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Abstract

In this paper, a unified framework for multimodal content retrieval is pre-

sented. The proposed framework supports retrieval of rich media objects as

unified sets of different modalities (image, audio, 3D, video and text), by ef-

ficiently combining all monomodal heterogeneous similarities to a global one

according to an automatic weighting scheme. Then, a multimodal space is

constructed, to capture the semantic correlations among multiple modalities.

In contrast to existing techniques, the proposed method is also able to handle

external multimodal queries, by embedding them to the already constructed

multimodal space, following a space mapping procedure of a submanifold

analysis. In our experiments with five real multimodal datasets, we show the

superiority of the proposed approach against competitive methods.
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1. Introduction

The continuously increasing amount of multimedia content on the Inter-

net emerged the imperative need for searching in various online multimedia

databases. The traditional text-based retrieval techniques failed to address

the requirements for searching this massive media content, therefore, research

has been focused on content-based multimedia retrieval methods. Searching

for similar to a query content requires the automatic extraction of low-level

features from media, e.g. in case of an image these would be color, texture,

shape, etc. Thus, several content-based techniques have been developed in

the past, performing retrieval of a single modality, such as 3D objects [11, 19],

images [1, 31], video [12, 23] or audio [2, 30].

However, users who search for content are interested in finding seman-

tically similar results to a query, regardless of its modality. Towards this

aim, Yang et al. [37] proposed a method for connecting various semantically

similar media of different modalities. In order to manage the case of having

different modalities that carry the same semantics, the concept of Multime-

dia Document (MMD) was introduced. An example of a MMD is presented

in Figure 1, which describes a physical entity of an airplane and consists of

its 3D representation, real image and sound.

Recently, multimedia search engines have evolved, allowing combinations

of queries of different modalities. Multimodal search allows users to enter

multiple query types and retrieve multiple types of media simultaneously

in the form of MMDs. An approach for multimodal search has been in-
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Figure 1: Multimedia Document (MMD) example containing three modalities: 3D, image

and audio.

troduced by the I-SEARCH 1 framework [3]. I-SEARCH is a real world

application, which enables retrieval of several types of media (3D objects,

2D images, sound, video and text) using as query any of the above types

or their combinations in the form of MMDs. I-SEARCH made a significant

step towards content-based multimedia retrieval, where users can search and

retrieve media of any modality using a single unified retrieval framework and

not a specialized system for each separate modality. Moreover, users in I-

SEARCH can enter multiple queries simultaneously and thus, retrieve more

relevant results. However, handling media in the form of MMDs is a highly

complicated process, since the successful modeling of the low-level feature

associations among the different modalities is required, in order to perform

multimodal retrieval.

1Available at http://vcl.iti.gr/is
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2. Related Work and Contribution

2.1. Dimensionality Reduction Methods for Monomodal Retrieval

In content-based retrieval methods, media are usually represented by low-

level features in the form of high-dimensional descriptor vectors in which a

distance metric (more often Euclidean-based) is applied to calculate similar-

ity. However, since in most cases the extracted high-dimensional descriptor

vectors face the problem of Dimensionality Curse [6], such metrics are inap-

propriate for efficient large scale retrieval. Therefore, nonlinear dimensional-

ity reduction methods based on Manifold Learning [4, 5, 22] were proposed

for mapping the high-dimensional descriptors to a more representative fea-

ture space of lower dimensions. Such methods have been widely applied in

monomodal cases, like 3D [20], image [29], and audio [21] based retrieval,

raising significantly the retrieval accuracy.

2.2. Multimodal Retrieval Methods

Similar approaches were recently introduced for multimodal retrieval in

order also to produce a low dimensional feature space, able to combine feature

spaces of different modalities. The existing multimodal methods are divided

into two broad categories where: (a) the cases of internal multimodal queries

and external monomodal queries are handled; and (b) the generic category

of multimodal retrieval, where also the case of external multimodal queries

is handled. At this point we must specify that according to [9], a multimodal

query is considered as a rich media object in the form of a MMD, constituting

of medias of different modalities simultaneously, whereas a monomodal query

is considered as a media of a certain modality.
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A multimodal retrieval method was presented in [37], where a global

MMD distance measure is calculated as a weighted distance of the monomodal

distances. Then, the dimensionality reduction method of Multidimensional

Scaling is applied, so as to construct a unified multimodal (MMD) space,

where each MMD is represented as a point. Afterwards, a Laplacian matrix

is constructed, using the Local Regression and Global Alignment (LRGA)

technique, to generate the ranked lists of each query. A weakness of LRGA

is that it supports multimodal queries when they exist in the database and

only monomodal, otherwise. Additionally, efficient multimodal retrieval is

not ensured, since the global MMD distance is highly dependent on the dis-

criminative power of each separate monomodal descriptor.

Besides LRGA, several multimedia retrieval approaches were also pro-

posed in the literature, capable of handling internal multimodal queries and

external monomodal queries. For example, Yang et al. [36] proposed to

generate a semi-semantic graph (MMDSSG), based on which a Cross Media

Indexing Space (CMIS) is constructed. Then, for each query the optimal

dimension of CMIS was determined and the multimodal retrieval was per-

formed on a per-query basis. Additionally, relevance feedback methods were

exploited to improve the retrieval performance. However, the case of ex-

ternal multimodal queries was not supported. Zhang et al. [39] applied

the Laplacian Eigenmaps method to construct a semantic space of MMDs,

called Multi-modality Laplacian Eigenmaps Semantic Subspace (MLESS),

so as to map the monomodal query to the center of its monomodal neigh-

bors in MLESS and retrieve MMD results. Additionally, in [33], Wu et al.

proposed a multimodal retrieval method, following the Canonical Correla-
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tion Analysis (CCA), in order to create an isomorphic subspace. Moreover,

through one or more relevance feedback iterations, authors demonstrated

that the retrieved results could be further improved for the case of internal

queries. When a query does not belong to the database, k-nearest neighbors

of the same modality are retrieved and their average coordinates in CCA

subspace form a new query. Another multimodal retrieval method, called

Cross-modal Factor Analysis (CFA) [18], identifies the correlations between

two different modalities and performs a dimensionality reduction method to

build the semantic space of MMDs. CFA proved to be superior against other

similar approaches, such as the CCA method [17]. Alternatively, instead

of constructing the semantic space of MMDs, several multimodal retrieval

methods followed different strategies. For example, in the Kernel Canonical

Correlation method [38], the correlations between the modalities are identi-

fied, so as to perform multimodal retrieval for the case of internal queries.

However, all the aforementioned works do not support the case of external

multimodal queries.

Additionally, in the work of [16], the retrieved results by each modality

are combined, using reranking and late fusion methods, in order to perform

multimodal retrieval. Towards this direction, several works extended multi-

modal retrieval methods for mobile phones like the works of [10, 34], [35].

Nevertheless, since the aforementioned methods avoid constructing the se-

mantic space of MMDs, multimodal descriptor vectors cannot be generated,

indexed and stored. Therefore, scalable content-based retrieval was not en-

sured.

In contrast to all the aforementioned multimodal methods, a promising
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multimodal retrieval method has been recently proposed in [9], where the

semantic space of MMDs is built based on the Manifold Learning method

of Laplacian Eigenmaps [5]. In order to preserve the local neighborhood of

each media into the low-dimensional MMD space, a multimodal adjacency

matrix is constructed. In case of internal queries, the nearest neighbors per

modality are computed and then, an equal number of each modality’s near-

est neighbors are combined to form the multimodal adjacency matrix, in

which ones and zeros declare that two MMDs are neighbors or not, respec-

tively. Consequently, multimodal descriptor vectors are generated from the

constructed MMD space. The generated multimodal descriptors are then

indexed and stored into the multidimensional structure of [13]. Moreover, in

order to handle the case of posing external multimodal queries (in contrast

to the aforementioned multimodal retrieval methods, where only the case of

monomodal external queries was handled), a clustering method is applied

to organize the constructed MMD space into CL predefined clusters. After-

wards, an RBF network is trained to handle the missing modalities of an

external MMD-query and thus, to predict the center of the cluster that is

closer to the MMD-query. The cluster center is then used as the multimodal

descriptor of the external query and semantically similar MMDs are retrieved

from the database.

Despite the fact that the multimodal retrieval method of [9] seems to be

promising, two important factors can be further elaborated: (a) the more ef-

ficient construction of the MMD space and (b) the more successful handling

of the case of posing external queries. In particular, by following the “simple

minded” way of combing equal number of each modality’s nearest neighbors
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so as to form the multimodal adjacency matrix, the availability of modalities

in the database is omitted, which impacts on constructing the MMD space

inefficiently. This happens, because the Laplacian Eigenmaps method tries

to preserve the local neighborhood of each media, and therefore more media

from a certain modality have higher contribution to the construction of the

MMD space. Moreover, in case of posing external queries, the predicted clus-

ters by the RBF network are insufficient to capture the semantic correlations

among the internal MMDs and an external MMD-query, since the seman-

tic space of MMDs evolves over time along with the continuous increase of

multimedia content. Therefore, a method is required for embedding the ex-

ternal MMD-query into the already constructed multimodal semantic space,

instead of predicting the missing modalities of the external MMD-query, as

it happens in [9]. This is of great importance if we consider that the case of

external queries corresponds to a real-life case, where queries usually do not

belong to the database.

2.3. Contribution

In this paper, both aforementioned challenges are successfully handled

since all monomodal heterogeneous similarities are combined to a global

MMD similarity by applying an automatic weighting scheme, taking into

account the availability of modalities per MMD in the database. Based on

the proposed global MMD similarity a heat kernel is built, which is capable

of preserving the local neighborhood of each media modality. Thus, the low-

dimensional MMD space is generated efficiently by capturing the semantic

correlations among MMDs. Additionally, the proposed method is able to

handle external MMD-queries, by embedding them into the existing MMD
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space, following the space mapping technique of a submanifold analysis [15].

Therefore, for each external query, a representative multimodal descriptor

vector is generated, based on which accurate multimodal content retrieval

is achieved. As we will experimentally show, the proposed method, espe-

cially in the case of posing external MMD-queries, is capable of achieving

high retrieval accuracy, along with the increase of the number of available

modalities and the size of the database. Last but not least, while all afore-

mentioned multimodal methods address up to three modalities, to the best

of our knowledge, this is the first work which deals with five modalities (text,

3D, image, video, sound) simultaneously. In our experiments with five real

multimodal datasets of different scale, we show the superiority of the pro-

posed approach, in terms of retrieval accuracy and time efficiency, against

other state-of-the-art multimodal content retrieval methods.

3. The Proposed Method

The proposed method is divided into the following two steps, (a) con-

struction of the multimodal semantic space of MMDs and (b) multimodal

search and retrieval.

3.1. Construction of the Multimodal Semantic Space

An overview of this process, is depicted in Figure 2. Given a multimedia

database of N MMDs with up to M different modalities each, the final goal

is to represent each MMDi, with 1 ≤ i ≤ N , by a multimodal descriptor

vector yi in the Euclidean space Rd, where d denotes the dimensions of the

multimodal semantic space of MMDs. For each MMDi its x
m
i monomodal

descriptors (1 ≤ m ≤ M) are extracted, and then for each m-th modality the
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Figure 2: Constructing the multimodal semantic space of MMDs.

respective monomodal similarity matrix is calculated. Next, by following a

new weighting scheme, the M different types of monomodal similarities are

combined into a multimodal similarity. Then, a heat kernel is calculated,

reflecting on the similarities between the N MMDs. Finally, according to the

Laplacian Eigenmaps method and the calculated heat kernel, the multimodal

semantic space of MMDs is constructed, and consequently, for each MMDi,

a multimodal descriptor yi is generated.

3.2. Calculation of the Multimodal Similarity Matrix

Initially, each monomodal similarity matrix Sm is calculated, by consid-

ering (a) the availability of modalities per MMD in the database and (b) the

different nature of the monomodal similarities as follows:
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Sm(i, j) =

 1− ∥xm
i − xm

j ∥
(m) , if ∃ xm

i and xm
j

0 , otherwise
(1)

where ∥xm
i − xm

j ∥
(m) (1 ≤ i, j ≤ N) is them-th monomodal distance between

MMDi and MMDj, normalized to the range of [0,1] and 0s denote the

absence of the m-th modality, in order to create the monomodal similarity

matrices.

However, despite the fact that all monomodal matrices Sm are normal-

ized to the same interval, the similarity values differ significantly, because of

the different nature of each monomodal distance ∥xm
i − xm

j ∥
(m) thus, the

monomodal similarity matrices are not comparable. For this reason, an

“alignment” transformation of the distributions of the similarity matrices

of all M modalities is performed. In particular, in order to “shift” their sim-

ilarity values towards the same point, ∀Sm : 1 ≤ m ≤ M , a new monomodal

similarity matrix S′
m is calculated according to the Z-Score transformation

as follows:

S′
m(i, j) =

Sm(i, j)− µSm

σSm

(2)

where µSm and σSm are the mean value and the standard deviation of the nor-

malized matrix Sm, respectively. Next, each transformed matrix S′
m is nor-

malized to the interval of [0,1]. By doing so, all the transformed monomodal

matrices S′
m can be compared, since they share the same range of values and

the same distribution.

Let us denote as gdm the global density of S′
m and as ldm(i) the local

density of each MMDi, where gdm = fm/N
2 and ldm(i) = lm(i)/N , where
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fm is the total number of non-zero values in the transformed monomodal

matrix S′
m and lm(i) is the total number of non-zero values in the i-th row

of S′
m. For each MMDi the weight am(i) of its m-th modality is calculated

according to:

am(i) =

ldm(i)

gdm
M∑
p=1

ldp(i)

gdp

(3)

For high values of local density ldm(i) and low values of global density gdm,

the fraction ldm(i)
gdm

becomes high in the m-th modality of MMDi. This can

be interpreted as follows: if MMDi contains a media of the m-th modal-

ity, whereas the global density gdm is low, when the rest of MMDs do not

contain often a media of the m-th modality, then according to Equation (3)

weight am(i) becomes high, so as to express that the m-th modality is more

important for MMDi, compared to the rest of MMDs. Additionally, am(i)

is weighted by the sum
∑M

p=1
ldp(i)

gdp
in order to express the importance of the

m-modality for MMDi compared to the rest of its modalities. Therefore,

according to Equation (3), a high value of am(i) for MMDi corresponds to

a high weight of its m-th modality.

Then, in order to calculate the N × N multimodal matrix Smult, the

similarity between MMDi and MMDj is derived by:

Smult(i, j) =
1

M
·

M∑
m=1

am(i) · S′
m(i, j) + am(j) · S′

m(i, j)

am(i) + am(j)
(4)

where the similarity S′
m(i, j) between MMDi and MMDj is weighted by

the respective weights am(i) and am(j). Based on Equation (3) it holds
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am(i) ̸= am(j). This happens because despite the fact that the global density

gdm is preserved for all MMDs, the local densities ldm(i) and ldm(j) for

MMDi and MMDj may be unequal, since the total number of non-zero

values in the i-th and j-th row of S′
m may differ, i.e. the lm(i) and lm(j)

values, respectively, depending on the number of constituting modalities of

MMDi and MMDj. Therefore, since am(i) ̸= am(j), the nominator of the

fraction in the sum of Equation (4) ensures symmetry, while the dominator

normalizes the fraction to the interval [0 1]. By doing so, we ensure that the

multimodal matrix Smult is symmetric, a prerequisite for the next step of the

Laplacian Eigenmaps method.

3.3. Laplacian Eigenmaps using the Heat Kernel Approach

The Laplacian Eigenmaps algorithm using the heat kernel approach, is

adapted to the multimodal framework as follows. Firstly, an adjacency graph

G is constructed, where an edge < i, j > is formed, with 1 ≤ i, j ≤ N , if

MMDj is among the k-nearest neighbors of MMDi, based on Smult. Next,

the weights of edges < i, j > in G are calculated based on the heat kernel

approach, in order to form the N ×N adjacency matrix W according to:

W(i, j) =

 e
−
1− Smult(i, j)

t , if ∃ < i, j > ∈ G

0 , otherwise

(5)

where the heat kernel reflects on the similarity information of the symmet-

ric multimodal matrix Smult between nodes-MMDs i and j, derived by the

Gaussian kernel function and stored in the adjacency matrix W. Also, t ∈ R

denotes the weight of Smult in the heat kernel, where for the extreme case
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of t = ∞ (which results in W(i, j) = 1), the heat kernel equals the “sim-

ple minded” approach [5, 15]. Alternatively, other types of kernel functions

could be used such as linear and polynomial, thoroughly examined in [14] for

machine learning methods.

Afterwards, we consider the problem of mapping the weighted graph G to

a low-dimensional space, so that connected nodes-MMDs stay as close as pos-

sible. Let the N×d matrix Y be such a map, where the i-th row corresponds

to the multimodal coordinates of MMDi. Let, also H be a diagonal weight-

ing matrix, whose entries are column sums of W, with H(i, i) =
∑

j W(j, i).

Then, the Laplacian matrix L, with L = H−W, is symmetric, positive and

semidefinite, which can be considered as an operator on functions defined on

nodes of G. Next, eigenvalues and eigenvectors are computed for solving the

generalized eigenvector problem as follows:

LY = λHY (6)

Let the column vectors y(0), . . . ,y(d) be the solutions of (6), ordered ac-

cording to their eigenvalues, 0 = λ0 ≤ λ1 ≤ . . . ≤ λd. By excluding the

eigenvector y(0) and using the next d eigenvectors, each MMD is mapped to

the d-dimensional Euclidean space:

MMDi → (yi(1), yi(2), . . . , yi(d)) (7)

Consequently, each MMD is mapped to a specific position into a uni-

fied multimodal space, where semantically similar MMDs lie close, forming

neighborhoods, as presented in Figure 3.
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Figure 3: In the multimodal semantic space, each MMD is represented by a point, where

semantically similar MMDs lie close to form neighborhoods.

3.4. Multimodal Search and Retrieval

By constructing the d-dimensional semantic space of MMDs, the proposed

method supports multimodal search and retrieval for internal and/or external

MMD-queries. In the case that the MMD-query Q belongs to the database,

its multimodal descriptor vector yQ already exists, since it has already been

mapped to the d-dimensional multimodal space according to (7). Thus, yQ

is compared to multimodal descriptors yi (1 ≤ i ≤ N) of the MMDs in the

database, using the Euclidean distance, in order to retrieve the most similar

MMDs to Q.

However, in the case of posing a MMD-query, which does not belong

to the database, a different procedure is followed, since its low-dimensional

multimodal descriptor vector is not available and thus a space mapping pro-

cedure is required to embed the external MMD-query into the already con-

structed space of MMDs. Let MMDN+1 be the MMD-query that does not

belong to the database of the N MMDs. Initially, the k-nearest neighbors

of MMDN+1 are found, by calculating the multimodal similarities between
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MMDN+1 and the N MMDs in the database, according to (1), (2), (3) and

(4). Let Xs = {MMDS(1), . . . ,MMDS(k),MMDN+1} be the set of MMDs,

including (a) the k-nearest neighbors ofMMDN+1 and (b) the external query

MMDN+1. According to [15], the MMD set Xs can be considered as a sub-

manifold, based on which the space mapping procedure for the Laplacian

Eigenmaps method is developed as follows:

1. Laplacian Eigenmaps on the submanifold.

A full sub-adjacency matrix (k+ 1)× (k+ 1), WS, of the submanifold

is constructed following the heat kernel approach:

WS(i, j) = e
−
1− Smult(i, j)

t (8)

with i, j denote MMDi,MMDj ∈ XS, t ∈ R and each node in XS is

connected to all other nodes. At this point, we must mention that in the

case of following the “simple minded” approach, it would result in a full

WS sub-adjacency matrix, having 1s in all (k+1)× (k+1) cells, since

each node in the Xs submanifold is connected to all other nodes. Thus,

by not considering the proposed global similarity weighting scheme of

Equation (4), the eigen-decomposition of the full WS sub-adjacency

matrix would not be feasible. Next, both (k+1)× (k+1) matrices HS

and LS, are computed according to:

HS(i, i) =
∑
j

WS(j, i) (9)

LS = HS −WS (10)
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with i, j = 1, · · · , k + 1. Eigenvalues and eigenvectors are then com-

puted by solving the generalized eigenvector problem:

LSv = λSHSv (11)

Let the column vectors v(0), . . . ,v(d) be the solutions of (11), ordered

according to their eigenvalues 0 = λ0
S ≤ λ1

S ≤ . . . ≤ λd
S. Low-

dimensional coordinates for MMDS(1), . . . ,MMDS(k),MMDN+1 on

the submanifold are calculated according to:

MMDi → (vi(1), . . . ,vi(d)),∀MMDi ∈ XS (12)

2. Calculating the multimodal descriptor vector yN+1.

The vN+1 coordinates are transformed to the global yN+1 coordinates,

by preserving the relationships between MMDN+1 and its k-nearest

neighborsMMDS(1), . . . ,MMDS(k). Therefore, by applying the Lapla-

cian Eigenmaps method on the submanifold, the global coordinates

yN+1 for MMDN+1 are computed according to:

MMDN+1 → yN+1 =
k∑

i=1

ciyS(i) (13)

where yS(1), . . . ,yS(k) are the low-dimensional coordinates in the mul-

timodal space of MMDS(1), . . . ,MMDS(k) and ci ∈ Rk,∀i : 1 ≤ i ≤ k

are the constrained weights, which are calculated by minimizing the

reconstruction error according to:

min
ci

|vk+1 −
k∑

i=1

civi|
2

(14)
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with
∑

i ci = 1.

Consequently, since (a) the external query MMDN+1 is mapped into

existing multimodal semantic space of MMDs, as depicted in Figure 4 and (b)

the multimodal descriptor vector yN+1 of MMDN+1 is calculated according

to (13), yN+1 is compared to multimodal descriptors yi (1 ≤ i ≤ N) of the

MMDs in the database, using the Euclidean distance, in order to retrieve the

most similar MMDs.

 

Multimodal Feature Space
CATEGORY A CATEGORY B

MMD6

MMD7

MMD5MMD1 MMD2

MMD3 MMD4

Multimodal query

MMDN+1

Figure 4: According to (13) each external query MMDN+1 is mapped to the multimodal

semantic space.
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4. Experimental Evaluation

4.1. Datasets

Experimental evaluation is performed in five real multimodal datasets,

denoted by DS12, DS23, DS34, DS45, and DS56. Further details are provided

in Table 1.

Dataset MMDs Classes 3D 2D Audio Video Text

DS1 264 12 X X

DS2 495 10 X X X

DS3 2 334 50 X X

DS4 2 779 50 X X X

DS5 637 43 X X X X X

Table 1: Evaluation Datasets

DS1, DS2 and DS3 are the evaluation datasets of the work in [9]. DS4 is a

superset of DS3 by manually adding the text modality in the form of labels,

relevant to the corresponding MMD’s content, since a MMD may contain

more than one labels. Note that text was assigned to a subset of MMDs.

Additionally, in DS4 the categorization of MMDs remains the same as in

DS3. Finally, all media of different modalities of DS5 were crawled from the

Internet, except for the text modality, which was assigned in the same way

as in DS4.

2http://3d-test.iti.gr:8080/3d-test/Download/MultimodalDatabase1.zip
3http://3d-test.iti.gr:8080/3d-test/Download/MultimodalDatabase2.zip
4http://3d-test.iti.gr:8080/3d-test/Download/MultimodalDatabase3.zip
5http://3d-test.iti.gr:8080/3d-test/Download/MultimodalDatabase4.zip
6http://3d-test.iti.gr:8080/3d-test/Download/MultimodalDatabase5.zip
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In order to ensure the effectiveness of the proposed method, several media

descriptors were extracted for each modality, due to the existence of different

media in the evaluation datasets. In particular, for DS1, DS2, DS3 and

DS4, the 3D object descriptors were extracted using the combined Depth-

Silhouette-Radialized Extent (DSR) descriptor [28]. For DS5, 3D descriptors

were extracted according to the Compact Multiview Descriptor (CMVD)

[19]. For DS1 and DS2 2D image descriptors were extracted based on 2D

Polar-Fourier coefficients, 2D Zernike moments and 2D Krawtchouk moments

[8]. For DS3 and DS4 2D image descriptors were extracted according to the

CEDD descriptor [7]. For DS5, the 2D color descriptors proposed in [24]

were used. The reason for choosing different low-level image descriptors was

that, in DS1 and DS2, images are actually snapshots of the corresponding 3D

objects, where background and color information was not available, while 2D

images in DS3, DS4 and DS5 are real images fetched from the Internet. Thus,

for DS1 and DS2 the selected descriptors are based on shape, for DS3 and

DS4 on background and color information, and for DS5 on color. The audio

descriptors of DS2 and DS5 were extracted using the algorithm presented in

[32]. For the text modality in DS4 and DS5, a lexicon was formed containing

all the assigned labels. As a result, a text descriptor was formed as a vector

of length equal to the lexicon’s size, filled with zeros and ones, to denote if

the corresponding label was assigned to the respective MMD, respectively.

Finally, for DS5, video descriptors were extracted using the color descriptors

of [24] applied on the most representative keyframe of each video, following

the work of [27].
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4.2. Experimental Organization

The experiments were organized into four sets. In the first three sets

of experiments each MMD of the database was posed as a query, in or-

der to retrieve similar MMDs, where (a) the optimal parameters for the

Laplacian Eigenmaps method were calculated, (b) the impact of nonlinear

global (L-Isomap [26]) and local (Local Linear Embedding [25] and Lapla-

cian Eigenmaps [5]) dimensionality reduction methods were evaluated, and

(c) the proposed approach was compared against the state-of-the-art retrieval

methods of LRGA [37] and SMMD [9]. In the last set of experiments, ex-

ternal MMD-queries were posed, so as to evaluate the performance of the

proposed method for the real-life case, where a query does not belong to

the database. Therefore, we present experimental results against the SMMD

method, where also the case of external MMD-queries is handled, since to the

best of our knowledge all the rest multimodal retrieval methods presented

in the literature handle only the case of external monomodal queries. In

all sets of experiments, the retrieval performance was evaluated in terms of

precision-recall, where precision is the proportion of the retrieved MMDs that

are relevant to the query and recall is the proportion of relevant MMDs in

the entire database that are retrieved. In all set of experiments the average

precision-recall is reported. The experiments were conducted in a Pentium

4 Quad Core machine with 3GHz, running Windows XP.

4.3. Parameter Selection for Laplacian Eigenmaps

Laplacian Eigenmaps (LE) is a Manifold Learning method that requires

the specification of two input parameters: (a) k, the number of the nearest

neighbors that are used to form the multimodal adjacency matrix, and (b) d,
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the number of dimensions of the low-dimensional multimodal MMD space. In

Figures 5 and 6, the average precision-recall results are presented, by varying

the k and d parameters in the ranges of {3, 6, 9, 12} and {3, 9, 15, 25, 50, 100},

respectively, following the parameter tuning of [9], for making fair compar-

isons on the evaluation datasets. Moreover, at this point we must mention

that the values of the k and d parameters are limited to the aforementioned

ranges, since the complexity of the proposed method is analogously increased

along with the increase of the k and d parameters (for further details about

the complexity of the proposed method refer to Section 4.7). The highest

performance is achieved for k = 6, in all five datasets. For the d parameter,

different values are proved to produce the optimal retrieval results. This can

be explained by the fact that the d parameter, depends on the number of

the different modalities and on the nature of their descriptor vectors. For

large or small values of d, the retrieval accuracy is decreased, which is quite

reasonable, concerning the way the LE method acts. In particular, the LE

method tries to maintain the relationships among the k nearest neighbors,

while at the same time unfolds the data points, so that they become more

separable in the embedded space, using the Euclidean distance. Thus, larger

values of d result in stretching the distances of the k nearest neighbors in the

embedded space. On the contrary, lower values of d result in suppressing the

distances in the embedded space, making the Euclidean distance incapable

of discriminating the k nearest neighbors. Therefore, for DS1, DS2, DS3,

DS4 and DS5 the optimal values of d were found to be equal to 9, 9, 15, 50

and 25, respectively.

Additionally, in Figure 7 we present the experimental results of comparing
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Figure 5: Precision-recall for DS1, DS2, by varying the k and d parameters in LE.
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Figure 6: Precision-recall for DS3, DS4, DS5, by varying the k and d parameters in LE.
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Figure 7: Precision-recall for DS5, comparing the performance of each modality content-

based retrieval method with the proposed multimodal approach.

the retrieval accuracy of each modality’s content-based method to the pro-

posed multimodal approach, in terms of average precision-recall. The evalu-

ation is performed in DS5, which is a challenging dataset, since it consists of

media of all 5 available modalities (Table 1). As expected, the retrieval ac-

curacy of the proposed multimodal approach outperforms the retrieval accu-

racy of all monomodal content-based methods, because now the multimodal

information is taken into account which is richer than each monomodal in-

formation separately. In Figure 8, we present an example of a MMD-query

of dataset DS5, which describes a physical entity of a truck, by comparing

the retrieval performance of the proposed multimodal method against the

respective monomodal ones 7.

7For presentation purposes the example consists of the 2D, 3D, video and text modal-

ities.
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Figure 8: An example of a MMD-query of dataset DS5, which describes a physical entity

of a truck, by comparing the retrieval performance of the proposed multimodal method

against the respective monomodal ones.
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4.4. Comparison against state-of-the-art Nonlinear Dimensionality Reduc-

tion Methods

For the sake of completeness, LE was evaluated against two state-of-the-

art nonlinear dimensionality reduction methods, the global Landmark Isomap

(L-Isomap) [26] and the local approach of Locally Linear Embedding (LLE)

[5]. L-Isomap is a global nonlinear technique, which tries to preserve the

geodesic distances between all points and the landmarks, so as to maintain

the data global structure. LLE and LE belong to the local nonlinear methods,

where the data local structure is preserved. LLE embeds data points in

a low dimensional space, by finding the optimal linear reconstruction in a

small neighborhood, while LE restates the nonlinear mapping problem as

an embedding problem for the vertices in a graph and uses the Laplacian

graph to derive a smooth mapping. The input of the LE, L-Isomap and

LLE methods is the multimodal similarity matrix, Smult, which is calculated

according to Equation (4). As we can observe from Figure 9, LE outperforms

L-Isomap and LLE, in all datasets. This happens because the LE method

is able to preserve more efficiently the local neighborhood of each MMD

in the embedded space, using the proposed global similarity matrix, Smult.

This can be further explained by examining how the L-Isomap and the LLE

methods work, where in contrast to LE the valuable information of Smult is

not necessary preserved.

The global L-Isomap method finds the nearest neighbors according to

Smult and then constructs a neighborhood graph, where each MMD is con-

nected to each of its neighbors with an edge weighted by Smult. Then, it

computes the shortest paths (geodesic distances) between all points and the
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landmarks, so as to compute a new distance matrix ∆. Next, the Multi-

dimensional Scaling (MDS) method is performed to ∆, so as to embed the

data into the low-dimensional MMD space. However, the ∆ distance matrix

contains the geodesic distances and thus, the information stored in Smult is

not necessary preserved. Therefore, L-Isomap performs erroneous approxi-

mations of the geodesic distances and thus MMDs that lie close in the original

metric space of Smult lie far in the MMD space, resulting in the low retrieval

accuracy of L-Isomap.

The local method of LLE embeds MMDs in the low-dimensional space

as a linear combination of their neighbors. LLE finds, for each MMD, the

nearest neighbors based on Smult. Then, it computes a weight vector −→wx that

best reconstructs MMD x by a linear combination of its nearest neighbors.

Next, MMD x is embedded to a point y by minimizing the reconstruction

error of y using −→wx and its corresponding nearest neighbors in the MMD

space. However, the information of Smult is not necessary preserved in −→wx

and thus, LLE fails to construct the MMD space accurately, especially for

the large scale datasets of DS3 and DS4.

The LE method, described in Section 3.3, achieves high retrieval accu-

racy in all datasets, since it preserves the crucial information of Smult in

the vertices of the Laplacian graph according to Equations (5), (6) and (7).

Therefore, LE is able to map MMDs to the low-dimensional space more ac-

curately than the L-Isomap and LLE methods. Consequently, LE preserves

more efficiently the local neighborhood of each MMD in the embedded space,

which furthermore results in LE’s high retrieval accuracy.
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4.5. Performance of the Proposed Method for Internal MMD-Queries

The proposed approach was also evaluated against the LRGA [37] and the

SMMD [9] methods. The reason for selecting these methods is that both of

them support multimodal MMD-queries, when those belong to the database.

The respective results are presented in Figure 10, where it is shown that

the proposed method outperforms the LRGA and SMMD methods in all

cases. Following the proposed weighting strategy, our method is capable of

preserving the local neighborhood of each MMD in the multimodal semantic

space more accurately than LRGA and SMMD. This is confirmed by the high

increase of the retrieval accuracy of the proposed method in DS5, where all

5 available modalities are involved.

4.6. Performance of the Proposed Method for External MMD-Queries

In the final set of experiments, the proposed method was evaluated in

the case of posing external MMD-queries. In particular, 12, 10, 100, 150, 43

external queries were posed for DS1, DS2, DS3, DS4 and DS5, respectively.

The proposed approach was compared to SMMD, which also supports the

case of posing external MMD-queries. For training the RBF network in the

SMMD method, a number of CL predefined clusters are required. Therefore,

through experimental configuration we concluded to 15, 15, 47, 50, 20 optimal

values of CL clusters for DS1, DS2, DS3, DS4 and DS5, respectively. In

Figure 11, the experimental results are depicted, where it is demonstrated

that the proposed method achieves higher retrieval accuracy than SMMD.

This happens because the SMMD method predicts the missing modalities

of the external MMD-query based on the trained RBF network, whereas

the proposed method actually projects the external MMD-query into the
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already constructed multimodal semantic space. Note that high increase of

the retrieval accuracy of the proposed method is achieved, especially for the

case of (a) the large scale dataset DS4 compared to the achieved retrieval

accuracy in DS3, where in the latter the text modality misses and of (b)

DS5, where all 5 modalities are included. Therefore, we can conclude that

the proposed method, in case of posing external MMD-queries, is capable of

achieving high retrieval accuracy, along with the increase of the number of

available modalities and the size of the database. This is of high importance,

if we consider that the case of external MMD-queries reflects on the real-life

scenario, where MMD-queries usually do not belong to the database.

4.7. Computational Issues

In terms of computational efficiency, offline and online processing times

are reported for SMMD and the proposed method, since both are able to

perform multimodal search and retrieval either posing internal or external

MMD-queries. According to the experimental results depicted in Table 2, we

observe that the proposed method requires slightly more time than SMMD for

constructing the multimodal semantic space, because the time of computing

the multimodal similarity matrix Smult has to be added 8, before the LE

method is applied. Nevertheless, the proposed method requires less offline

preprocessing time than SMMD in total, since the former does not include

the clustering and the RBF training steps, as it happens in the case of the

8The computational times for calculating the monomodal similarities are omitted, since

they are common for both methods. However, both methods can avoid calculating all-to-all

similarities, by following indexing strategies for efficient similarity search [13].

30



latter in order to support the case of external queries. Additionally, it should

be noted that both methods’ offline times increase with respect to the number

of the included modalities and the dataset size. For example, although DS5

and DS2 are at the same dataset scale, higher time is required for DS5,

since it consists of more modalities than DS2 (5 instead of 3 modalities).

Moreover, for the SMMD method, clustering needs a proportional time to the

size of MMDs, and the time required for training the RBF network becomes

prohibitive along with the increase of either the database size (DS3, DS4) or

the number of modalities (DS5).

DS1 DS2 DS3 DS4 DS5

SMMD

Const. mult. space 814 1,946 49 906 104 559 43 288

Clustering 15.6 94.7 432.9 1 638 123

RBF train. 1 010 14 910 14 977 740 44 694 820 529 984

Prop. method

Const. mult. space 1 812 7 019 132 041 217 165 48 785

Table 2: Time of offline processing (msec)

In Table 3, we report the online computational times which correspond

to the case of multimodal search and retrieval. As shown, both methods

have equal times in case of posing internal MMD-queries, by following the

same retrieval strategy. In particular, when the MMD-query Q belongs to

the database, its multimodal descriptor vector yQ already exists, since it has

already been mapped to the d-dimensional multimodal space according to

(7). Thus, yQ is compared to multimodal descriptors yi (1 ≤ i ≤ N) of the

MMDs in the database, using the Euclidean distance, in order to retrieve
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the most similar MMDs to Q. Since through experimental evaluation we

concluded to the same number of d dimensions in the constructed semantic

space for SMMD and in the proposed method, the retrieval time for both

methods is proportional to the dataset size and therefore, equal in the case of

internal queries. In the case of external MMD-queries, SMMD performance

highly depends on the complexity of the RBF network, which is used to

classify the monomodal descriptors of the external query to predict the center

of the cluster that is closer to the MMD-query. Consequently, the whole

performance of SMMD depends on the number of the CL predefined clusters

and the number of modalities, which are included in the dataset. On the

other hand, the proposed method requires O(M · N) time to calculate M

monomodal similarities and O((k + 1)3) to map the external MMD-query

to the already constructed semantic space, according to the analysis of [15].

Therefore, since it holds that N ≫ k, the online retrieval complexity of the

proposed method is transformed to O(M ·N).

DS1 DS2 DS3 DS4 DS5

Int. MMD-Query

SMMD 0.28 0.55 2.89 3.71 0.85

Prop. method 0.28 0.55 2.89 3.71 0.85

Ext. MMD-Query

SMMD 14.51 30.06 91.7 99.8 75.1

Prop. method 29.3 45.5 79.6 104.9 75.9

Table 3: Time of online processing (msec)
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5. Conclusions

In this paper, a unified framework for multimodal content-based search

and retrieval is presented, which supports internal and external MMD-queries.

Following an innovative weighting strategy, all monomodal heterogeneous

similarities are combined to a global MMD similarity, by considering (a)

the different nature of the monomodal similarities and (b) the availability of

modalities per MMD in the database. As a result, the local neighborhood

of each media modality is preserved into the multimodal semantic space

of MMDs, which is built using the Laplacian Eigenmaps method. Thus,

within the constructed semantic space, internal MMD-queries are posed, in

order to perform multimodal content retrieval. Additionally, the proposed

method is able to handle external MMD-queries, by embedding them into

the already constructed MMD space. In our experiments with five real mul-

timodal datasets of different scale, we showed the superiority of the proposed

approach against other state-of-the-art multimodal methods, in terms of re-

trieval accuracy and computational efficiency. Additionally, we experimen-

tally demonstrated that the proposed method, especially in the case of posing

external MMD-queries, is capable of achieving high retrieval accuracy, along

with the increase of the number of available modalities and the size of the

database.

Acknowledgment

This work was supported by the EC project 3DVIVANT, GA-248420.

33



References

[1] E. Attalla, P. Siy, “Robust shape similarity retrieval based on contour

segmentation polygonal multiresolution and elastic matching”, Pattern

Recognition, 38(12), pp. 2229-2241, 2005.

[2] J.J. Aucouturier, F. Pachet, “A scale free distribution of false positives

for a large class of audio similarity measures”, Pattern Recognition, 41(1),

pp. 272-284, 2008.

[3] A. Axenopoulos, P. Daras, S. Malassiotis, V. Croce, M. Lazzaro, J. Et-

zold, P. Grimm, A. Massari, A. Camurri, T. Steiner, D. Tzovaras, “I-

SEARCH: A Unified Framework for Multimodal Search and Retrieval”,

Future Internet Assembly 2012: From Technological Promises to Reality

(FIA Book 2012), Lecture Notes in Computer Science, Volume 7281, pp

130-141, 2012.

[4] M. Balasubramanian, E.L. Schwartz, J.B. Tenenbaum, V. de Silva, J.C.

Langford, “The ISOMAP algorithm and topological stability”, Science

295, 7, 2002.

[5] M. Belkin, P. Niyogi, “Laplacian eigenmaps for dimensionality reduction

and data representation”, Neural Comput. 15(6), pp. 1373-1396, 2003.

[6] R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton Uni-

versity Press, 1961.

[7] S. A. Chatzichristofis, Y. S. Boutalis, “CEDD: Color and Edge Directivity

Descriptor - A Compact Descriptor for Image Indexing and Retrieval”,

34



Proc. of Int. Conf. on advanced research on Computer Vision Systems,

pp. 312-322, 2008.

[8] P. Daras, A. Axenopoulos, “A 3D Shape Retrieval Framework Sup-

porting Multimodal Queries”, Int. Journal of Computer Vision, DOI

10.1007/s11263-009-0277-2, 2009.

[9] P. Daras, S. Manolopoulou, A. Axenopoulos, “Search and Retrieval of

Rich Media Objects Supporting Multiple Multimodal Queries”, IEEE

Trans. on Multimedia, 4(3), pp. 734-746, 2012.

[10] P. Ehlen and M. Johnston, ”Location grounding in multimodal local

search”, Proc. of ICMI-MLMI, pp. 32:1-32:4, 2010.

[11] T. Gao, Q. Dai, N.Y. Zhang, “3D model comparison using spatial

sructure circular descriptor”, Pattern Recognition, 43(3), pp. 1142–1151,

2010.

[12] P. Geetha, V. Narayanan, “A Survey of Content-Based Video Retrieval”,

Journal of Computer Science 4(6), pp. 474-486, 2008.

[13] C. Gennaro, G. Amato, P. Bolettieri and P. Savino, “An approach to

content-based image retrieval based on the Lucene search engine library”,

Proc. of European Conf. on Research and advanced technology for digital

libraries, 2010.

[14] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine

learning”, Annals of Statistics 36(3), pp. 1171-1220, 2008.

35



[15] Peng Jia , Junsong Yin , Xinsheng Huang , Dewen Hu, “Incremental

Laplacian eigenmaps by preserving adjacent information between data

points”, Pattern Recognition Letters, 30(16), pp. 1457-1463, 2009.

[16] L. Kennedy, S.-F. Chang, and A. Natsev, “Query-adaptive fusion for

multimodal search”, Proc. IEEE, 96(4), pp. 567-588, 2008.

[17] P. L. Lai, C. Fyfe, “Canonical correlation analysis using artificial neural

networks”, Proc. of European Symposium on Artificial Neural Networks,

1998.

[18] D. Li, N. Dimitrova, M. Li, I. K. Sethi, “Multimedia Content Processing

through Cross-Modal Association”, Proc. of ACM Int. Conf. on Multi-

media, 2003.

[19] A. Mademlis, P. Daras, D. Tzovaras, M. G. Strintzis, “3D Object Re-

trieval using the 3D Shape Impact Descriptor”, Pattern Recognition,

42(11), pp. 2447-2459, 2009.

[20] R. Ohbuchi, J. Kobayashi, “Unsupervised Learning from a Corpus for

Shape-Based 3D Model Retrieval”, ACM MIR, 2006.

[21] D. Rafailidis, A. Nanopoulos, and Y. Manopoloulos, “Nonlinear Dimen-

sionality Reduction for Efficient and Effective Audio Similarity Search-

ing”, Multimedia Tools and Applications, 51(3), pp. 881-895, 2011.

[22] S.T. Roweis, L.K. Saul, “Nonlinear dimensionality reduction by locally

linear embedding”, Science 290, pp. 2323-2326, 2000.

36



[23] A. Ruta, Y. Li, X. Liu, “Real-time traffic sign recognition from video

by class-specific discriminative features”, Pattern Recognition, 43(1), pp.

416-430, 2010.

[24] K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek, “Evaluating Color

Descriptors for Object and Scene Recognition”, IEEE Trans. on Pattern

Analysis and Machine Intelligence, 32(9), pp. 1582-1596, 2010.

[25] L.K. Saul, S. T. Roweis, “Think Globally, Fit Locally: Unsupervised

Learning of Low Dimensional Manifolds”, Journal of Machine Learning

Research, 2003.

[26] V. de Silva, J. B. Tenenbaum, “Global versus local methods in nonlinear

dimensionality reduction”, Neural Information Processing Systems, 15,

pp. 705-712, 2003.

[27] E. Tsamoura, V. Mezaris, I. Kompatsiaris, “Gradual transition de-

tection using color coherence and other criteria in a video shot meta-

segmentation framework”, Proc. of ICIP 2008, pp. 45-48, 2008.

[28] D. Vranic, “3d model retrieval” Ph.D. Dissertation, University of

Leipzig, 2004.

[29] B. Wang, F. Pan, K.M. Hu, J.C. Paul, “Manifold-ranking based retrieval

using k-regular nearest neighbor graph”, Pattern Recogniton, 45(4), pp.

1569-1577, 2012.

[30] X. Y. Wang, P.P. Niu, H.Y. Yang, “A robust digital audio watermark-

ing based on statistics characteristics”, Pattern Recognition, 42(11), pp.

3057-3064, 2009.

37



[31] C.H. Wei, Y. Li, W.Y. Chau, C.T Li, “Trademark image retrieval us-

ing syntetic features for describing global shape and interior structure”,

Pattern Recognition, 42(3), pp. 386-394, 2009.

[32] Wichern, Xue, Thornburg, Mechteley, Spanias: “Segmentation, Index-

ing, and Retrieval for Environmental and Natural Sounds”, IEEE Trans.

on Audio, Speech and Language Processing, 2010.

[33] F. Wu, H. Zhang, Y. Zhuang, “Learning Semantic Correlations for

Cross-Media Retrieval”, Proc. of IEEE Int. Conf. on Image Processing,

2006.

[34] X. Xie, L. Lu, M. L. Jia, H. Li, F. Seide, W.Y. Ma. “Mobile Search with

Multimodal Queries”, Proc. of IEEE, 96(4), pp. 589-601, 2008.

[35] X. Yang, S. Pang, and K. Cheng, “Mobile image search with multimodal

context-aware queries”, Proc. of Int. Workshop Mobile Vision, 2010.

[36] Y. Yang, F. Wu, D. Xu, Y. Zhuang, L.T. Chia, “Cross-media retrieval

using query dependent search methods”, Pattern Recognition 43(8), pp.

2927-2936, 2010.

[37] Y. Yang, D. Xu, F. Nie, J. Luo and Y. Zhuang, “Ranking with Local

Regression and Global Alignment for Cross Media Retrieval”, Proc. of

ACM Int. Conf. on Multimedia, pp. 175-184, 2009.

[38] H. Zhang, F. Meng, “Multi-modal Correlation Modeling and Ranking

for Retrieval”, Advances in Multimedia Information Processing - PCM,

pp. 637-646, 2009.

38



[39] H. Zhang, J. Weng, “Measuring Multi-modality Similarities Via Sub-

space Learning for Cross-Media Retrieval”, Advances in Multimedia In-

formation Processing - PCM, pp. 979-998, 2006.

39



00.20.40.60.81

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Recall

DS1
LEL-IsomapLLE 00.20.40.60.81

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Recall

DS2
LEL-IsomapLLE

(a) (b)

00.20.40.60.81

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Recall

DS3 LEL-IsomapLLE
00.20.40.60.81

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Recall

DS4 LEL-IsomapLLE

(c) (d)

00.20.40.60.81

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Recall

DS5 LEL-IsomapLLE

(e)

Figure 9: Precision-recall, comparing the nonlinear dimensionality reduction methods of

LE, L-Isomap and LLE.
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Figure 10: Precision-recall, comparing the proposed method with LRGA [37] and SMMD

[9], for the case of internal MMD-queries.
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Figure 11: Precision-recall, comparing the proposed method with SMMD [9] for the case

of external MMD-queries.
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