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ABSTRACT

Hereby, a new publicly available 3D reconstruction-oriented
dataset is presented. It consists of multi-view range scansof
small-sized objects using a turntable. Range scans were cap-
tured using a Microsoft Kinect sensor, as well as an accu-
rate laser scanner (Vivid VI-700 Non-contact 3D Digitizer),
whose reconstructions can serve as ground-truth data. The
construction of this dataset was motivated by the lack of a rel-
evant Kinect dataset, despite the fact that Kinect has attracted
the attention of many researchers and home enthusiasts. Thus,
the core idea behind the construction of this dataset, is to al-
low the validation of 3D surface reconstruction methodolo-
gies for point sets extracted using Kinect sensors. The dataset
consists of multi-view range scans of 59 objects, along with
the necessary calibration information that can be used for ex-
perimentation in the field of 3D reconstruction from Kinect
depth data. Two well-known 3D reconstruction methods were
selected and applied on the dataset, in order to demonstrate
its applicability in the 3D reconstruction field, as well as the
challenges that arise. Additionally, the appropriate 3D recon-
struction evaluation methodology is presented. Finally, as the
dataset comes in classes of similar objects, it can also be used
for classification purposes, using the provided 2.5D/3D fea-
tures.

Index Terms— 3D reconstruction dataset, Kinect Sensor,
Vivid VI-700 Non-contact 3D Digitizer, Fourier-based 3D re-
construction, Poisson surface reconstruction

1. INTRODUCTION AND RELATED WORK

Since its release date (Nov. 2010), the Microsoft Kinect sen-
sor has attracted the attention of many researchers and home
enthusiasts, due to its ability to produce high-resolutiondepth
maps in real-time and mainly due to its low price. Many
Kinect-based applications have already appeared, including
3D reconstruction-based ones; however, there is still a lack of
appropriate datasets of small-sized objects, with fine details,
captured by a Kinect sensor (along with the ground truth), that
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can be used for experimentation with 3D reconstruction prob-
lems. Instead, there exist a few datasets dealing with 3D infor-
mation of objects, usually obtained using laser scanners. One
of the mostly used datasets for 3D reconstruction of small-
sized objects is the MiddleBury Multi-View Stereo dataset,
described in [1], where the authors captured two objects from
many different positions, using a CCD camera, while the ref-
erence 3D models were captured using a Cyberware Model
15 laser stripe scanner. 200 individual scans were taken for
each object. 32 objects, usually found in a household, were
captured by stereo cameras in [2]. Ground truth regarding
3D data was acquired using a SICK LMS400 range scanner
with 0.5 degree angular resolution. The objects were posi-
tioned on a turntable and scans were taken at30◦ intervals.
The authors in [3] have developed a dataset consisting of 6
outdoor complex surfaces. For acquiring 3D positions (which
were further utilized as ground truth for multi-view recon-
struction), they used a Zoller+Fröhlich IMAGER 5003 laser
scanner. For tackling complexity of the surfaces, each surface
was scanned from multiple positions.

In this paper, a dataset of small to medium-sized objects
is proposed, captured using a Kinect sensor. We apply two
well known surface reconstruction methodologies, in order
to highlight the challenges imposed by the Kinect-based data,
contrasting to a standard laser scanner. The dataset consists of
3D information of each object from a multitude of viewpoints,
as well as calibration information, necessary for reconstruc-
tion, while the corresponding 3D data, as they were captured
using a laser scanner are provided for reconstructing ground
truth. Moreover, RGB color images and depth information
of each view are provided as part of the dataset. Objects
were grouped in classes of visual and contextual similarity,
hence can be used for studies on 2.5D/3D feature extraction
for classification purposes. It is expected that the proposed
dataset can contribute to the improvement or development
of novel algorithms targeting the challenges imposed by Mi-
crosoft Kinect’s mechanism of acquiring three-dimensional
information.



2. SETUP AND ACQUISITION

A total of 59 small-sized objects (toys) were scanned sequen-
tially from multiple viewing angles using a turntable. Fig.1
shows representative examples of the classes composing the
dataset. Each class consists of objects belonging to the same
type of object (17 land mammals, 6 dinosaurs, 11 sea mam-
mals, 10 objects with humans, 2 guns, 2 bugs, 5 cars and 6 un-
categorized objects); hence, the proposed dataset can be uti-
lized for classification purposes, based on appearance and 3D
features. The turntable was rotated at steps of20◦ clockwise,
in the case of the Kinect sensor and40◦ counter clockwise,
in the case of the Vivid VI-700. This resulted in a total of 18
views per object for the Kinect and 9 for the Vivid VI-700.
The distance between the Kinect sensor and the rotation axis
of the turntable varied from 67 to 70cm, while Vivid scanner
was positioned from 85 to 92cm with regards to the rotation
axis.

The resolution of the Kinect depth-maps is640 × 480,
while the range-scans resolution is200 × 200 in the case of
the Vivid VI-700. Each object view is also accompanied by
files corresponding to the 3-D coordinates of each point in
the corresponding point cloud. These measurements were ac-
quired by using standard OPENNI unprojection functions for
the Microsoft Kinect sensor and VIVID SDK for the VI-700
Digitizer and are given in millimeters. Additionally, the nec-
essary extrinsic calibration information is provided withthe
dataset, which can be used for the registration of the 3D data
captured from the different views. More specifically, the rota-
tion axis of the turntable is given with respect to the sensor’s
3D coordinate system and in the form of a 3D point and an
orientation vector. For the extraction of these parameters, a
calibration pattern consisting of 2 planar surfaces meeting at
the turntable’s central axis was placed on the turntable and
scanned both by Kinect and VI-700. Depth data of each pla-
nar surface were used in a plane fitting algorithm to obtain the
3D equations of the planar surfaces. Since they meet at the
turntable’s central axis, this axis was calculated using plane-
by-plane intersection. The full dataset is available from the
following location:http://vcl.iti.gr/3d-scans/.

3. 3D RECONSTRUCTION EXPERIMENTS

In order to validate the applicability of the dataset for 3D re-
construction, two well-known methodologies [4, 5] that show
to be resilient to data noise were applied to the captured data.
Both methods work with oriented point sets as input (i.e. ver-
tices plus their oriented normals). Therefore, the normal on
each vertex was calculated using Principal Component Anal-
ysis on neighborhoods of 18 points. The 3D point clouds gen-
erated for each view, as well as the corresponding sets of nor-
mals, were subsequently registered to a common coordinate
system using the extrinsic calibration data.

Additionally, 3-D points corresponding to objects other
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Fig. 2. Examples of registered point clouds taken from differ-
ent views, using (a) Kinect sensor and (b)Vivid VI-700

than the scanned one (e.g. the turntable and the background)
were excluded from the point set. The radius of the turntable
used is approximately 250mm. We used this information
along with the rotation axis position and direction to reject
points that are outside the turntable surface when reconstruct-
ing the object’s point cloud. Fig. 2 shows an object’s point
cloud as acquired from both sensors.

3.1. Fourier-based 3D reconstruction

We applied the methodology described in [4] for extract-
ing watertight surface reconstructions of each object in the
dataset. Specifically, this technique computes a volumetric
indicator functionχ(x, y, z) of the solid model, which equals
the unity inside the model and zero outside. The volumetric
function is efficiently calculated in the 3D Fourier transform
(FT) domain, making use of Stoke’s theorem and exploiting
only the information in the input oriented point set (vertex
positions and normals). The indicator function in the original
3D domain is given by the inverse 3D FT and finally the
model’s surface is obtained as the extracted 0.5-level isosur-
face of the indicator function. Results of the reconstruction,
for one example object, are presented in Fig. 3(c) and 3(d).

3.2. Poisson 3D reconstruction

Similarly to the previous approach, the Poisson reconstruc-
tion [5] method aims at computing an appropriate volumetric
indicator function from the input oriented point set and ex-
tracting an isosurface of this function. The main idea behind
the Poisson reconstruction method is that the gradient of the
indicator function is actually a vector field that is non-zero
only near the surface of the object, where it equals the surface
normal. Therefore, the input oriented point samples consti-
tute actually samples of the indicator function’s gradientand
the problem reduces to finding the scalar volumetric function
χ(x, y, z) whose gradient equals the vector field~V defined by
the samples. Applying the divergence operator, the problem
translates into computing the functionχ(x, y, z) for which
holds:

∆χ ≡ ∇ · ∇χ = ∇ · ~V (1)

Additionally, since the accurate representation of the implicit
indicator function is only necessary near the surface, the use
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Fig. 1. Typical examples of different object categories: (a) LandMammals, (b) Dinosaurs, (c) Sea Mammals, (d) Humans, (e)
Guns, (f) Bugs, (g) Cars.
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Fig. 3. RGB image of object captured with Vivid VI-700 (a)
and Kinect (b). Reconstruction based on Fourier Coefficients
of the Vivid VI-700 sensed point cloud (c) and the Kinect-
based one (d). Poisson reconstruction of the Vivid VI-700
sensed point cloud (e) and the Kinect-based one (f).

of an adaptive octree-structure to represent the implicit func-
tion is possible, in order to solve efficiently the problem. We
applied the method using an octree levels depth of 8. Results
produced with Poisson reconstruction can be found in Fig.
3(e) and 3(f).

4. EVALUATION OF THE RECONSTRUCTION

As can be seen from Fig. 3, Vivid VI-700-based range data,
although of lower resolution and half as many views than the
Kinect part of the dataset, provide much more accurate infor-
mation for reconstructing the objects’ surface. Furthermore,
inspection of the whole dataset reveals that Poisson-based

3D reconstruction [5] has the ability to extract the 3D struc-
ture of our objects more effectively, yet at the cost of higher
computational effort. Consequently, the Poisson-based recon-
structed models from the Vivid VI-700 data were used as ref-
erence (ground truth), in each case. However, other (more
recent or future) methodologies for 3D reconstruction may
be even more accurate; here, the use of Poisson 3D Recon-
struction provided with a satisfactory framework for evaluat-
ing Kinect-based reconstructions.

Since the relative positions of the Kinect and the Vivid
VI-700 sensor are unknown for each object, an Iterative Clos-
est Points (ICP) algorithm was applied to register the recon-
structed model with the ground-truth one. This enables one
to compare the two models effectively and perform a mean-
ingful quantitative evaluation. The employed ICP algorithm
is based on Delaunay tessellation of the 3D points for effi-
ciently finding closest points [6].

For quantitatively evaluating our results, both accuracy
and completeness were measured [1]. Accuracy is defined
as the distanced, for which Tpnts percent of the total points
in the reconstructed modelM have less or equal distance to
their closest point of ground truth modelG:

|Md| ≥ Tpnts×N

Md = {‖Mi −G‖ < d},Mi ∈ M
(2)

Completeness measures how complete the reconstructed
model is. It is defined as the percentageT of points of
the ground truth model, whose distance to the reconstructed
model is smaller thanTd. Fig. 4(a) shows the accuracy for
three different thresholds (75-90%), while Fig. 4(b) shows
completeness versus different criteria (thresholds), from 1mm
to 8mm. It can be deduced that Poisson reconstruction out-
performs the Fourier-based approach, as it is more robust to
salient, high frequency information and can produce smoother
reconstructions in areas of sparse samples. Results show that
the proposed dataset is very challenging due to the objects’
nature, as well as the inaccurate, noisy and sometimes incom-
plete Kinect data, especially for smaller objects. The objects
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Fig. 4. Completeness and Accuracy of reconstructing kinect-
based depth measurements, using Poisson-based and Fourier
Coefficients-based reconstruction methods, for the whole
dataset.

used present a large variety in terms of size and details,
spanning from very small to larger ones, all having detailed
structure. Taking a closer look at the completeness/accuracy
results with respect to the size of each point cloud showed
that both completeness and accuracy deteriorate for objects
described with smaller point clouds. More precisely, analy-
sis of variance between point clouds’ sizes (as resulted after
reconstructions using the Vivid VI-700 sensor) and accu-
racy, gave low significance values (p < 0.1) for thresholds
Tpnts ≥ 90%, while significantly lowp-values (p << 0.05)
were given for point cloud size and completeness, for most
thresholds.

5. DISCUSSION AND CONCLUSIONS

Current 3D datasets are usually aqcuired utilizing laser sen-
sors, which are known to deliver quite accurate results and

most reconstruction methods proposed in bibliography deal
with such data. With the advent of the Kinect sensor, and
its relatively low cost, the tendency and need for extracting
3D information based on it, has shifted towards more afford-
able solutions. The proposed dataset offers a kinect-based
collection of depth scans of small to medium-sized objects,
as well as the corresponding 3D data that can be used for re-
constructing ground truth, using a laser sensor. The appli-
cation of well-known techniques for reconstruction has high-
lighted the challenge imposed by the kinect-based collected
data. The proposed dataset is accompanied by RGB image
data, as the use of visual information for supporting 3D in-
formation extraction can play an important role for retriev-
ing complex three-dimensional geometries. We encourage
researchers in the field of 3D reconstruction to evaluate their
methods on this dataset. The purpose would be to find out
which types of methods can efficiently deal with the Kinect
data and its shortcomings. A further criterion for the evalua-
tion would be the execution time required for the reconstruc-
tion. Kinect is offering a high frame rate of depth images,
and, thus, enables real time applications, which was out of
topic with the laser scanners. Based on the aforementioned,
Kinect is opening a new research field, real-time 3D recon-
struction from imperfect-noisy data, and the offered dataset
aims to provide the means for promoting such research.
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