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a b s t r a c t

This paper presents a completely automated facial action and facial expression recognition system

using 2Dþ3D images recorded in real-time by a structured light sensor. It is based on local feature

tracking and rule-based classification of geometric, appearance and surface curvature measurements.

Several experiments conducted under relatively non-controlled conditions demonstrate the accuracy

and robustness of the approach.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Next generation computing systems are expected to interact
with users in a way that emulates face to face encounters. Face to
face communication relies significantly on the implicit and non-
verbal signals expressed through body and head posture, hand
gestures and facial expressions for determining the spoken
message in an non-ambiguous way [1]. Facial expressions in
particular are considered to be one of the most powerful and
immediate means for humans to communicate their emotions,
intentions and opinions to each other and this is why much effort
has been devoted to their study by cognitive scientists and lately
computer vision researchers [2,3].

Several approaches have been reported towards automatic
facial expression recognition from 2D static images or video
sequences [3]. In all of these works, after the face has been
detected, facial features that are relevant to the display of
expressions are extracted and classified into a predefined set of
facial actions or furthermore to emotion related expressions. The
majority of facial expression recognition research is limited to the
six basic emotions, i.e. happiness, sadness, anger, fear, surprise
and disgust, the display of which is widely assumed to be
universal. However, there is a growing number of approaches,
which instead try to detect a set of facial muscle movements
known as Facial Action Units, which are more subtle but their
combinations may describe effectively any facial expression [2].

Facial features used for expression recognition may be roughly
classified into geometric, e.g. distances between facial points [4],
ll rights reserved.
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appearance-based such as Gabor filter responses [5] or holistic
such as optical flow fields [6]. Classification methods can be
roughly divided into static and dynamic ones. Static classifiers use
feature vectors related to a single frame to perform classification.
In the case of image sequences, this frame corresponds to the peak
of the depicted expression. Probabilistic as well as rule-based
techniques are popular [4,7]. Temporal classifiers on the other
hand try to capture the temporal pattern in the sequence of
feature vectors over subsequent frames [8,9].

A problem with existing techniques is that the subtle skin
deformations that characterize facial expressions are difficult to
capture by a 2D camera. Moreover, 2D techniques are prone to
illumination changes and pose variations that affect the perceived
geometry and appearance of facial features. To handle problems
caused by pose variations, some researchers proposed the use of
multiple views of the face [7], deformable 3D models fitted on 2D
images [10] or 3D images.

Although the advantages of using 3D facial images are self-
evident, very few works have examined 3D facial expression
recognition. Works that use a single 3D image are [11–14]. Wang
et al. [11] employ a surface labelling approach based on the
distribution of principal curvature descriptors defined over
different face regions. Expression recognition is subsequently
based on the distribution of the above labels over the face. Tang
and Huang [12] and similarly Soyel and Demirel [13] rely on 3D
Euclidean distances between manually annotated feature points.
In [14], feature localization is addressed using an elastically
deformable model, which establishes point correspondence
between facial surfaces, while face and facial expression recogni-
tion is based on bilinear models that effectively decouple identity
and facial expression.

Works that use a sequence of range images are [15–18]. Huang
et al. [15] fit a deformable face model on sequences of 3D face
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scans depicting facial expressions, but do not perform recognition
of facial expressions. Chang et al. [16] learn a generalized
expression manifold from range image sequences, which is
subsequently exploited for recognizing temporal expression
patterns. They use 2D feature tracking and a coarse 3D mesh
model. In [17], a spatio-temporal approach is adopted based on
3D surface descriptors [11] and 2D hidden Markov models. Good
recognition rates are reported, however the proposed method
relies on semi-automatic face tracking and computationally
expensive curvature estimation. Most similar to our approach is
the work of Liebelt et al. [18] that also uses 2D+3D image
sequences. However, our approach relies on local features for
tracking and classification while [18] relies largely on texture
information and classification is based on AAM model parameters
that do not decouple expression from identity.

In this paper, we address the problem of facial expression
recognition by a combination of 2D and 3D image streams, which
allows us to achieve real-time, accurate, pose and illumination
invariant recognition of facial actions and facial expressions. We
employ a model-based feature tracker applied to sequences of 3D
range images and corresponding grayscale images recorded by a
novel real-time 3D sensor [19]. To achieve real-time performance
we do not rely on 3D shape registration algorithms, which require
a dense face mesh, but instead on feature based 3D pose
estimation followed by iterative tracking of 81 facial points using
local appearance and surface geometry information. Special
trackers are developed for important facial features such as the
mouth and the eyebrows that account for the non-linearity of the
appearance of these features. A set of measurements (geometric,
appearance and curvature-based) is subsequently extracted,
which effectively model changes in the shape of facial features
and their geometrical arrangement as well as deformations of the
face surface caused by wrinkles or furrows. We use these
measurements to recognize four facial expressions and 11 facial
action units using a rule-based approach. Temporal information is
also exploited for detecting action units and facial expression
activation periods. Finally, the efficiency of the 3D face analyzer is
evaluated in a database with more than 50 subjects and 800
sequences. A preliminary version of this work has appeared in
[20].

To the best of our knowledge this is the first fully automatic
real-time 3D facial expression recognition system. Additional
contributions of this paper are:
�
 We present a novel 2D+3D facial feature tracker that relies on
local information only and is thus computationally efficient
and robust to illumination variations unlike [15,18]. We also
propose techniques for achieving robustness with noisy or
incomplete data.

�
 The system is completely independent of the user’s facial

appearance and geometry and no per-user calibration is
required, in contrast with techniques such as [18] where the
generic model used includes identity information that even-
tually affects classification performance. The proposed ap-
proach can also be easily extended to include a large range of
facial action units. On the contrary, techniques such as [16,17]
rely on pre-recorded sequences of each facial action unit to be
available so that the temporal expression classifier or manifold
can be trained.

�
 Apart from 3D Euclidean distances used in [12,13], we

introduce a set of meaningful 3D surface measurements such
as wrinkling, stretching, etc., which enable us to detect subtle
facial deformations around the nose and the mouth. Unlike
existing works that have been tested with moderate expres-
sions, we also handle extreme deformations of the mouth.
local facial feature detectors are described in Section 2. A set of

The paper is organized as follows. The face tracker and the

geometric and surface deformation measurements is presented in
Section 3, while a rule-based approach for facial expression and
facial action unit classification in both static images and image
sequences is outlined in Section 4. The performance of the
proposed system is evaluated in Section 5. Finally, conclusions are
drawn in Section 6.
2. Face and facial feature tracking

The first and most important step towards automatic recogni-
tion of facial expressions is accurate detection of the position of
the face and prominent facial features such as the eyes, eyebrows,
mouth, etc. In this section, we present a novel 3D face tracker
based on the well-known Active Shape Model (ASM) technique
[21], which was extended to handle 3D data and also cope with
measurement uncertainty and missing data.

The ASM is a point distribution model (PDM) accompanied by
a local appearance pattern for every point, which effectively
models the shape of a class of objects, faces in our case. Point and
local appearance distributions are obtained using a set of
annotated training images. Any shape can then be expressed as
the sum of a mean shape and a linear combination of basis shapes
computed during training. Although ASMs have been demon-
strated less accurate than Active Appearance Models (AAM), they
have the advantage of robustness to illumination variations (using
local gradient search) and are very efficient.

Our approach employs 2D and 3D facial information in the
form of pairs of depth and associated grayscale images recorded
by a novel 3D sensor based on NIR structured light [19] (see
Section 5). Pixel values of depth images represent the distance of
the corresponding point from the camera plane. Using the one-to-
one pixel correspondence of depth and grayscale images as well
as camera projection parameters, we can directly associate every
image point with its 3D coordinates and a texture value.

The shape s of the face is represented as a sequence of n¼ 81
points corresponding to salient facial features as can be seen in
Fig. 1. The PDM is then expressed as

s¼ ~sþ
Xm

i ¼ 1

aisi ¼ ~sþa � S ð1Þ

where s¼ fx1; y1; z1; . . . ; xn; yn; zng is the vector of n landmark
coordinates, si are the basis shapes computed by applying
principal component analysis to a set of manually annotated
training examples, which are aligned to a common coordinate
frame (called model coordinate frame), ~s is the mean shape
computed in the same space and a is a vector of shape
parameters.

Note that image alignment involves 3D rotation and transla-
tion of original image pairs so that all faces have a frontal
orientation and be at the same distance from the camera plane as
well as linear interpolation of missing depth values as proposed in
[22].

The local appearance model for each landmark Li is computed
from image gradient information gathered in all 2D training
images along a line passing through pi, the projection of Li in the
2D image plane. This line is chosen to be perpendicular to the
boundary of the shape of the feature that Li belongs to (e.g.
eyebrow, mouth, etc.). A set of shape boundaries is defined in
terms of connectivity information between landmarks as illu-
strated in Fig. 1. Let us assume that Li is connected to Lk and Lm.
Then the normal at pi is equal to ni ¼ ðukiþuimÞ=2, where uki and
uim are unit vectors perpendicular to segments defined by pi, pk

and pi, pm, respectively. Note that since all boundary curves have
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Fig. 1. The 81 landmarks and corresponding segments of the ASM.
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been defined clockwise, the direction of ni (and uki, uim) is always
from the inside to the outside of the specific feature.

Based on the estimated normal direction, we then define a set
of 2 �mqþ1 pixels qj along ni, where qj ¼ j � niþpi; j¼ -mq; . . . ;mq.
Obviously q0 ¼ pi. For each pixel qj, we compute a gradient
measurement

gj ¼
Xmg

k ¼ 1

zk � ðcjþk-cj-kÞ ð2Þ

where cj is the intensity of qj, mg the Gaussian kernel width and zk

the kernel weights. We set mg = 3. The estimated gradient values
represent the local gradient profile g¼ ½gj� of pi.

After computing the gradient profiles of Li in all training
images, we can build a local model of gradient changes associated
with this landmark assuming a unimodal Gaussian distribution.
The same procedure is applied for every landmark thus obtaining
n local appearance models.

Using Eq. (1), we can represent the shape of any face in the
model coordinate frame. To express the same shape in the real-
world coordinate frame we use

x¼ R � sþT¼R � ð~sþa � SÞþT ð3Þ

where R is the 3D rotation matrix and T the 3D translation vector
that rigidly align the model coordinate frame with the real-world
coordinate frame and x represents the landmark coordinates in
the real-world coordinate frame. By projecting x in the image
plane, we obtain the corresponding 2D shape v¼ PðxÞ, where P

represents a camera projection function that models the imaging
process. v represents the landmark positions in the 2D image.

To estimate the landmark positions in a new pair of 2D and 3D
images the following steps are taken:
1.
 Let R be the 3D rotation matrix and T the 3D translation vector
that rigidly align the model with the face. A first estimate of
these is obtained using the 3D face detection and pose
estimation technique proposed in [23]. First, the face is
roughly detected in the input 3D image using global moment
descriptors and a priori knowledge of the geometry and
relevant dimensions of the head and other body parts. Then,
the face position is localized using a knowledge-based 3D
technique that allows us to detect the ridge of the nose with
high accuracy. Finally, the pose of the face is reliably estimated
based on the detected nose ridge and the inherent bilateral
symmetry of the face. A detailed description of the aforemen-
tioned algorithm can be found in [23]. Based on the estimated
face pose and position, we obtain an initial rigid transforma-
tion ðR;TÞ. The shape parameters a are initialized to zero, i.e.
we start from the mean face shape ~s.
2.
 The current shape s is transformed to the real-world
coordinate frame using the rigid transformation ðR;TÞ and is
subsequently projected on the 2D camera plane through P. A
local search is then performed around each projected land-
mark position to find the point that best matches the local
appearance model. To do this, first we compute the normal
vector at the specific location as described above. Then, we
define a set of candidate pixels along this line and compute a
local gradient vector for each of them exactly as in the case of
training images. Similarity between extracted gradient profiles
and the corresponding local appearance model is measured
using the Mahalanobis distance. The point associated with the
lowest distance is selected. The same procedure is applied for
all landmarks and a set of new landmark positions is estimated
in the 2D image. These are subsequently back-projected in the
3D space using the inverse projection function P-1 and the z

values of the corresponding pixels of the depth image. Thus a
new 3D shape x is defined in the real-world coordinate frame.
Moreover, each landmark is associated with a weight set to be
the reciprocal of the computed Mahalanobis distance. In case
the corresponding z value of a point is undefined, the median
depth value in the neighborhood of this pixel is used. If no
depth is defined in the greater area of this pixel, then a zero
weight is assigned to this landmark, so that it is neglected in
model estimation.
3.
 A new rigid transformation ðR;TÞ aligning the new shape x
with the current template s is estimated using Horn’s
quaternion method [24]. A new rectified shape y¼R-1

� ðx-TÞ
is computed in the model coordinate frame.
4.
 A new set of parameters a is estimated by minimizing
J ~y-~s-a � SJ2

þl � JaJ2, where the second term is a regularization
constraint. A weighted least squares approach is adopted,
where each landmark point is weighted proportionally to its
strength. We also exclude points that may be occluded, for
example points on the side of the face or nose, which may be
easily determined using the estimated face orientation. Once a
new set of parameters a is estimated, a new shape s is
synthesized using Eq. (1).
5.
 Steps 2–5 are repeated until convergence of the fitting error
e¼ Jy-sJ or until a number of iterations is reached. Then a new
real-world shape x is computed from s using Eq. (3).
For each subsequent frame, initialization is performed based on
the previous frame, i.e. we start from step 2 using R, T and s
estimated in the previous frame. If the model has not converged,
we re-initialize the tracker, i.e. we start from step 1 and repeat
face detection, pose estimation and model fitting. For faster
convergence we use a multi-resolution scheme with three layers.

In [18], 2D AAMs are extended to 2Dþ3D AAMs by introducing
a correction step based on fitting a 3D shape model on 3D stereo
data. This correction is then used to enhance the result of 2D face
tracking. The main advantage of our method compared to [18] is
that it is significantly faster and uses a single model, which
effectively combines 3D shape information with local appearance
data. Moreover, AAMs largely rely on appearance (texture)
information thus being sensitive to illumination, occlusions and
appearance changes.
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The proposed tracker achieves small localization errors per
landmark, however there are cases where localization of individual
features such as the eyebrows and the mouth is not accurate enough
for our purpose as can be seen in Figs. 3 and 4. This is due to the
inadequacy of the linearity assumption in the PDM, but also due to
the unimodal distribution chosen for local appearance variations
(e.g. appearance of teeth when opening the mouth). Instead of
resorting to non-linear modelling techniques, we propose a set of
dedicated local facial feature detectors, presented in the following.

2.1. Local eyebrows detector

The global face tracker gives generally a good estimate of the
eyebrows position but may sometimes fail to accurately localize
their boundaries. An improved estimate is obtained using a local
3D ASM with 16 landmarks corresponding to the eyebrow
boundaries (points 1–16 in Fig. 1), which is initialized using the
eyebrows estimation provided by the global tracker. Such an
approach offers increased localization accuracy, however it may
also fail in cases that the eyebrow hair is light-colored or sparse or
the eyebrow itself is very thin. This may be attributed to the fact
that the simple Gaussian model used for local gradient patterns
may not be adequate for modelling gradient changes in the
eyebrow area. Instead of resorting to more complex statistical
models (e.g. bimodal Gaussian distributions), we employ a
simpler model fitting technique based on area intensity differ-
ences.

For each candidate landmark position, we define two rectangle
areas A1 and A2 lying on the positive and negative side of the axis
defined by the normal in this position (see Fig. 2). A1 and A2 are
aligned with the normal and their dimensions are chosen to be
5� 5 pixels. The average intensities S1 and S2 inside A1 and A2 are
then computed. Eyebrow landmarks lie in the boundary between
dark (eyebrow hair) and light-colored (skin) areas thus candidate
A2

n A1

Fig. 2. Eyebrow boundary localization based on area intensity differences

(Section 2.1).

Fig. 3. Examples of eyebrow boundary localization using the global 3D A
points should maximize S1-S2. In addition to this criterion, we ask
that S1-S24T1 and S2oT2. The first condition implies that the
landmark point should lie in an area of adequate gradient change.
The second is used to overcome the problem of shadows, which
results in selecting a candidate point that lies in the border of
shadowed and non-shadowed skin areas instead of lying in the
border of eyebrow and skin areas. T1 and T2 are experimen-
tally chosen with respect to the average brightness inside the
face area and the values of S1 and S2 obtained from training
images.

The proposed local 3D ASM is initialized using the eyebrows
estimation provided by the global 3D ASM and is fitted in the
input image using steps 2–5 above. Note that in this case,
landmark points are weighted proportionally to the correspond-
ing intensity difference S1-S2. Since a bad initial estimation may
prevent the local model from converging, we perform several
local fittings with slightly perturbed initial positions and choose
the one minimizing the fit error.

As can be seen in Fig. 3, the proposed local eyebrow detector
enhances significantly the estimation provided by the global ASM
especially in cases where the eyebrows are raised or lowered.

2.2. Local mouth detector

Lip boundary localization is also problematic due to the
unimodal Gaussian distribution assumption used for the repre-
sentation of local mouth appearance patterns, which is not
suitable for landmarks lying in the inner lip boundaries, since
their local gradient patterns are significantly affected by whether
the mouth is open or closed. Fig. 4 presents some examples of
incorrect estimation of mouth landmarks. It can be seen that the
problem is more intense when the mouth is open and the teeth
are visible, since in this case the boundary between the teeth and
the dark area of the mouth cavity is erroneously recognized as a
lip boundary.

To overcome this problem, we propose a two-step approach
for localizing lip boundaries. First, a two-class support vector
machine classifier with an RBF kernel is used to decide whether
the mouth is open or closed. Then an open or closed mouth local
3D ASM is fitted on the face to localize the position of outer and
inner lip boundaries.

Mouth classification is based on a 16-dimensional feature
vector computed from local 3D geometric and 2D appearance
measurements over the area defined by the current fit. Given the
initial estimation of lip boundaries, we define four regions in the
mouth area: upper lip, lower lip, between lips area and whole
mouth area (union of the previous three). The attribute vector
includes features such as mean intensity, intensity variance,
SM model (black line) and the proposed local detector (white line).
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Fig. 4. Examples of lip boundary localization using the global 3D ASM model (black line) and the proposed local detector (white line).

Fig. 5. Examples of facial feature tracking results using the proposed global tracker and local feature detectors.
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intensity gradient and variance of intensity gradient of mouth
area, mean depth and depth variance of the mouth area, mean
intensity and intensity variance of the area between the lips,
mouth opening (3D distance between the upper and lower inner
lip boundaries), percentage of dark pixels and percentage of white
pixels in the mouth area (corresponding to mouth cavity and
teeth, respectively), etc.

The classifier was trained with approximately 240 pairs of
images (120 faces with open mouth and 120 faces with closed
mouth), which were manually annotated to determine the
position of lip boundary points. A correct classification rate of
98% was achieved in a test set of 200 images with various facial
expressions, where the initial position of mouth landmarks was
determined automatically by fitting the global ASM.

After the mouth is classified as open or closed, the correspond-
ing mouth model (18 landmarks corresponding to points 51–68 of
the global model) is fitted on the face. Model fitting is based on
image gradient profiles. However, we do not only consider points
along the normal but also points in a narrow zone aligned with
the normal. Examples of improved mouth localization are
depicted in Fig. 4.

2.3. Combining global and local feature position estimates

To incorporate the information provided by the local feature
detectors into the global model, the fitting algorithm presented in
Section 2 is modified as follows: after step 2, the parts of shape x
corresponding to eyebrows and mouth are replaced with the
improved estimates. Then we continue with step 3. Using the
proposed 2D+3D ASM and dedicated local detectors very good
localization accuracy may be achieved even under moderate face
poses as can be seen in Fig. 5.
3. Extraction of facial feature measurements

To encode facial movements, we adopt the Facial Action
Coding System (FACS) developed by Ekman and Friesen [2], where
facial appearance changes are described in terms of 44 facial
action units (AUs), each of which is related to the contraction of
one or more facial muscles. Detection of a subset of these AUs is
achieved by combining 23 geometric, appearance and surface
deformation measurements denoted as M12M23.
3.1. Geometric measurements

Geometric measurements are computed using the estimated
positions of the 81 landmarks Li. The 20 measurements used are
presented in Table 1. Note that all such measurements are in 3D
and are thus invariant to pose and distance from the camera
plane.
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Table 1
Geometric facial measurements.

Measurement name Measurement

M1 Inner eyebrow displacement d5;22, d9;27

M2 Outer eyebrow displacement d7;17, d15;26

M3 Inner eyebrow corners dist. d5;9

M4 Eyebrow from nose root dist. d5;35, d9;45

M5 Eye opening d20;24, d29;33

M6 Eye shape d20;24=d18;22

M7 Nose length ðd35;36þd45;44Þ=2

M8 Nose width d36;44

M9 Cheek lines angle aðe37;48 ; e43;50Þ

M10 Upper lip boundary shape aðe51;57 ; t63Þ

M11 Lower lip boundary length l51;68;67;66;57

M12 Lower lip boundary shape aðe51;57 ; t68Þ

M13 Mouth corners dist. d51;57

M14 Mouth opening d64;67

M15 Mouth shape d64;67=d51;57

M16 Nose–mouth corners angle aðe38;51 ; e42;57Þ

M17 Mouth corners to eye dist. d17;51, d26;57

M18 Mouth corners to nose dist. d51;40, d57;40

M19 Upper lip to nose dist. d54;40

M20 Lower lip to nose dist. d67;40

di;j is the 3D Euclidean distance between landmarks Li and Lj . ei;j is the 2D line

defined by the projections of Li and Lj in the 2D image plane. lijk is the length of the

3D curve defined by Li , Lj , Lk , ti is the tangent vector computed in Li . aðea; ebÞ is the

angle between 2D lines ea , eb . Measurements M10 and M12 represent the shape of

the inner boundaries of the upper and lower lips and are a measure of the

concavity or convexity of these curves. Depending on whether the lower (upper)

lip has a ^, _ or – shape, M12 ðM10Þ has a positive, negative or zero value,

respectively.

F. Tsalakanidou, S. Malassiotis / Pattern Recognition 43 (2010) 1763–17751768
3.2. Surface deformation measurements

Surface deformation measurements are associated with wrin-
kles appearing on the skin due to muscle contractions. These
include cheek wrinkling ðM21Þ, forehead wrinkling ðM22Þ and nose
wrinkling ðM23Þ. The approximate position of these wrinkles may
be easily determined using the estimated landmark positions.
Wrinkling measurements are subsequently obtained using both
image gradient and surface curvature descriptors.

Intensity gradient is obtained by applying a derivative of
Gaussian filter on illumination rectified image patches. Curvature
descriptors are based on surface gradients, which are robustly
obtained by locally fitting a quadratic surface patch (9� 9 pixels)
after median filtering the depth image. In the following, we
describe in detail the computation of M21, M22 and M23.
3.2.1. Cheek wrinkling ðM21Þ

To detect the presence of wrinkles in the cheeks area, we
define two rectangular boxes P1 and P2 enclosing the left and right
cheek line (see Fig. 6). For each box, we compute the average
intensity gradient perpendicular to segments defined by the 2D
projections of landmarks L38, L48 and L42, L50 respectively. We also
compute the Gaussian and mean curvature using the
corresponding 3D image.

When cheek wrinkles appear in the face, then the mean of the
absolute values of the Gaussian curvature K ðM2

21Þ and the mean
curvature H ðM3

21Þ increase significantly due to cheek raising and
deepening of the nasolabial furrow. The ratio of maximum to
mean intensity gradient ðM1

21Þ also increases, especially when
smiling is very intense. In case of subtle smiles, lip corners and
cheeks are gently pulled up thus cheek lines are not accentuated
and image gradient does not change significantly. However,
curvature changes are still detectable.

Similar changes may be observed when someone crinkles his
nose. In this case, wrinkles may also appear in the nasolabial
furrow, however cheek lines are not pulled up obliquely (as is the
case for smile) but rather vertically.

3.2.2. Forehead wrinkling ðM22Þ

Measurement of forehead wrinkling is based on edge detection
inside an oblong area P3 on the forehead, which is defined using
the middle points of the upper eyebrow boundary segments, i.e.
landmarks L3 and L11 (see Fig. 6). To detect the presence of edges,
a Canny edge detector is used. The appearance of wrinkles in the
forehead, usually caused by eyebrow raising, results in significant
increment of the percentage of pixels inside P3 that correspond to
edge points ðM22Þ.

3.2.3. Nose wrinkling ðM23Þ

When someone crinkles up his nose, usually to express disgust
or displeasure, wrinkles appear along the lateral nose boundaries
and in the glabella. To detect the presence of such wrinkles, we
define polygons P42P8 in the face area (see Fig. 6) and compute a
set of measurements including intensity gradient changes in the
2D image and surface curvature measurements (Gaussian, mean
and principal curvatures) in the corresponding 3D image.

In the glabella area we define the quadrangle P4. When the face
has a neutral expression, then only a few edges appear inside P4.
When the nose wrinkles (and the eyebrows are lowered), a bulge
is produced between the eyebrows and the nasal root and
numerous horizontal and vertical edges appear inside this
rectangle. Using a Canny edge detector, we compute the ratio of
the number of pixels indicating edge points to all pixels in P4

ðM1
23Þ. When a person crinkles up her nose, we usually observe a

15% or more increase of this ratio.
Pentagons P5 and P6 are defined on the lateral sides of the nose.

When the nose wrinkles, then skin folds appear in this area, which
result in changes of local curvature values. More specifically, we
usually observe an increment of the mean of the absolute values
of both K ðM2

23Þ and H ðM3
23Þ as well as an increment of the mean of

the maximum principal curvature k1 ðM
4
23Þ in P5 [ P6.

Pentagons P7 and P8 are located on the cheeks surface near the
nose boundary. Experiments have shown that, in most cases, nose
wrinkling is associated with a significant increment in the
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Table 2
Face surface deformation measurements over areas P12P8 shown in Fig. 6.

Measurement Computed in

M1
21

Mean intensity gradient P1 [ P2

M2
21

Mean absðKÞ P1 [ P2

M3
21

Mean absðHÞ P1 [ P2

M22 Edge density P3

M1
23

Edge density P4

M2
23

Mean absðKÞ P5 [ P6

M3
23

Mean absðHÞ P5 [ P6

M4
23

Mean k1 P5 [ P6

M5
23

Mean absðKÞ P7 [ P8

M6
23

Mean absðHÞ P7 [ P8

M7
23

Mean k1 P7 [ P8

M8
23

Mean k2 P7 [ P8

K, H, k1, k2 denote Gaussian, mean, maximum principal and minimum principal

curvature, respectively.
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absolute values of K and H and the mean value of k1 as well as a
decrement of the mean of the minimum principal curvature k2 in
P7 [ P8. Similar changes may be observed in case of smiling faces.
People laughing or smiling intensely raise their cheeks too,
although in a different way compared to the way cheeks are
raised when someone crinkles his nose. Nose wrinkling measure-
ments denoted as M1

232M8
23 are summarized in Table 2.
4. Facial action and facial expression classification

In this section, we present a classification scheme, which uses
changes in facial measurement values to detect action units and
recognize basic expressions in 2D+3D image sequences. We
examine two scenarios. In the first scenario, classification is
performed at every frame and independently of previous frames.
In the second scenario, we exploit temporal information to detect
an action unit or expression event after it has been concluded.

A rule-based approach is adopted in both cases based on
comparing facial measurements extracted from a new image to
measurements obtained from a reference (neutral face) image of
the same subject. Given a test video sequence, we assume that in
the first 5–10 frames the human subject has a neutral expression
and we extract a measurement vector from each of these frames.
Then we compute the median of each measurement Mi and form a
reference measurement vector fRig corresponding to the neutral
face.

To recognize the facial expression or action unit appearing on a
new frame, first we localize the positions of the 81 landmarks as
described in Section 2. Then, we extract the set of facial measure-
ments presented in Section 3 and finally we classify the depicted
facial expression or action unit using a set of rules that compare
these measurements to the reference measurement vector.
4.1. Rules for facial action unit and facial expression recognition

Rules used for facial action unit or facial expression recogni-
tion have been defined based on [2]. For each action unit or facial
expression a list of associated appearance changes was deter-
mined and was subsequently translated in changes of facial
measurement values. AU1, for example, describes raising of the
inner portion of the eyebrow. This action unit not only increases
the distance between the eyebrows and the eyes (or the eyebrows
and the nasal root) but also sometimes causes horizontal skin
wrinkles to appear in the center of the forehead and thus affects
the values of measurements M1, M4 and M22. The rules used for
recognizing a subset of 11 important action units (AU1, AU2, AU4,
AU5, AU7, AU9, AU12, AU15, AU25, AU26, AU27 [2]) and four
facial expressions (happy, sad, surprise, disgust) are presented in
Tables 3 and 4, respectively. In order to classify the observed
changes, we first transform these changes into a set of
parameters, which describe the increase or decrease in the
value of a facial measurement Mi with respect to the
corresponding value in a neutral expression Ri (see caption in
Table 3).

Rules for facial expression recognition are more complex since
they take into account measurements computed on different
parts of the face. Moreover, the same facial expression may be
manifested in many ways thus one rule may include several sub-
rules. For example, happy (smiling) expressions are associated
with lip corners being raised obliquely, lower lip getting a ^

shape, wrinkles appearing on the cheeks and eyelids narrowing.
All changes however may not manifest themselves at the same
time. To encode different expressions of happy, two rules have
been defined.

The first rule is used to describe cases when smiling is intense,
causing lip corners to rise significantly and cheek wrinkles to
appear or become more intense if already present. This can be
translated in the following changes in facial measurement values:
the length of the lower lip line ðM11Þ increases, the concavity of
the lower lip line ðM12Þ has a positive value, the cheek lines angle
ðM9Þ and the angle of nose–mouth corner lines ðM16Þ increase and
the mouth corners to eyes distance ðM17Þ decreases. Finally, cheek
wrinkling measurements ðM21Þ also increase.

The second rule refers to cases where the lip corners are not
raised obliquely but rather along the horizontal axis. Thus, cheek
wrinkling ðM21Þ is detectable, but the lower lip does not have the
characteristic ^ shape, even though it is elongated (M11 and M13

increase). This usually happens when the human subject is not
very happy, but nevertheless tries to smile.
4.2. Facial action unit and facial expression recognition using

temporal dynamics

In the second scenario, the temporal variation of facial
measurements is analyzed to detect action units or facial
expressions. We assume that periods of facial activity, called
action unit or facial expression events in the sequel, are proceeded
and followed by periods of no facial activity, i.e. periods where the
subject has a neutral expression. For example in case AU1 is
activated in a time interval ½t1; t2�, the values of M1, M4 and M22

will increase near t1, reach a peak value between t1 and t2 and
decrease near t2. We call this temporal pattern a facial measure-
ment event. We assume that a measurement event starts when
the value of the corresponding measurement Mi starts to increase/
decrease compared to the reference value Ri and ends when this
value becomes again equal to Ri. In the between time, the value of
Mi reaches a peak (maximum/minimum) value. Classification is
based on this peak value.

Detection of measurement events over time is based on the
ratio Qi ¼ ðMi-RiÞ=Ri, which represents the increment or decre-
ment of Mi compared to Ri. The beginning of a potential new event
is signalled by jQij becoming greater than a threshold Tn and the
end of the event by jQij becoming less than Tn and remaining so
for at least 1 s. The value of Tn depends on measurement noise but
for the majority of measurements was set to 5%. There is a case
that a detected event is caused by an erroneous measurement.
This case can be easily detected by testing duration and rejecting
brief events (e.g. less than 0.5 s). We also neglect events if their
peak measurement value is less than 10%.
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Table 3
Rules for recognizing facial action units.

AU1 Raises the inner eyebrow part

IF incðM1Þ410 OR incðM4Þ410 OR incðM22Þ430 THEN AU1¼ true

AU2 Raises the outer eyebrow part

IF incðM2Þ412 THEN AU2¼ true

AU4 Lowers the eyebrows

IF (decðM1Þ410 OR decðM4Þ410) AND (decðM3Þ410 OR incðM1
23Þ415) THEN AU4¼ true

AU5 Raises the upper eyelid, widens the eye opening

IF incðM5Þ412 AND incðM6Þ410 THEN AU5¼ true

AU7 Raises the lower eyelid, narrows the eye opening

IF decðM5Þ410 AND decðM6Þ410 THEN AU7¼ true

AU9 Wrinkles the nose

IF decðM4Þ410 AND (incðM1
23Þ415 OR decðM3Þ410) AND ((NW1 Z2 AND NW2 Z3) OR (NW1 Z2 AND (decðM7Þ410 OR incðM8Þ410)) OR (NW2 Z3 AND

(decðM7Þ410 OR incðM8Þ410))) THEN AU9¼ true

NW1 ¼HðincðM2
23Þ420ÞþHðincðM3

23Þ420ÞþHðincðM4
23Þ420Þ

NW2 ¼HðincðM5
23Þ430ÞþHðincðM6

23Þ420ÞþHðincðM7
23Þ430ÞþHðdecðM8

23Þ410Þ

AU12 Pulls lip corners upwards obliquely

IF incðM11Þ45 AND incðM12Þ AND M12 453 AND decðM17Þ45 AND incðM16Þ48 THEN AU12¼ true

AU15 Presses lip corners downwards

IF M14 ¼ 0 AND decðM12Þ AND M12 o-53 AND incðM18Þ48 AND (NOT decðM19Þ415) THEN AU15¼ true

AU25 Parts the lips slightly

IF incðM14Þ AND M14 40:3 cm AND M14 o1 cm AND incðM20Þ AND (NOT incðM20Þ410) THEN AU25¼ true

AU26 Parts the lips, parts the jaws

IF M14 Z1 cm AND incðM20Þ410 AND (NOT incðM20Þ480) AND (NOT decðM19Þ410) THEN AU26¼ true

AU27 Stretches the mouth and pulls the lower jaw downwards

IF M14 Z1 cm AND incðM20Þ480 THEN AU27¼ true

Mi is the value of measurement i computed in the current frame and Ri is the corresponding reference measurement. incðMiÞ4a ðdecðMiÞ4aÞ denotes an increment

(decrement) of more than a% in the value of Mi compared to Ri . incðMiÞ=decðMiÞ denotes that the value of Mi has increased/decreased. Hðh1Þ equals 1 if the hypothesis h1 is

correct and 0 otherwise. Threshold values were determined experimentally.

Table 4
Rules for recognizing facial expressions (see caption in Table 3).

E1 Disgust

IF AU9¼ true OR (decðM12Þ AND M12 o-53 AND decðM19Þ415 AND CLZ2)

THEN E1¼ true

CL¼HðincðM1
21Þ410ÞþHðincðM2

21Þ420ÞþHðincðM3
21Þ415Þ

E2 Happy

IF incðM11Þ410 AND incðM12Þ AND M12 453 AND (incðM9Þ48 OR

incðM16Þ48) AND decðM17Þ410 AND incðM1
21Þ410 AND incðM2

21Þ430

AND incðM3
21Þ420 AND AU9¼ false THEN E2¼ true

IF incðM11Þ45 AND incðM13Þ45 AND M14 ¼ 0 AND (incðM9Þ48 OR

incðM16Þ48) AND incðM1
21Þ410 AND incðM2

21Þ430 AND incðM3
21Þ420

AND AU9¼ false THEN E2¼ true

E3 Sad

IF decðM12Þ AND M12 o-43 AND incðM18Þ48 AND (incðM4Þ410 OR

decðM3Þ410 OR decðM5Þ410) AND (NOT decðM19Þ415) AND AU9¼ false

THEN E3¼ true

E4 Surprise

IF incðM1Þ410 AND incðM2Þ410 AND incðM5Þ415 AND M15 40:25 AND

M14 Z1 cm AND incðM20Þ415 THEN E4¼ true

IF incðM1Þ415 AND incðM2Þ415 AND incðM5Þ415 THEN E4¼ true
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Since each measurement is processed independently, concur-
rent (overlapping) events may be detected. These are subse-
quently combined to recognize facial action units and facial
expressions. More specifically, at each frame we examine whether
we have one or more concluded measurement events and create a
list of the rules associated with these measurements. Then for
each rule we examine whether all associated measurements are
present. If they are, then we have a potential action unit or facial
expression event that is verified using the peak values of
associated measurement events. If the result is true, then an
action unit or facial expression event is detected in the interval
bounded by the corresponding measurements duration. The same
procedure is followed for all rules in the list.

Fig. 7 illustrates examples of detecting nose wrinkling (AU9)
and surprise events.
5. Experimental results

In this section, we present the results obtained from the
experimental evaluation of the system components. To this end a
new 2D+3D image database was recorded using the prototype 3D
sensor presented in [19]. The sensor is based on color coded light
implemented in the invisible near infrared spectrum and is
capable of quasi-synchronous acquisition of 3D and grayscale
images. The resolution of generated images is 582� 782 pixels,
while the accuracy of depth data is better than 0.3 mm for objects
standing at a mean distance of 60 cm in a working volume of
50� 50� 50 cm3.

The database consists of 832 sequences of 52 participants, 12
female and 40 male, 24 to 40 years old. In each sequence, the
human subject displays a single action unit (11 in total) or mimics
a facial expression (happy, sad, disgust, surprise, neutral) 2–4
times. Facial action periods last approximately 5–10 s and are
proceeded and followed by short neutral state periods. The
duration of each recording is about 30–40 s and the frame rate is
about 5 fps. Facial action and neutral face periods were manually
identified in each of these sequences by an expert and an
appropriate tag was assigned to each frame. Examples of recorded
image pairs and image sequences are illustrated in Figs. 8 and 9.

First, we evaluate the performance of the 3D face tracker
presented in Section 2. To train the global model as well as the
local detectors we used a set of 400 image pairs depicting an
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Fig. 7. Examples of temporal event detection: (a) AU9 and (b) surprise. The ðMi-RiÞ=Ri values of associated measurements Mi are shown. For M14 and M15 the Mi-Ri values

are shown instead. The values of M14 (mouth opening) were normalized by division with a constant. The bold gray line indicates the ground-truth activation periods and

the bold black line indicates activation periods detected by the proposed method.
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action unit or facial expression at its peak. To test the face tracker,
we use another set of 600 images, where we manually mark the
positions of facial landmarks. The estimated feature positions are
compared against their ground-truth positions. Using the pro-
posed face tracker, we achieve a mean localization error of 5.35
pixels and standard deviation 2.2, when the mean face dimen-
sions are 280� 370 pixels. On the contrary using the global
detector only, the corresponding error is 7.8 pixels. We also
compare the 2D+3D tracker against a 2D only ASM with the same
81 landmarks. In this case, we obtain a localization error of 10.2
pixels, which is mainly attributed to erroneous estimation of open
mouth landmarks.

Next, we evaluate the performance of the facial action unit
detector and the facial expression classifier under the first
classification scenario. The first 10 frames of each sequence are
used to extract the reference measurement vector. In each of the
remaining frames, first we localize the positions of the 81 facial
landmarks, next we extract a facial measurement vector
and finally we (a) classify the user’s facial expression or (b)
detect a set of action units based on the rule-based approach
presented in Section 4. Using this procedure we assign to each
frame a single facial expression tag and one or more action unit
tags. These tags are subsequently compared against the ground
truth.

The action unit detector was tested in 52� 11¼ 572 test
sequences, i.e. 52 sequences per action unit (one per subject). The
evaluation results are illustrated in Fig. 10. The mean detection
rate is 83.6%. The lowest detection rate is observed for AU27
(mouth stretched). The latter can be explained by the fact that
when the mouth is widely open, pixels in the mouth area have
undetermined depth values thus leading to erroneous estimates
of lip boundaries. More specifically, the estimation of the lower lip
boundary provided by the local mouth detector is usually placed
closer to the upper lip than it actually is thus resulting to the
detection of AU26 instead of AU27. A relative low detection rate is
also observed for AU15 (lip corners pressed down). This is mainly
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Fig. 9. Examples of recorded image sequences. First row: male subject displaying AU1. Second row: male subject expressing surprise. Third row: female subject expressing

happiness.

Fig. 8. Examples of grayscale images and corresponding 3D models of the facial expression database. The latter are generated from the recorded 3D images.
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due to the fact that most subjects displayed the specific action
unit very subtly, thus no significant changes could be detected in
the lip boundary shape and convexity.

Next, we evaluate the proposed facial expression recognition
technique again under the first classification scenario. As already
explained, our system is able to recognize facial expressions
related to happiness, sadness, surprise and disgust. Facial
expressions of anger and fear can also be detected though less
reliably. For the evaluation of the facial expression classifier, we
used 52 � 5=260 test sequences, i.e. five sequences per subject
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Table 6
Recognition rates for facial expression events (%).

True event/classified Neutral Disgust Happy Sad Surprise Other

Disgust 1.25 89.37 2.50 1.87 0.00 5.01

Happy 1.23 0.00 95.06 0.00 0.00 3.71

Sad 11.95 0.63 0.00 79.24 0.00 8.18

Surprise 0.61 0.00 1.83 0.00 93.90 3.66

Table 5
Facial expression recognition rates (%) under the per frame classification scenario.

True/classified Neutral Disgust Happy Sad Surprise

Neutral 95.42 0.92 1.87 1.31 0.48

Disgust 5.58 82.63 5.92 5.76 0.11

Happy 5.69 1.47 90.84 0.27 1.73

Sad 23.25 2.40 0.38 73.97 0.00

Surprise 2.53 0.75 9.12 0.00 87.60

Table 7
Facial expression recognition rates (%) obtained for the proposed 2Dþ3D classifier

and the 2D appearance-based classifier under the per frame classification scenario.

2Dþ3D 2D

Neutral 95.42 83.60

Disgust 82.63 70.72

Happy 90.84 81.21

Sad 73.97 61.85

Surprise 87.60 79.75
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Fig. 10. Facial action unit detection rates under the per frame detection scenario.
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Fig. 11. Correct detection rates for action unit event recognition.
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(four expressions þ neutral). The evaluation results are presented
as a confusion matrix in Table 5. The element ði; jÞ of this table
represents the percentage of sequence frames depicting
expression i, which were assigned emotion label j. The average
expression recognition rate is 85%. The highest misclassification
error is reported for sad, which 1 out of 4 times is classified as
neutral. This can be attributed to the fact that most subjects
expressed sadness only by slightly pressing lip corners down and
it is directly associated with the relative low detection rate
observed for AU15.

The same image sequences are also used for evaluating the
proposed temporal event classifier. As in the case of the first
classification scenario, the first 10 frames of each sequence are
used to compute the reference measurement vector. For the
remaining frames, we use the technique described in Section 4.2
and detect a set of events corresponding to action unit or facial
expression activation periods. To evaluate the performance of the
proposed temporal event detector, we compare the detected
events against the ground truth activation periods based on the
following assumption: we assume that a ground truth event is
correctly identified if the overlapping between this event and a
detected event with the same label is more than 80%. If the
overlapping is below the aforementioned threshold or an event
with another label is identified in the same time segment (e.g.
disgust instead of happy) then the ground truth event is
considered not detected. Fig. 11 presents the correct detection
rates for different action unit events. A mean detection rate of
89.50% is achieved.

The results of temporal facial expression recognition are presented
in Table 6. The element ði; jÞ of this table represents the percentage of
ground truth events depicting expression i, which were recognized as
events of expression j. We consider that a ground truth event eg of
expression i is assigned a label j, when there is an overlapping of more
than 80% between the ground truth event and a detected event of
expression j. If no event is detected during the activation period of eg

or more than 80% of the frames in this period are identified as neutral
then this event is assigned a neutral label. In any other case, e.g. if
there is an overlapping of less than 80% with a detected event or more
than one events of different expressions were detected in this time
period, eg is classified as ‘‘other’’.

Next, we evaluate the benefits obtained from the use of 3D
facial data by comparing the proposed facial expression recogni-
tion system against a system based exclusively on 2D images. The
latter consists of a 2D facial feature tracker based on 2D ASMs (a
model for the whole face, one for the eyebrows and one for the
mouth exactly as in the case of the proposed 3D face tracker) and
a facial expression classifier based on Gabor filters and linear
discriminant analysis. Given a 2D image frame, first we localize
the position of the 81 facial landmarks using the global 2D ASM
and the local feature detectors. Over each landmark position we
compute a local brightness measurement vector by applying a set
of Gabor filters and we create a concatenated feature vector for
the whole face. The feature vector is then projected in an LDA
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Fig. 12. Example of image sequence showing a happy expression under pose variations. White lines correspond to tracking results.
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subspace giving rise to a discriminant feature vector, which is
finally classified in one of the five emotion classes by means of the
K-nearest neighbors technique. This technique was tested in the
same set of sequences used for the evaluation of the proposed 3D
system. Table 7 compares its performance against that of the 3D
system under the first classification scenario. It is clear that use of
3D face geometry information significantly aids facial expression
recognition. Examining the results we found out that this
improvement can be equally attributed not only to increased
localization accuracy (Gabor features partly compensate for
mislocalization) but also to 3D features such as nose or cheek
wrinkling curvature measurements and their identity invariant
calculation. For this reason, we believe that our approach could be
better in terms of recognition accuracy compared to others, e.g.
[18], that use 3D information only for tracking and rely on 2D
features or implicit 3D features (e.g. model shape parameters) for
recognition. The use of explicit 3D facial measurements may
facilitate detection of specific action units, e.g. AU9, substantially.

The 3D system significantly outperforms the 2D one if there is a
lot of head movement as demonstrated by the following experiment.
We have recorded eight image sequences showing four human
subjects expressing happiness and surprise (two sequences per
subject) while rotating their heads up to 303 to the left and right.
An example of a recorded sequence is illustrated in Fig. 12. Facial
feature tracking results are also displayed. We have followed the
evaluation procedure described above for the first classification
scenario and obtained a 87% recognition rate for happy and 84% for
surprise. In case of larger poses where almost half of the face is
occluded, the recognition rate may drop significantly. But this is
mainly due to the failure of the facial feature tracking algorithm,
which results in erroneous facial measurements.

Acquisition of 2Dþ3D image sequences at higher frame rates
would result in smaller displacements of facial landmarks between
subsequent frames, which should in turn result in faster and more
accurate facial feature localization and thus increased facial measure-
ment accuracy and improved facial expression recognition perfor-
mance. Moreover, a higher frame rate would enable detection of
fleeting expressions, which are difficult to detect at low frame rates.

Experiments were performed on an Intel Core Duo 2.0 GHz PC
with 4 GB RAM. The total time for processing a single frame is
between 0.1 and 0.3 s: 50 ms for face detection, 0.15–0.25 s for facial
feature extraction and 10 ms for facial expression recognition.
6. Conclusion

A fully automated system for facial action unit detection and facial
expression recognition in sequences of 2D and 3D images was
presented in this paper. The proposed system is based on a novel real-
time model-based face tracker and a set of special local feature
detectors, which effectively combine 3D face geometry and 2D
appearance data. The use of 3D information facilitates detection of
surface deformations even in case of subtle facial muscle movements.
Facial action is represented by a set of geometric, appearance-based
and surface-based measurements, which are effectively classified into
emotional related expressions using a rule-based approach. A method
for detecting temporal events related to action unit or facial
expression activation periods was also proposed. The proposed
techniques were evaluated in a large database with more than 50
subjects and 800 sequences demonstrating increased accuracy and
robustness under pose variations.

Future work will exploit the dynamics of facial measurements
towards automatic decoding of all action units and their
combinations. 3D information will be further exploited for facial
feature tracking and facial action unit recognition. More specifi-
cally, the standard ASM fitting technique, which is based on image
gradient profiles derived from 2D images, will be extended to
include local 3D surface information in the form of curvature or
surface gradient descriptors. Such an approach is expected to offer
increased localization accuracy as well as increased robustness
against pose and illumination variations. In addition, new
curvature measurements will be proposed for detecting action
units related to the mouth and chin. Finally, the proposed
techniques will be extended to cope with large head poses.
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