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4Department of Computer Science, Università di Verona, Strada le Grazie 15, 37134 Verona

5Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
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Abstract

This track aimed at retrieving protein evolutionary classification based on their surfaces meshes only. Given that
proteins are dynamic, non-rigid objects and that evolution tends to conserve patterns related to their activity and
function, this track offers a challenging issue using biologically relevant molecules. We evaluated the performance
of 5 different algorithms and analysed their ability, over a dataset of 5,298 objects, to retrieve various conformations
of identical proteins and various conformations of ortholog proteins (proteins from different organisms and showing
the same activity).

1 Introduction

Proteins are complex macro-molecular molecules con-
stituted of hundreds to millions of atoms, and are usu-
ally classified according to their function in the cellular
environment. They display various motions reflecting
1) the relative motion of their atoms and 2) their ability
to undergo small to large conformational changes in or-
der to perform their cellular activities through surficial
binding notably with other proteins (Protein-Protein
Interaction, PPIs).Thus, protein structures are widely
studied and relies on experimentally resolved structures
stored in databases such as the Protein Data Bank [1].
Structures are represented as a set of 3D coordinates in-
dicating the position of the atoms, considered individ-
ually as rigid shperes, and current algorithms analyses
this cloud of points to extract biologically relevant data
such as sepcific interactions between atoms, concerted
displacements, . . . .

Another usufull way to represent proteins is to com-

pute their surfaces, typically representing their solvent-
excluded surface (SES) as defined by Connolly [2]. The
SES is an abstraction of the surface that may form con-
tacts with other molecules of the environment. De-
tecting similarities and/or dissimilarities between pro-
tein surfaces (all surfaces from all proteins of a cell,
for instance) is of main importance in drug discovery
pipelines, adverse drug event prediction and in the char-
acterization of molecular processes and diseases. How-
ever, it remains very challenging to detect and charac-
terize such variations as the SES surface may fluctuate
for a given protein displaying many conformations, or
may be very similar among different species as proteins
may have the same role.

In this SHREC19’ track, we used the Structural Clas-
sification of Proteins — extended (SCOPe) database [3–
5] to generate a dataset of 5,298 proteins extracted from
211 PDB entries. The SCOPe classification was used to
assess the participants’ methods 1) at the species level
(the ability to retrieve a conformations from the protein
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of a given species) and 2) at the proteins level (the abil-
ity to retrieve a conformations from ortholog proteins,
i.e. regardless of the species).Methods runtimes are also
indicated when provided by the participants.

2 Data Set

The (mostly) manually-curated SCOPe database [3–
5] elaborates a hirarchical classification of protein do-
mains using structural and evolutionary relationships:
the 2 top levels are structure-based (Class and Fold)
while the 4 bottom levels are evolutionary-based (Su-
perfamily, Family, Protein and Species, from top to
bottom). The lowest level (Domain) links the SCOPe
database to the protein structures from the PDB [1].
It therefore represents a useful representation of the
protein domains relationships and protein domains sur-
faces.

We only kept SCOPe entries 1) from NMR struc-
tures whose conformers display the same number of
atoms, 2) from 3 Classes: All alpha proteins, Alpha
and beta proteins (a+b) and Alpha and beta proteins
(a/b), 3) with at least 4 ortholog proteins.Finally, we
randomly selected domains to decrease the data set size
to 5,298 structures, representing 241 SCOPe entries ex-
tracted from 211 PDB entries. The SES surfaces were
computed using EDTSurf [6]. At the species level, the
data set is composed of 54 classes and at the proteins
level, it is composed of 17 classes (Table 1).

Compared to the SHREC18’ protein shape retrieval
track, this year’s track is focused on the evolutionary re-
lationships between proteins shapes. As a consequence
of the selection process of surfaces to be included in
the dataset, the selected proteins are similar in terms
of size (from 32 to 161 amino-acids) with most of the
structures being 66 to 111-amino-acids long. The corre-
sponding meshes are also of similar size, ranging from
˜54,000 to ˜270,000 points. Furthermore, because of
the evolutionary relationships between them, the shapes
from the same class at the proteins level (reflecting the
variety of shapes from ortholog proteins) are expected
to have a high level of similiratity in their overall shape
as the share the same activities and functions in or-
ganisms that co-evolved from the same ancestor. For
these reasons, the discrimination between shapes at the
species level is expected to be more difficult compared
to the proteins level.

3 Evaluation

3.1 Discounted Cumulative Gain

The Discounted Cumulative Gain (DCG) is a weighted
statistics assuming that correct results associated with
a higher rank should imply a gain in the performance
rating as users will are more likely to consider these re-
sults. For a listR of correct results, a listG is generated,
where Gi is 1 if element Ri is in the correct class (the
ground truth class associated with element i GTi), or
0 otherwise. The discounted Cumulative Gain is then
computed using the following:

DCGi =

{
G1, if i = 1
DCGi−1 +

Gi

log2(i)
, otherwise

This value is then divided by the maximal value pos-
sible (i.e. the value obtained by the ground truth):

DCG =
DCGk

1 +
∑|C|
j=2

1
log2(j)

where k is the number of objects in the data set and
C the size of the classes. This value is a good summary
of the performance when comparing algorithms.

3.2 Nearest Neighbor, First-tier and
Second-tier

These paramters check the ratio of models
thatscalescale belong to the same class as the
query. For Nearest Neighbor, the first match only
is considered (excluding the identity), while the |C|−1
and 2 ∗ (|C| − 1) are considered for First-tier and
Second-tier parameters.

3.3 Precision-Recall plot and E-measure

Precision P represents the ratio of models from class C
retrieved within all objects attributed to class C, while
Recall R represents the ratio of models from class C
retrieved compared to |C|.

The E −measure is a composite parameter of both
Precision and Recall:

E −measure = 1− 2
1
P + 1

R
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Table 1: Summary of the classes at the species and proteins levels

Level Number of classes Average class size Largest class size

Species 54 98.11 1049
Protein 17 311.65 1160

4 Participants & Methods

4.1 Combined CNN-LDS framework
(ConvLDSNet) for 3D shape re-
trieval - Stelios Mylonas, Apostolos
Axenopoulos, Petros Daras

4.1.1 Problem definition

Following the recent tendency to address many scien-
tific tasks by exploiting the existing vast amount of data,
we propose a data-driven approach for the problem of
3D protein shape retrieval. A 3D neural network (NN)
has been trained on relevant datasets to learn appropri-
ate features (descriptors) for the representation of 3D
molecular shapes. The input 3D model is the Solvent
Excluded Surface (SES) of a protein molecule, which
has been created from the molecules tertiary structure
(PDB format) using the EDTSurf software. This soft-
ware produces a high resolution watertight triangulated
mesh, which is then transformed to a 32×32×32 voxel
model to be used as input in our method.

4.1.2 Input representation

Based on the approach of Wu et al. [7], we rasterize the
protein 3D model to a binary voxel grid. The 3D mod-
els of the proteins are watertight, thus the parity count
method is applied for binary voxelization. A voxel v is
classified by counting the number of times that a line
crossing the center of the voxel intersects polygons of
the 3D model surface. Ray-casting the 3D model with
parallel rays, all of the voxels along the ray are classi-
fied. For an odd number of intersections, voxel v is con-
sidered interior to the model, while for an even number,
outside. For a N ×N ×N voxel grid resolution, where
N = 32, we cast N × N = 1024 rays, with each ray
passing through N -voxel centers.

4.1.3 Proposed method

The proposed architecture is depicted in Fig. 1. This
network is an extension of our last year’s proposal [8],

which was based on the VoxNet CNN [9]. The new
scheme consists of two branches, where two different
operations are applied to the input voxels. The first
convolutional branch is identical to VoxNet CNN and
consists of 2 volumetric convolutional layers, 1 max-
pooling layer and 1 fully connected (FC) layer. The
second branch consists of two 3D-LDS modules and
a FC layer. The 3D-LDS module is a novel operation
which aims to simulate the behavior of Linear Dynam-
ical Systems (LDS) and incorporate it as a NN layer.
This operation was first introduced in [10] and is ex-
tended here to the 3D domain. The features obtained
by the two branches after their fully connected layers
are, then, concatenated and fed to a last FC layer, which
provides the output feature vector.

Figure 1: The proposed architecture consisting of a
convolutional branch (top) and an LDS branch (bot-
tom).

4.1.4 Training procedure

Two datasets have been used for training the proposed
scheme; the dataset from last year’s competition [8]
and the MolMovDB [11] dataset. Among the three
runs submitted, the first one (ConvLDSNet1) resulted
from training the network on SHREC18, the second one
(ConvLDSNet2) from training on MolMovDB and the
third one (ConvLDSNet3) from training first on Mol-
MovDB and then fine-tuning on SHREC18. Since both
datasets contain classes of proteins, we added at the end
of the network a Softmax layer and trained the network
on a classification task.

In all cases, a three-stage training scheme has been
employed: at the first stage, the convolutional part of
the network is trained, by removing the LDS-branch,
while, at the second step, the LDS branch is trained
by removing the convolutional one. Finally, the two
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branches are combined, freezing their weights and
training separately the last part of the network. Sub-
sequently, the Softmax layer is dropped and the archi-
tecture is used for feature extraction. For each previ-
ously unseen input, a feature vector is extracted. After
the completion of the feature extraction, the Euclidean
distance metric is used to measure the dissimilarity be-
tween two input models. Small distance values indicate
that the corresponding feature vectors represent mem-
bers of the same protein class.

The calculation of descriptors took on average 2.5
milliseconds per model on a GeForce GTX1070 GPU,
while the average comparison time between two de-
scriptors is 0.002 milliseconds on an Intel Core i7-
6700K CPU.

Acknowledgement
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project funded by the GSRT - Hellenic Foundation for
Research and Innovation.

4.2 Protein Shape Retrieval using 3D Zer-
nicke moments (3DZM) - Yufan Wang

3D Zernike moments are used as the shape descrip-
tors. A nlm file is generated with Zernike moments’
nlm coefficienst of the 5,298 proteins inside. Corre-
lation Coefficient(cc) is used to evaluate the similarity
of two shapes; the similarities are calculated between
each pair, resulting in 5297∗5298/2 pairs. Fast Fourier
Transformation (FFT) method is used to speed up the
model rotation calculation to find the situation that max-
imises the overlap of the two proteins. The correlation
coefficient cc is then computed as the similarity of the
two shapes. The dissimilarity between each pair is de-
fined as (1− cc).

Data preprocessing (transforming off files into pdb
files) costs nearly 1.5 hours. Another 0.5 hour is re-
quired to get descriptors, namely, to generate the nlm
file from the input 5,298 pdb files. To align and com-
pute similarities between two shapes, about 0.5 second
is required; therefore, the comparison calculations lasts
4 hours using 480 cpus.

4.3 3D Zernike Descriptors (3DZD) - Xusi
Han, Tuan M. Lai, Genki Terashi,
Daisuke Kihara

Our group has submitted three runs, all of which were
based on 3D Zernike Descriptors (3DZD). We repre-
sented the protein global surface information with 3D
Zernike Descriptors (3DZD) and quantified the simi-
larity between 3DZDs by either the Euclidean distance
or a similarity score from neural network. 3DZD is
mathematical moment-based invariants of 3D functions
[12], which has been demonstrated efficient for various
biomolecular structure comparisons [13]. To calculate
3DZD for each protein, the surface triangulation of sol-
vent excluded surface was mapped onto a 3D cubic grid,
where each voxel (a cube defined by the grid) was as-
signed either 1 or 0: 1 for a surface voxel that locates
closer than 1.7 grid interval to any triangle defining the
protein surface, and 0 otherwise. This 3D grid with
1s and 0s was considered as a 3D function f(x), from
which 3DZD was computed. On average, 3DZD calcu-
lation takes 3.48 seconds per protein.

For the first submission (3DZD1), the global surface
similarity between two proteins was quantified by the
Euclidean distance of their 3DZDs. A small distance
value indicates that two proteins share similar global
surface. In this calculation, we took the triangulated
surface (.off file) for each of the 5,298 proteins as the
input to 3DZD computation and generated the 121-
dimensional vector for each protein. The Euclidean dis-
tances between one query protein against all other 5297
proteins were calculated and put into each row in our
first distance matrix.

For the second run (3DZD2), we built a deep learning
based model to quantify the similarity between protein
structures. The model was trained on all proteins in the
SCOPe 2.07 database. We downloaded about 274,230
protein structures from the database for training. Sol-
vent excluded surface of each protein was generated
using the EDTSurf software [6]. The triangulated sur-
face was then taken as the input to 3DZD computation,
which produced 121-dimensional vector for each pro-
tein. On a high level, given a pair of protein struc-
tures, the deep learning model outputs a score between
0 and 1 indicating their similarity (the higher the score,
the more similar the structures). The model consisted
of an encoder whose role was to compute key features
from a 3DZD vector. The encoder was a feed forward
neural network consisting of three hidden layers. Each
layer used ReLU as the activation function. Intuitively,
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each hidden layer of the encoder computes a new level
of representation of the original 3DZD vector. Given
two protein structures as input, the model used the en-
coder to compute new features for each protein’s 3DZD
vector. The computed features and the original 3DZD
vectors of the two structures were then compared using
various operations such as the Euclidean distance, the
Cosine similarity, the element-wise absolute difference,
and the element-wise product. The comparision results
as well as additional features such as the difference in
number of vertices and the difference in number of faces
were together fed into a final feed forward neural net-
work that outputs a score between 0 and 1. We used
techniques such as batch normalization and dropout to
improve the training process. In the training data, if
two protein structures had the same protein level, they
were considered as being similar. When using a Titan
X GPU, the neural network took about 0.1774 seconds
on average to compare two proteins (given that 3DZD
vectors have been pre-computed).

For the third run (3DZD3), we have used the same
approach as in the second submission, except that in
this case we trained the model to consider two protein
structures to be similar only when the two structures
have the same species level. In the second submission,
if two protein structures have the same proteins level
but different species level, we still considered them as
being similar.

4.4 Histogram of Area Projection Trans-
form (HAPT)- Andrea Gichetti

The method characterizes protein shapes with the His-
tograms of Area Projection Transform (HAPT) [14].
This descriptor, well suited for nonrigid shape retrieval
and well behaving in SHREC 2018 contest on protein
shape retrieval [8] is based on a spatial map (Multiscale
Area Projection Transform) [14] that encodes the likeli-
hood of the 3D points inside the shape of being centres
of spherical symmetry. This map is obtained by com-
puting, for each radius of interest, the value:

APT (~x, S,R, σ) = Area(T−1R (kσ(~x) ⊂ TR(S,~n)))

where S is the surface of the object, TR(S,~n), is the
parallel surface of S shifted along the normal vector ~n
(only in the inner direction) and kσ(~x) is a sphere of ra-
dius σ centred in the generic 3D point ~x where the map
is computed. Values at different radii are normalized in
order to have a scale-invariant behaviour, creating the

Multiscale APT (MAPT):

MAPT (x, y, z, R, S) = α(R)APT (x, y, z, S,R, σ(R))

where α(R) = 1/4πR2 and σ(R) = c ·R, 0 < c < 1.
A discrete MAPT is easily computed, for selected

values of R, on a voxelized grid including the surface
mesh, with the procedure described in Giachetti & Lo-
vato [14]. The map is computed in a grid of voxels with
side s on a set of corresponding sampled radius values.
For the proposed task, discrete MAPT maps were quan-
tized in 12 bins and histograms computed at the selected
scales (radii) were concatenated creating an unique de-
scriptor. Voxel side and sampled radii were fixed set for
each run and chosen to represent the approximate radii
of the spherical symmetries visible in the models.

We tested three different options for the algorithm’s
parameters. In the first (HAPT1), we put s = 0.5
and we computed the MAPT histograms for 8 increas-
ing radii starting from R1 = 0.5 iteratively adding a
fixed step of 0.5 for the remaining values and setting
σ = 0.25. In the second (HAPT2), we put s = 0.4
and we computed the MAPT histograms for 10 increas-
ing radii starting from R1 = 0.4 iteratively adding a
fixed step of 0.4 for the remaining values and setting
σ = 0.2. In the third (HAPT3), we put s = 0.3 and we
computed the MAPT histograms for 8 increasing radii
starting from R1 = 0.3 iteratively adding a fixed step
of 0.3 for the remaining values and setting σ = 0.15.

The procedure for model comparison then simply
consists in concatenating the MAPT histograms com-
puted at the different scales and measuring distances be-
tween shapes by evaluating the Jeffrey divergence of the
corresponding concatenated vectors. The estimation of
the descriptors took 4.98 seconds on average for the first
run, 11.1 seconds on average for the second run, 13.02
seconds on average for the third run on a laptop with
an Intel R© CoreTM i7-4720HQ CPU running Ubuntu
Linux 18.04. The descriptor comparison time was neg-
ligible.

4.5 A Framework towards Protein Shape
Singularity Characterization (Ft-
PSSC) - Halim Benhabiles, Karim
Hammoudi, Feryal Windal, Mah-
moud Melkemi

4.5.1 Method description

Our proposed retrieval method aims at exploring three
different feature extraction techniques in order to reach
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Table 2: Running times in seconds of each step of the Ft-PSSC processing pipeline obtained respectively from the smallest
and biggest protein of the dataset.

Distance to all proteins of the dataset
Point
cloud
size

Pre-
processing GASD

Local
FPFH

FPFH
feature

selection VLAD

Vector
length
512

Vector
length
4224

Vector
length

512+512

53k 0.12 0.85 6.56 0.001 0.11 0.017 0.14 0.03259k 1.23 4.35 128 0.009

the best performance. The first technique relies on the
combination of handcrafted local and global geomet-
ric descriptors for representing the shape of each pro-
tein point cloud. The local descriptor corresponds to
the Fast Point Feature Histograms (FPFH) [15] which
has shown in the literature its efficiency to character-
ize the local geometry around a surface point of a 3D
object. The global descriptor is the Globally Aligned
Spatial Distribution (GASD) [16] that is generally used
for object recognition and pose estimation problems us-
ing point clouds. The combination of the two descrip-
tors requires as a prior step a FPFH-based protein global
representation. To this end, VLAD (Vector of Locally
Aggregated Descriptors) technique [17] is exploited for
gathering the FPFH associated to each point of the pro-
tein into a single descriptor. This global FPFH is then
concatenated to the GASD resulting in a hybrid global
descriptor. The final descriptor (FPFH+GASD) of di-
mension 1,024 is then used to measure the similarity
between a protein query and the proteins of the dataset.
For the similarity measure, we use a L2 distance. The
two other techniques exploit the two descriptors sepa-
rately.

4.5.2 Processing pipeline

• Data Preprocessing: it consists of a subsampling
and a normalization of the protein point cloud. The
subsampling allows to reduce the quantity of con-
sidered protein points to approximately 20% in or-
der to go faster for further calculations. To this
end, we use the simplification method proposed in
Benhabiles et al. [18]. The main advantages of this
method are its ability to preserve the global shape
of the protein thanks to a uniform subsampling
and its swiftness thanks to the use of advanced
data structures. The normalization is performed by
calculating the minimum bounding sphere [19] of
the protein in order to rescale it into a unit sphere

S(c, r) where c is the center set to 0 and r is the
radius set to 1. This makes each protein of the
dataset invariant to geometric transformations in-
cluding scale and translation.

• GASD descriptor calculation [16]: the descriptor
consists of firstly estimating a reference frame of
the point cloud using PCA (Principal Component
Analysis) approach. The output of this step is three
axis x, y and z calculated on the basis of the co-
variance matrix of the pre-processed point cloud
and the associated eigenvectors. This reference
frame is exploited to transform the point cloud into
a canonical coordinate system making it pose in-
variant. The final global descriptor is then fitting
points of the cloud with respect to a regular grid
of 3D voxels. In our experiment the size of the
resulting GASD vector is set to 512 dimensions.

• FPFH global representation (VLAD-FPFH): this
stage goes through significant intermediate steps
since the usual FPFH descriptor is only calculated
for each point of the cloud and does not directly
provide a global representation of the protein. In
what follows, we describe the different steps that
allow to build a global FPFH descriptor.

– Local FPFH calculation [15]: the first step
consists of calculating an FPFH descriptor
for each point of the cloud (protein). To
this end, the surface normals of all the points
are calculated. Each point is then consid-
ered with its k nearest neighbors to calculate
the angular variations between the normals
of all possible pairs within the neighborhood.
The angular variation is based on a Darboux
frame construction. This result out into a 33
dimensions’ feature vector for each point of
the cloud.
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– FPFH based relevant feature selection [15]:
the goal of this step is to select for each pro-
tein the most relevant FPFH vectors from the
ones calculated in the previous step. More
precisely, many of the calculated FPFH vec-
tors are redundant in all the dataset and thus
do not reveal prominent characteristics that
allow to distinguish between protein classes.
To reach this goal an average FPFH vector is
calculated over all the dataset and a distance
distribution to this average vector is calcu-
lated for each protein. The obtained distribu-
tion for each protein which is close to a Gaus-
sian is exploited to select the outlier vectors
(vectors of interest). In our experiment, these
vectors are those for which the distance is out
of range [d−δ, d+δ] where d is the mean dis-
tance within a protein and δ is set to a large
value in such way to collect 0.5% of the total
number of FPFH vectors. 64 FPFH vectors
are retained for each protein.

– Vector of Locally Aggregated Descriptors
(VLAD) [17]: this latter step allows to obtain
a compact global vector for each protein. To
this end, we first calculate an FPFH vector-
based k-means over all the dataset. In our
experiment we set k to 128 with centroids of
33 dimensions. Then we apply the accumula-
tion process of local descriptors (the selected
ones in previous step) for each protein to gen-
erate a global vector of 4,224 dimensions.

• Hybrid global descriptor (GASD + VLAD-FPFH):
before to combine the global FPFH vector
(VLAD-FPFH) with the GASD one, we apply a
PCA (Principal Component Analysis) technique
on each VLAD-FPFH descriptor to reduce its di-
mension from 4,224 to 512. This normalization
aims at balancing the weights of both descriptors
(GASD and VLAD-FPFH) in the final hybrid de-
scriptor (GASD-VLAD).

4.5.3 Running time

The different steps described in the processing pipeline
have been coded in C/C++ using PCL [20] on an In-
tel Core i7-6700HQ CPU@2.60 GHz with 32 GB of
memory. The running times in seconds of each step are
reported in table 2 for two protein point clouds having
respectively the smallest and biggest size in the dataset.

It is worth mentioning that the written code for each
step has not been optimized to run in a parallel fashion.

5 Results

5.1 Overall results

Each team submitted one to three 5298× 5298 dissim-
ilarities matrix resulting in 13 different matrices from
5 teams to evaluate. Two teams were unable to pro-
duce results by the deadline. Tables 3 and 4 summa-
rize the results, computed for each result matrix over
all classes, at the species and proteins level, respec-
tively. Precision-Recall curves are presented in figure
2. A quick overview show that all methods performed
better at the proteins level than at the species level.
Also, methods relying on the same descriptors (such
as 3D Zernike descriptors) showed similar overall re-
sults while two different descriptor comparison meth-
ods can improve the retrieval performances (3DZD1
and 3DZD3 at the proteins level, for instance).

5.2 Precision-Recall curves

Figure 2 shows the retrival performance of each method
at the proteins and species levels. The precision indi-
cates the relevance of the results from a query, while
the recall reflects the proportion of relevant results suc-
cessfully retrieved.

3DZD, 3DZM and HAPT methods all display very
good precision (>0.75) even for high recall values. Fur-
thermore, these methods produced very similar perfor-
mances when using different descriptors comparison
methods (for 3DZD) or parameters (for HAPT). Using
a training dataset of protein surfaces, the 3DZD method
improve the precision at high recall values. The two
training approach produce the same results at the pro-
teins level, while the 3DZD2 approach, trained to dis-
criminate surfaces at the species level, display better at
the species level.

ConvLDSNet and Ft-PSSC displayed lower perfor-
mances as evaluated by the precision-recall curves, with
precision decreasing as the recall increases. From the
three submitted set of results computed with the Con-
vLDSNet method, the ConvLDSNet2 variant (using the
MolMovDB [11] only as a training set) show slighlty
better results compared to the ConvLDSNet3 variant
(trained using the MolMovDB and the SHREC18’ pro-
tein shape retrieval dataset [8]). The ConvLDSNet1
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Figure 2: Precision-Recall curves for the proteins (left) and species (right) level. For each row, the precision-recall curves of
all submitted results are shown.

variant (using the SHREC18’ protein shape retrieval
dataset only for training) show significantly lower per-

fermance. Regarding the Ft-PSSC method, using the
VLAD (Vector of Locally Aggregated Descriptors)
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technique [17] alone or in combination significantly
damaged the retrieval performances.

5.3 Retrieval statistics

As one might expect, all retrieval statistics are increased
at the proteins level compared to the species; this can
be explained as the classes are significantly more popu-
lated in the proteins level (Table 1).

Similarly to the Precision-recall curves, 3DZD,
3ZDM and HAPT displayed better retrival perfor-
mances. These methods showed really good perfor-
mance at retrieving proteins at the species level, and
were able, from a given protein shape, to retrieve a
member of the same class at the protein level in more
than 99% of the cases. Furhermore, these methods also
showed high first-tier and second-tier values. The train-
ing used in the 3DZD2 and 3DZD3 approaches improve
the 3DZD1 results for the first- and second-tier statis-
tics, but not for the nearest-neigbor or the E-measure
values. This training approach also allowed the 3DZD2
and 3DZD3 sets of results to outperform the 3DZM
approach for the first- and second-tier statistics while
the 3DZM approach display slightly better results for
the nearest-neighbor metrics at the species level. The
HAPT method displayed very similar results for the 3
sets of results. Interestingly, the 3DZD2-3 and HAPT1-
3 are almost equivalent at the species level while the
3DZD2-3 methods produced better first-tier, second-
tier, E-measure and DCG at the proteins level.

The Ft-PSSC method using the GASD descriptor
only displayed the same performance as the previous
methods regarding the Nearest-Neigbor statistics. This
method displayed significantly lower performance as
compared to the 3DZD, 3DZM and HAPT methods for
the other statistics, however. The VLAD technique,
when used, produced lower performances in all statis-
tics. Regarding the ConvLDSNet method, the best re-
sults are produced when the MolMovDB dataset only:
using the SHREC18’ protein retrieval dataset only re-
sulted in significantly lower performances.

5.4 Execution times

Table 5 summarizes, for each method, the execution
times of the 3D descriptors calculations and the 3D
descriptors comparison when provided by the authors.
The 3D descriptors calculations are in the range of 3.95
to 13.02s, except for the ConvLDSNet method which

uses GPUs to accelerate calculations (2.5ms). In com-
parison, descriptors comparisons consumed lesser time
(from 0.002 ms for ConvLDSNet to 0.5s for 3DZM) for
an individual calculation.

6 Discussion
• The SHREC19’ dataset was highly homogenous

(surface of similar size, only globular proteins
from orthologs, etc)

• SHREC18’ dataset did not improve methods’
performance (strikingly examplified by ConvLD-
SNet) and even damaged ConvLDSNet perfor-
mance when used as lone training set

• Need to use additional features to discriminate be-
tween similar proteins (electrostatics, etc) to im-
prove overall preformance of the methods
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