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Reproducibility Summary

Scope of Reproducibility
This report contains a set of experiments that seek to reproduce the claims of two recent
works related to keypoint estimation, one specific to 6DoF object pose estimation, and
the other presenting a generic architectural improvement for keypoint estimation but
demonstrated in human pose estimation. More specifically, in the backpropagatable
PnP [1], the authors claim that incorporating geometric optimization in a deep-learning
pipeline and predicting an object s̓ pose in an end-to-end manner yields improved per-
formance. On the other hand, HigherHRNet [2] introduces a novel heatmap aggregation
method that allows for scale-aware pose estimations, offering higher keypoint localiza-
tion accuracy for small scale objects.

Methodology
We used the publicly provided code where available, adapting it to fit into amodel devel-
opment kit to facilitate our experiments. We used a dataset fit for validating both claims
simultaneously, and designed a set of experiments based on the published methodolo-
gies, but also went beyond seeking to validate the higher level concepts. Our experi-
ments were conducted on a Nvidia 2080 12 GB GPU with an average training time of 14
hours.

Results
We reproduce the claims of both papers by conducting several experiments in the UAVA
dataset [3]. The integration of a differentiable geometric module within an keypoint-
based object pose estimation model improved its performance in metrics. We addition-
ally verify that this is the case for other differentiable PnP implementations (i.e. EPnP).
Further, our results indicate that indeed HigherHRNet improves keypoint localisation
performance on small scale objects.

Copyright © 2021 G. Albanis et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Georgios Albanis (galbanis@iti.gr)
The authors have declared that no competing interests exist.
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Data is available at https://vcl3d.github.io/UAVA/ – DOI 10.5281/zenodo.3994337.
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[Re] On end-to-end 6DoF object pose estimation and robustness to object scale

What was easy
Both papers provided publicly available implementations. In addition, many different
variations were also found online. Finally, the papers themselves were very clearly writ-
ten, offering insights on various important details.

What was difficult
The main issue that required more effort was identifying the appropriate weights for
BPnP [1] in order to balance the different optimization objectives. As expected, this
varies for the context that it is applied (task, dataset) and the values presented in the
paper did not work in our case. Sub-optimal selection of weights leads to convergence
issues.

Communication with original authors
We communicated with the authors of [1] through GitHub, and we would like to thank
them as they provided a fast and detailed response. Furthermore, their responsiveness
to past issues had already provided a nice knowledge base regarding reproduction.
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1 Introduction

Object pose estimation seeks to determines the 3D position and orientation of an object
in camera-centred coordinates. During the last years, two main directions have been
emerged for data-driven 6DoF object pose estimation; direct pose regressionwhich predict
pose in an end-to-end manner, and indirect that learns the surrogate task of keypoint lo-
calisation and then solves a Perspective-n-Point (PnP) problem to estimate the resulting
pose. Even though it has been shown [4] that the latter methods better approach the
problem, there are still open challenges that need to be solved. One issue is the split-
ting between the actual task at hand, and the surrogate task that they learn. The other
has to do with the spatial nature of keypoint localisation and smaller scale objects. Re-
cently, two works have been presented that seek to address these issues, BPnP [1] and
HigherHRNet [2]. In this work, we seek to reproduce and verify their claims in a task
that is relevant for both of these works, drone pose estimation. While BPnP s̓ relation
has to dowith the task at hand, HigherHRNet is also relevant because commodity drones
are usually small form objects, and when flying around the further distance themselves
from the operator, effectively reducing their scale in the cameras̓ image domain.

2 Scope of reproducibility

Consequently, we opt for reproducing the claims of both of these two relevant papers
addressing the aforementioned challenges. In more details, the authors of BPnP [1]
propose a novel differentiable module which calculates the derivatives of a PnP solver
through implicit differentiation, enabling the backpropagation of its gradients to the net-
work parameters, and as such allowing for end-to-end optimization and learning. On
the other hand, the authors of HigherHRNet [2] focus on improving the 2d landmarksʼ
localization performance for smaller-scale humans by proposing a novel multi-scale su-
pervision scheme for training and a heatmap aggregation module for inference.
The main claims of both papers can be summarised below:

• BPnP: An end-to-end trainable pipeline for object pose estimation, can achieve
greater accuracy by combing the reprojection losses (Table 3).

• HigherHRNet: Anovelmethod for learning scale-aware representations usinghigh-
resolution feature pyramids, eventually achieving greater results for small scale
objects1 (Table 4).

3 Methodology

We implemented our experiments by re-using the publicly available implementation
for BPnP, and implementing HigherHRNet after styding the paper, the original pub-
licly available implementation, as well as other implementations. In both cases we inte-
grated the code base in a modular framework that facilitates reproducible experiments
[5], which generally required slight modifications of the original code provided by the
authors to fit its requirements. The overall methodology for our experiments is depicted
in Figure 1. On the left, a traditional monocular heatmap-based keypoint localisation
pipeline is presented, whereas on the right, the BPnP required components are illus-
trated.
BPnP: BPnP focuses on the Pose Retrieval stage, and following [1] we trained our model
under the 3 different schemes used in the original work as well:

1We apply the proposed module in the object pose estimation task, while authors originally demonstrated
it for the human-pose estimation task, but its concept still applies in our case as well.
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• heatmap loss (lh),

• mixture loss lm = lh + β ∗ lproj ,

• and pose loss lp = lreg + lproj ,

where lproj = ∥π(z|y,K)−x∗∥22 and lreg = ∥x−π(z|y,K)∥22. Also, π is the projection func-
tion employing the predicted pose(y) from the PnP solver, the corresponding object s̓ 3D
points z and K the camera intrinsic matrix. Apart from these experiments presented
also in the original paper, we conducted an extra set of experiments that aimed at valida-
tion the concept of end-to-end 6DoF pose estimation via differentiable PnP. We used an-
other openly available differentiable PnP implementation, and additionally, also tested
the faster counterpart of BPnP. We present results across many established object pose
estimation metrics, as well as computational performance metrics for all the aforemen-
tioned experiments.
HigherHRNet: On the other hand, for HigherHRNet we focused on the Heatmap regres-
sion part by using different models for the decoder part of the architecture, with details
following in Section 3.1.
All the code and its documentation are submitted and published along with this report.

Figure 1. Indirect object pose estimation approach consisting of theHeatmap Regression part where
HigherHRNet paper focuses on, and Pose Retrieval part where BPnP focuses, alongside the super-
vision signals.

3.1 Model descriptions
The following models were used as our backbone for regressing the heatmaps and the
corresponding coordinate spatial distributions (the decoder part in Figure 1):

• HRNet [6] with feature maps of width 48 and 3 stages. The 2nd, and 3rd, stages
contain 1, 4 exchange blocks, respectively, and each exchange block contains 4
residual units.

• HigherHRNet [2] with feature maps of width 48 and 3 stages. The 2nd, and 3rd,
stages contain 1, 4 exchange blocks, respectively, and each exchange block con-
tains 4 residual units.

• Stacked Hourglass [7] with depth 2 and feature maps of width 128

Following the heatmap predictions, we apply a decoding operation (i.e. center of mass
specifically) in order to extract the keypoints from the heatmaps, which are later driven
to the PnP algorithm for retrieving the 6D pose.
In addition, we integrated the EPnP [8] algorithm, using the available implementation in
Pytorch3D [9] instead of BPnP to assess whether other – similar in concept – implemen-
tations can verify the claim and quantify the differences between these approaches. As
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a side-note, it should be mentioned that our modelsʼ configuration slightly differs from
the ones described in the original works in order to comply with the working resolution
of the dataset we used.

3.2 Datasets

UAVA — As aforementioned, our experiments were conducted on a dataset that allowed
for the validation of both works simultaneously. This also better helps in deducing
whether the claims are reproducible as the context (task or dataset) can vary. We used
theUAVAdataset2 for object pose estimation. UAVA targets human-robot cooperativeUn-
manned Aerial Vehicle(UAV) applications and offers two different dronemodels, namely
DJI M2ED3 and Ryze Tello4. The UAVA dataset provides the 3D models of both drones
accompanied by ground-truth annotations such as 3D bounding boxes, 6D pose, and at
the same time multi-modal data. More importantly, the difference in size between the
two drone models allows for the validation of scale-invariant pose estimation.

Preprocessing —Weprocessed the original dataset in order to keeponly the sampleswhere
all the 2D keypoints are within the image, given that BPnP relies on softly approximating
the coordinate, and that would fail in the case of out of field-of-view keypoints. How-
ever, we shouldmention that we did not apply any other filtering (i.e. visibility of all the
keypoints, boundary cases, etc.).

3.3 Hyperparameters
We train all the models for 44 epochs and select the best performing model for testing.
We used the Adam optimizer with a learning rate of 1e− 4, betas of values 0.9 and 0.999
and no weight decay, and a seed value of 1989 for ensuring reproducibility. Albeit, we
experimented with different losses (i.e. KL, MSE) for lh, we found that L1 loss works the
best, offering the best results and faster convergence. This could be attributed to the
different resolution of the heatmaps grid (in our case is lower) as well as the different
configuration of the heatmap decoder model (we used 3 stages instead of 4). It is worth
mentioning that we also tried a bigger heatmap resolution (e.g. 160 × 120) although we
decided to conduct our final experiments in the lower resolution for two main reasons.
First, most heatmaps regression decoders used in the literaturemake their prediction in
the 1/4 of the original image, and second, this higher heatmap resolution would enforce
us to further reduce the depth of the decodermodel. Specifically, for BPnPwe set β value
to 1e − 5 after conducting a greedy heuristic search, with values ranging from 0.001 to
1e− 9, as the proposed value for β coefficient, did not work for our case. The selection
of a non-appropriate β coefficient value can lead to stability issues as noted in Section
5.2.

3.4 Experimental setup and code
As mentioned above, we integrated the authorsʼ code (BPnP) or our own reimplementa-
tions (HigherHRNet) in [5] which is a PyTorch framework for modular and reproducible
workflows5. Each model is implemented in a configuration file that defines the differ-
ent components (optimizer, datasets, model architecture, pre-/post-processing graphs,
etc.) and logs all hyperparameters. For each experiment we report the standardmetrics
below:

2https://vcl3d.github.io/UAVA/
3https://www.dji.com/gr/mavic-2-enterprise
4https://www.ryzerobotics.com/tello
5www.github.com/ai-in-motion/moai
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NPE: is the magnitude (L2-norm) of difference between the ground-truth and estimated
position vectors from the origin of the camera reference frame to that of the drone body
frame, normalised with ground-truth vector.
AD: is the angular distance between the predicted, rotationmatrix, and ground-truth,or
in other words, the magnitude of the rotation that aligns the drone body frame with the
camera reference frame.
ACC: considers an estimated pose to be correct if its rotation error is within k◦ and the
translation error is below k cm.
ADD: is the average distance metric to compute the averaged distance between points
transformed using the estimated pose and the ground truth pose. Eventually, a pose
estimation is considered to be correct if the computed average distance is within k% of
the model diagonal.
Proj: is the mean distance between 2D keypoints projected with the estimated pose and
those projected with ground truth pose. An estimated pose is considered correct if this
distance is within a threshold k.

3.5 Computational requirements
Table 1 showcases the total duration of each experiment (with a 24 batch size) as well
as some other useful statistics such as the mean duration time for a forward pass, a
backward pass, an optimizer step, as well as the total test duration with batch size 1. It
is clear, that the introduction of the differentiable PnP modules in the training proce-
dure increases the total training time significantly, as the backward and step operation
require more time. We ran our experiments on a machine with the specifications pre-
sented in Table 2.

Table 1. Time statistics for each experiment. Red and orange colors indicate the two (worst, and
second worst respectively) most time-consuming experiment per drone model.

Drone
Total

Training
Duration (hrs)

Mean
Model Fwd
Duration(s)

Mean
Model Bwd
Duration(s)

Mean
Optimizer
Step (s)

Total
Test

Duration (min)
lm 14.14 0.13 2.73 2.89 23.75
lp 14.13 0.13 2.73 2.90 19.30
EPnP 17.33 0.19 1.49 1.74 24.37
HRNet 11.19 0.06 0.003 0.21 19.87
Hourglass 6.99 0.14 0.019 0.22 15.85

M2ED

HigherHRNet 10.54 0.11 0.033 0.36 23.63
lm 20.78 0.13 2.72 2.9 23.82
lp 20.38 0.13 2.68 2.85 19.95
EPnP 21.80 0.28 3.80 4.14 19.13
HRNet 9.69 0.13 0.029 0.38 19.88
Hourglass 10.13 0.14 0.020 0.22 15.62

Tello

HigherHRNet 16.10 0.14 0.032 0.4 20.50

Table 2. Hardware Components

OS Windows Microsoft Pro (x64)
Storage 3TB Toshiba HDD
CPU Intel i9-7900X (4.30 GHz)
GPU GeForce RTX 2080 Ti (12 GB)
RAM 4 x 16 GB Kingston (2666 MHz)
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4 Results

Our results support the claims presented by both authors in [1] and [2] respectively. As
is demonstrated in Table 3, the model trained with lp achieved better results in most of
themetrics for both dronemodels. Similarly, Table 4 indicates that HigherHRNet yields
better results for the small-scale drone inmost of themetrics, although its performance
for the bigger M2ED drone is worse compared to the standard HRNet model.

4.1 Results reproducing original papers

BPnP —With these experiments we show that the addition of a differentiable PnP mod-
ule improves the performance in object pose estimation task. We provide qualitative
results in Figure 3. It is worth highlighting that training with lp does not restrict the
shape of the distribution the way that it is constrained when relying on heatmap su-
pervision (i.e. Gaussian distribution approximation). Instead, the model freely localizes
the keypoints, which results in more focused predictions. This is illustrated in Figure 2
where qualitative results display the heatmaps on top of the color images.

Table 3. BPnP results on the UAVA dataset. We trained all models for 44 epochs and select the best
among them for inference. Light green with bold and light blue indicate the best and second best
performers.

Drone NPE↓ AD↓ ACC2↑ ACC5↑ ADD2↑ ADD5↑ Proj2↑ Proj5↑
lm 0.014 0.027 92.13 98.07 81.31 93.34 99.45 99.58
lp 0.012 0.026 95.20 98.36 90.29 96.81 98.05 99.14M2ED
lh 0.011 0.020 90.75 98.04 80.52 91.37 97.56 99.49
lm 0.071 0.189 43.38 82.11 14.88 41.47 93.97 96.08
lp 0.063 0.223 55.31 85.34 20.04 50.53 93.19 94.49Tello
lh 0.091 0.252 36.36 74.99 18.27 43.31 89.25 94.00

HigherHRNet — These experiments showcase that the addition of the aggregation module
improves the keypoint localization performance when targeting smaller-scale objects.
Specifically, the HigherHRNet architecture gives better results in most of the metrics
for the small form drone (Tello). On the other hand though, this is not the case for the
larger drone, where the HigherHRNet performance is slightly worse than the standard
HRNet s̓ one.

Table 4. HigherHRNet results on the UAVA dataset. We trained all models for 44 epochs and select
the best among them for inference. Light green with bold and light blue indicate the best and
second best performers.

drone NPE↓ AD↓ ACC2↑ ACC5↑ ADD2↑ ADD5↑ Proj2↑ Proj5↑
Hourglass 0.015 0.028 89.43 96.94 78.20 90.42 96.56 99.02
HRNet 0.011 0.020 90.75 98.04 80.52 91.37 97.56 99.49M2ED
HigherHRNet 0.011 0.020 89.92 97.75 79.58 90.99 97.50 99.44
Hourglass 0.094 0.214 32.19 75.47 14.76 38.26 92.23 96.25
HRNet 0.091 0.252 36.36 74.99 18.27 43.31 89.25 94.00Tello
HigherHRNet 0.095 0.264 42.98 75.69 20.19 46.69 89.54 93.63

4.2 Results beyond the BPnP paper
Apart from the experiments conducted by the authors in [1] we provide additional to
further support the main claims. Particularly, we compared BPnP versus an alternative
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Figure 2. Qualitative heatmap results on random samples from the test-set. The first two columns
depicts the M2ED drone while the last two the Tello drone; with heatmaps predicted by mod-
els trained with lp and lh respectively. Evidently, heatmaps by the lh model (second and fourth
columns tend to keep the 2D Gaussian shape distribution, while the lp ones (first and third
columns) freely approximate the (x, y) position enforced by the regularizer term(lreg) of the lp
loss, eventually allowing for more distinguishable 2D keypoints estimations.

differentiable PnP algorithm (i.e. EPnP) and the results are demonstrated in Table 5. We
also provide extra experiments of a BPnP implementation inwhich the calculation of the
higher-order derivatives is ignored from the coefficient s̓ graph as presented in Table 6.

BPnP vs EPnP — For this experiment we utilised the same backbone (i.e. HRNet) but we
changed the BPnP module with the EPnP. We followed the exact same training proce-
dure, hyperparameters, as well as the same loss lm. Results are summarized in Table 5.
It is evident that EPnP and BPnP offers comparable results in most of the metrics.

BPnPfaster — Authors in [1] provided an alternative method for calculating the gradients
through the PnP layer, which essentially is the samemethod as the original, although ig-
noring the higher-order derivatives from the coefficients graph. Therefore, we provide
results using this faster BPnP method in Table 6, comparing the two different versions,
as well as their training times in Table 7. It seems that the original version outmatches
the faster one, albeit there is no significant performance drop. On the other hand, Ta-
ble 7 indicates how the second implementation justifies its name. So, it is in usersʼ flu-
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Table 5. BPnP vs EPnP. Following the same approach we trained the decoder part only with lh
for 30 epochs and then continue with lm for 14 epochs. Light green with bold indicates the best
performer.

Drone NPE↓ AD↓ ACC2↑ ACC5↑ ADD2↑ ADD5↑ Proj2↑ Proj5↑
BPnP 0.014 0.027 92.13 98.07 81.31 93.34 99.45 99.58M2ED EPnP 0.014 0.027 92.89 98.19 80.50 93.64 99.52 99.61
BPnP 0.071 0.189 43.38 82.11 14.88 41.47 93.97 96.08Tello EPnP 0.074 0.192 46.77 81.64 21.07 49.59 93.77 96.13

ency whether they need to sacrifice gradient accuracy and some performance drop in
exchange for efficient training times.

Table 6. BPnPfaster results on the UAVA dataset, following the exact training approach as original
BPnP. Here we present results with models trained with lp. Light green with bold indicates the
best performer.

Drone NPE↓ AD↓ ACC2↑ ACC5↑ ADD2↑ ADD5↑ Proj2↑ Proj5↑
BPnPfaster 0.013 0.029 94.79 98.06 89.38 96.66 97.83 98.98M2ED BPnP 0.012 0.026 95.20 98.36 90.29 96.81 98.05 99.14
BPnPfaster 0.055 0.167 55.42 87.03 26.43 58.99 94.91 96.12Tello BPnP 0.063 0.223 55.31 85.34 20.04 50.53 93.19 94.49

Table 7. BPnPfaster time statistics. Light green with bold indicates quicker performance.

Drone
Total

Training
Duration (hrs)

Mean
Model Fwd
Duration(s)

Mean
Model Bwd
Duration(s)

Mean
Optimizer
Step (s)

Total
Test

Duration (min)
BPnPfaster 6.80 0.089 0.53 0.66 17.15M2ED BPnP 14.13 0.13 2.73 2.90 19.30
BPnPfaster 10.39 0.09 0.54 0.69 18.85Tello BPnP 20.38 0.13 2.68 2.85 19.95

5 Discussion

After conducting several experiments on the UAVA dataset, the central claims of [1] and
[2] stand true; as they both outperform other methods. Particularly, for validating BPnP
we conducted the same experiments as the original paper, and further, we compare it
with another differentiable PnP method (i.e. EPnP). The inclusion of 2D-3D geometry
constraints through differentiable geometric optimization, improves the performance.
Extending the experiments of the original paper, we compare another implementation
of the BPnPmodule which ignores the high order derivatives from the coefficient graph.
This module achieves comparable results as its counterpart apart it is much faster. It is
worth noting, that both BPnP, and EPnP are quite time-consuming as demonstrated in
Table 1. Finally, we study the performance of the HigherHRNet [1] in a very challeng-
ing small scale object. Indeed, the performance of the proposed heatmap aggregation
module achieves better results when compared with other well-established methods.

5.1 What was easy
Implementing most of the code was straightforward as authors of both papers provide
source code. GitHub issues were another source of retrieving information, clarifying
parts of the papers when needed. Additionally, both of the original papers are quite
complete, well-written making it easy to follow.
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Figure 3. Qualitative results on random samples from theUAVAdataset from three differentmodels.
The red mask indicates predictions by lp trained model, purple by lm and finally cyan by HRNet.
The drone masks are rendered by employing the predicted pose(i.e. output of the BPnP) and then
blended with the original color image. The first three columns depicts M2ED drone model while
the rest three the Tello drone. The Tello samples are cropped and zoomed-in due to its small form
factor.

5.2 What was difficult
Ourmajor difficulty was related to finding the appropriate value for balancing the terms
of mixture loss lm, aka the β value. Even though, authors in [1] provided the value that
they used for their experiments this did not work for us, as this is a case specific param-
eter. It is worth noting that a non-appropriate selection of the balancing term can lead
to convergence issues and negative results. Even though, not related with the code of
both of the papers, we feel that it would be constitutive to mention that we faced the
same difficulties when trying to incorporate EPnP in our workflow.

5.3 Communication with original authors
Authors of [1] did not specify the configuration of the used network in the pose estima-
tion task, nor the hyperparameters. Thus, we contacted them through GitHub where
they provided a detailed answer, available now to the research community. We did not
contact HigherHRNet authors [2] as the online implementations and the text and figures
in their paper were a good enough guide to understand and implement it.
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