

covered by a track hypothesis for at least 80% of
their respective life span.

• ML: The ratio of ground-truth trajectories that are
covered by a track hypothesis for at most 20% of
their respective life span.

• FP: The total number of false positive detections.
• FN: The total number of false negative detections.
• ID sw: The total number of times an ID switches to

a different previously tracked object.
• Frag: The total number of fragmentations where a

track is interrupted by miss detection.
• Hz: Processing speed (in frames per second excluding

the detector) on the benchmark.
The metric MOTA is applicable to a wide range of

tracking tasks [32] and allows for objective comparison
of the main characteristics of tracking systems, such as
their accuracy in recognizing object configurations and
their ability to consistently track objects over time.

In Table I the proposed method, namely ATKF , is
compared against an ATKF without a modified HA and
two other methods [4], [16], on the training dataset of [10].
It is clear that our method outperforms [4], in all but one
metric (False Negative). Furthermore, the ATKF without
modified HA is able to achieve a good performance in
MOT. However, we utilized the modified HA in order to
improve a little more the evaluation metrics.

As we mentioned before, in order to reduce the false
alarms, we reject the detections with low confidence value
and we merge the bounded boxes (by NMS) when the
distance between them is small. This can lead to the



Method MOTA ↑ MOTP ↑ FA ↓ FP ↓ FN ↓ ID sw ↓ Frag ↓
SORT [4] 26.0 72.5 1.23 6767 21988 780 1174

RNN LSTM [16] 22.3 69.0 0.97 5327 25094 572 983
ATKF wihtout Mod.HA 30.2 72.7 0.72 3962 23624 254 627

ATKF (proposed) 30.5 72.7 0.67 3706 23797 240 606

Table I
PERFORMANCE OF SORT , RNN LSTM , ATKF WITHOUT MODIFIED HA AND PROPOSED METHOD, RESPECTIVELY, ON MOT TRAINING

SEQUENCES [10].

Method MOTA ↑ MOTP ↑ FA ↓ MT ↑ ML ↓ FP ↓ FN ↓ ID sw ↓ Frag ↓ Hz ↑
CppSORT [27] 21.7 71.2 1.5 3.7% 49.1% 8422 38454 1231 2005 1122.1

RNN LSTM [16] 19.0 71.0 2.0 5.5% 45.6% 11578 36706 1490 2081 165.2
OMTDFH [28] 21.2 69.9 2.3 7.1% 46.5% 13218 34657 563 1255 28.6

GSCR [29] 15.8 69.4 1.3 1.8% 61.0% 7597 43633 514 1010 28.1
LDCT [30] 4.7 71.7 2.4 11.4% 32.5 % 14066 32156 12348 2918 20.7

GMPHD [11] 18.5 70.9 1.4 3.9% 55.3% 7864 41766 459 1266 19.8
TSDAOAL [31] 18.6 69.7 2.8 9.4% 42.3% 16350 32853 806 1544 19.7
MTStracker [12] 20.6 70.3 2.6 9.0% 36.9% 15161 32212 1387 2357 19.3

ATKF (proposed) 24.8 70.8 1.1 4.0% 52.0% 6201 39321 666 1300 205.6

Table II
PERFORMANCE OF THE PROPOSED AND OTHER ONLINE AND REAL-TIME METHODS (WITH PROCESSING SPEED OVER THAN 15fps) ON MOT

TESTING SEQUENCES [10].

Figure 3. Tracking results of ATKF on the MOTChallenge sequence PETS09-S2L1. Frames 612, 635, 653, 686, 721, 736, 776 and 795 are shown.
The colour of each bounding box indicates the person identity.

rejection of a few correct detections and, therefore, FN
slightly increases. In Figure 3, some tracking outputs
(bounding boxes) of the proposed method are shown.

In Table II, ATKF is compared against several other
online and real-time methods with frequency over 15fps
on the testing dataset of [10]. The results show that
the proposed method outperforms all others methods in
MOTA. Moreover, the proposed method achieves the
highest scores in metrics FA and FP with scores 1.1
and 6201, respectively. Furthermore, the proposed method
achieves a high score in metric Frag, with score 1300,
while the highest score is achieved by GSCR, with score
1010.

As expected, the methods with a good performance in
metrics MT and ML, present inferior performance in

metrics ID sw and Hz, respectively (see Table II). This
is due to the fact that when a target is not associated with
any detection (or its position is not predicted) either its
trajectory is terminated or it is associated with a previously
tracked object. More specifically, LDCT achieves the best
scores in metrics MT and ML, although it suffers from
a huge number of ID sw. Finally, the proposed method
is able to achieve a high score in metric MOTP , despite
of the fact that in several cases the detections’ coordinates
are not provided (due to occlusions). Hence, the target’s
position is estimated with high accuracy (without any
detection) by the proposed method.

V. CONCLUSION

In this paper, we presented a robust MOT method that
focuses on frame-by-frame prediction and association. The



proposed method works on online mode and is suitable for
real-time applications. To the best of our knowledge, this
is the first approach that employs censored distributions
to address online multi-target tracking. We have shown
that the new filtering process, ATKF, can be utilized
to handle noisy observations and short-term occlusions.
Furthermore, in order to deal with the unmatched tracked
objects, we modified HA and finally we accurately pre-
dicted the object’s position in fully-occluded scenarios.
The results on a public dataset show that the proposed
method can achieve the highest MOTA compared to other
online and real-time approaches, with the second highest
processing speed.

VI. APPENDIX

The probability distribution function of zk,i (6) given
zk−1,i is given by:

f(zk,i|zk−1,i) =
1

sk,i
φ
(zk,i −mk,i

sk,i

)
I(zk,i)

+ δ(zk,i − T iupper,k)Di
upper,k

+ δ(zk,i − T ilower,k)Di
lower,k,

(20)

where

I(x) =

{
1, x ∈ [T ilower,k, T

i
upper,k]

0, otherwise
, (21)

δ is the Kronecker delta function, mk,i = (Hx̂−
k )i,

s2k,i = (HP−
k HT + Rk)i, φ(x) is the probability

distribution function of the standard normal distribution,
the matrices Dun,k, Dlower,k and Dupper,k have the form:

Dun,k = diag

 Φ(Tu1
k
)− Φ(Tl1k)

...
Φ(Tum

k
)− Φ(Tlmk )

 , (22)

Dlower,k = diag

Φ(Tl1k)

...
Φ(Tlmk )

 , (23)

Dupper,k = diag

1− Φ(Tu1
k
)

...
1− Φ(Tum

k
)

 , (24)

where

Tui
k

=
T iupper −mk,i

sk,i
, (25)

Tlik =
T ilower −mk,i

sk,i
(26)

and Φ is the cumulative distribution function of the
standard normal distribution. For the sake of convenience,
we denote zk,i|zk−1,i as y.

The moment generating function, M(t), of the random
variable y with probability distribution function f(y) (20)

has the form:

M(t) = E ety = etT
i
lower,kDi

lower,k + etT
i
upper,kDi

upper,k

+emk,it+s
2
k,it

2/2
(

Φ
(T iupper −m∗

k,i

sk,i

)
− Φ

(T ilower −m∗
k,i

sk,i

))
,

(27)
where m∗

k,i = mk,i + s2k,it and t ∈ IR.
The mean of random variable y is calculated through
moment generating function (27) and takes the form:

E(y) =
dM(0)

dt
= T ilower,kD

i
lower,k

+ T iupper,kD
i
upper,k

+Di
un,k(mk,i + sk,ilk,i),

(28)

where lk,i =
φ(T

li
k
)−φ(T

ui
k
)

Di
un,k

.

The ith component of diagonal matrix Rk,2 (measure-
ments are independent) is the variance of random variable
y and via (27) takes the form:

Var(y) =
d2M(0)

dt2
−
(dM(0)

dt

)2
= T ilower

2
Di
lower,k(1−Di

lower,k)

+ T iupper
2
Di
upper,k(1−Di

upper,k)

+m2
k,iD

i
un,k(1−Di

un,k) + s2k,iD
i
un,k + s2k,ick,iD

i
un,k

+ 2mk,isk,ilk,i(1−Di
un,k)Di

un,k

− s2k,ilk,i
2Di2

un,k − 2T ilower,kD
i
lower,kT

i
upper,kD

i
upper,k

− 2T ilower,kD
i
lower,kD

i
un,k(mk,i + sk,ilk,i)

− 2T iupper,kD
i
upper,kD

i
un,k(mk,i + sk,ilk,i),

(29)

where ck,i =
T
li
k
φ(T

li
k
)−T

ui
k
φ(T

ui
k
)

Di
un,k

.
The matrix Rk,1 is proved to be equal to

Rk,1 = P−
k HTDun,k (30)
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