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Abstract. Teaching the machine has been a great challenge for computer
vision scientists since the very first steps of artificial intelligence. Through-
out the decades there have been remarkable achievements that drastically
enhanced the capabilities of the machines both from the perspective of in-
frastructure (i.e., computer networks, processing power, storage capabilities),
as well as from the perspective of processing and understanding of the data.
Nevertheless, computer vision scientists are still confronted with the problem
of designing techniques and frameworks that will be able to facilitate effort-
less learning and allow analysis methods to easily scale in many different do-
mains and disciplines. It is true that state of the art approaches cannot produce
highly effective models, unless there is dedicated, and thus costly, human su-
pervision in the process of learning that dictates the relation between the con-
tent and its meaning (i.e., annotation). Recently, we have been witnessing the
rapid growth of Social Media that emerged as the result of users’ willingness
to communicate, socialize, collaborate and share content. The outcome of
this massive activity was the generation of a tremendous volume of user con-
tributed data that have been made available on the Web, usually along with
an indication of their meaning (i.e., tags). This has motivated the research ob-
jective of investigating whether the Collective Intelligence that emerges from
the users’ contributions inside a Web 2.0 application, can be used to remove
the need for dedicated human supervision during the process of learning. In
this chapter we deal with a very demanding learning problem in computer
vision that consists of detecting and localizing an object within the image
content. We present a method that exploits the Collective Intelligence that
is fostered inside an image Social Tagging System in order to facilitate the
automatic generation of training data and therefore object detection models.
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The experimental results shows that although there are still many issues to
be addressed, computer vision technology can definitely benefit from Social
Media.

1 Introduction

The recent advances of Web technologies have effectively turned ordinary people
into active members of the Web, that generate, share, contribute and exchange vari-
ous types of information. Web users act as co-developers and their actions and col-
laborations with one another have added a new social dimension on Web data. This
social dimension of information was fostered by the next generation of the Web,
namely Web 2.0, the applications of which have generated (and still generate) a re-
markable volume of multimedia content. Based on this huge repository of content,
various services have evolved [55], ranging from the field of eCommerce, to emer-
gency response [56] and consumer collective applications such as realtravel.com
[14]. The intelligence provided by single users organized in communities, takes a
radical new shape in the context of Web 2.0, that of Collective Intelligence. Collec-
tive Intelligence emerges from the collaboration, communication and sharing among
the users of social networks.

Although Collective Intelligence is at least as old as humans and appears in a
wide variety of forms e.g., bacteria, animals, computer networks, it is now occur-
ring in dramatically new forms. For example, Google1 uses the knowledge millions
of people have stored in the World Wide Web to provide useful answers to users’
queries and Wikipedia2 motivates thousands of volunteers around the world to create
the world’s largest encyclopedia. With new communication technologies and using
the Internet as host, a large number of people all over the planet can now work to-
gether in ways that were never before possible in the history of humanity. But what
exactly is Collective Intelligence and how can we benefit from it; The MIT Center
for Collective Intelligence3 frames the research question as “How can people and
computers be connected so that-collectively-they act more intelligently than any in-
dividuals, groups, or computers have ever done before?”. It is now more important
than ever for us to understand Collective Intelligence at a deep level so as to take
advantage of these new possibilities.

In the field of multimedia data management, Collective Intelligence provides
added value to the shared content and enables the accomplishment of tasks that are
not possible otherwise. The acquisition of valuable knowledge is a big departure from
traditional methods for information sharing, since managing Collective Intelligence
poses new requirements. For example, semantic analysis has to fuse information
coming both from the content itself, the social context and the emergent social dy-
namics. This fact has motivated increasing interest in discovering the different layers
of Collective Intelligence, as well as in using these layers to empower new forms of

1 http://www.google.com
2 http://en.wikipedia.org
3 http://cci.mit.edu
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Web Data Management. Important progress towards this objective has been achieved
in the context of the WeKnowIt4 project were Collective Intelligence is considered
to be the synthesis of 5 different layers namely, Personal Intelligence, Media Intelli-
gence, Mass Intelligence, Social Intelligence and Organizational Intelligence.

In this chapter we investigate whether the Collective Intelligence derived from
the user contributed content can be used to guide a learning process that will teach
the machine how to recognize objects from visual content, the way a human does.
We examine the problem both from the perspective of the teacher, which consists of
knowledge that is build incrementally in an evolutionary and decentralized manner
and therefore is characterized by questionable reliability, lack of structure, ambigu-
ity and redundancy; as well as from the perspective of the learner that consists of
models that apply learning algorithms on training data to capture the diversity of an
object’s form and appearance, and therefore demand for close supervision.

The rest of the chapter is structured as follows. Section 2 elaborates on the role of
learning in computer vision and provides a description of Social Tagging Systems
in the context of Web Multimedia Data. Section 3 emphasizes on the key aspect
of multimedia analysis and provides an overview of the basic mechanisms that are
used for learning. Section 4 presents an approach for training object detection mod-
els using data from collaborative tagging environments, that exploits the Collective
Intelligence derived from the massive users’ contribution. Concluding remarks are
drawn in Section 6.

2 Learning and Web 2.0 Multimedia

2.1 Learning in Computer Vision

Learning has always been of primary importance for computer vision scientists. If
we wish to construct a visual system that is able to scale on an arbitrary large num-
ber of concepts, effortless learning is crucial. Humans learn to recognize materials,
objects and scenes from very few examples and without much effort. A 3-year old
child is capable of building models for a substantial number of concepts and rec-
ognizing them using these models. By age of six humans recognize more than 104

categories of objects [7] and keep learning more throughout their life. Can a com-
puter program learn how to recognize semantic concepts from images? This is the
general question addressed by the computer vision scientists. But what is the pro-
cess of learning; what is the mechanism that allows humans to initially require many
examples to learn, as performed by little babies, and after they have learned how to
learn, they can learn from just a few examples; and most importantly what is the
role of the teacher in this process and what is the minimum amount of supervision
that is absolutely necessary for facilitating efficient learning?

In [38] the authors make the hypothesis that, once a few categories have been
learned with significant effort, some information may be abstracted from the process
to make learning further categories more efficient. Similarly in [41] when images

4 http://www.weknowit.eu/
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of new concepts are added to the visual analysis model, the computer only needs to
learn from the new images. What has been learned about previous concepts is stored
in the form of profiling models, and the computer needs no re-training. On the other
hand in [67] the authors claim that with the availability of overwhelming amounts
of data, many problems can be solved without the need for sophisticated algorithms.
The authors mention the example of Google’s “Did you mean” tool, which corrects
errors in search queries by memorizing billions of query-answer pairs and suggest-
ing the one closest to the user query. In their paper the authors present a visual
analog to this tool using a large dataset of 79 million images and a non-parametric
approach for image annotation that is based on nearest neighbor matching.

However, the need for effortless learning coupled with the fact that the images
archived on the Internet are growing at a phenomenal rate, has motivated other
researchers to turn their interest in weakly (i.e. image level) annotated instead of
strongly (i.e. region or pixel level) annotated images. Fig. 1 shows an example im-
age with both strong and weak annotations. Photo sharing through the Internet has
become a common practice and according to the reports released in 2007, flickr.com
has 40 million monthly visitors and hosts two billion photos, with new photos in the
order of millions being added on a daily basis. In this context, the authors of [11]
use multiple instance learning to learn models from images labeled as containing
the semantic concept of interest, but without indication of which image regions are
observations of that concept. Similarly in [18] object recognition is viewed as ma-
chine translation by learning how to map visual objects (blobs) to concept labels. In
[15] models are learned from ambiguously labeled examples, where each example
is supplied with multiple potential labels, only one of which is correct. Approaches
that learn an object category from just its name include [21], where the authors
obtain images from the web using Google or Yahoo search engines and takes the
returned results to be pseudo-positively labeled training images.

The key trade-off between the annotation-based models (which use labels pro-
vided by human annotators) and search-based models (which use models automati-
cally obtained from the Web), is from the one side the amount of human effort that
is required in annotation-based models and on the other side the expected decrease

Seaside

Vacations

Gulf

Fig. 1. An example image annotated both strongly (i.e., each of the identified image regions
is assigned with a label) and weakly (i.e., a set of labels is provided to describe the image
content)
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in classification performance that will result from search-based methods [34]. Re-
cently, and driven by the widespread appeal of social sites, we have been witnessing
an increasing research interest in using social sites and in particular Social Tagging
Systems (STS), instead of the search engines, to obtain the necessary labels.

2.2 Social Tagging Systems and Web 2.0 Multimedia

An STS is a web-based application, where users, either as individuals or more
commonly as members of a community (i.e., social networks), assign labels (i.e.,
arbitrary textual descriptions) to digital resources. Their motivation for tagging is in-
formation organization and sharing. Social tagging systems tend to form rich knowl-
edge repositories that enable the extraction of patterns reflecting the way content
sementics is perceived by the web users. In [27] the authors show that the tag pro-
portions each resource receives crystallizes after about 100 annotations attributing
this behavior to the users’ common background and their tendency for imitation on
other users’ tagging habits. The availability of such content in the Web is high and
the exploitation of the Collective Intelligence that is fostered by this type of content
still remains a challenge.

In order to extract the knowledge that is stored and often “hidden” in social data,
researches have employed various approaches: a) Clustering techniques that are
based on tagging information and tag co-occurrence to derive semantically-related
groups of tags and resources [4], [28], [30], b) Ontology driven tagging organization
and mining, by combining Web 2.0 and Semantic Web, [29], [60], [54], c) content-
based analysis of tagging-related sources that explore both tags and visual features
(in a supplementary manner) for browsing and retrieving semantically related im-
ages [2], [57], [25]. Despite the active research efforts in this area, the full potential
of Web 2.0 data has not been exploited yet. Few approaches exploit the fact that
the tag and visual information space are highly correlated and the Collective Intel-
ligence that will emerge from the massive participation of users in contributing and
tagging multimedia content can be used to facilitate the learning process of com-
puter vision systems.

However, while the Collective Intelligence derived from social data seems a very
promising source of information, it has some serious limitations that mainly derive
from the unconstrained nature of Web 2.0 applications. Users are prone to make mis-
takes and they often suggest invalid metadata (tag spamming). The lack of (hierarchi-
cal) structure of information results in tag ambiguity (a tag may have many senses),
tag synonymy (two different tags may have the same meaning) and granularity vari-
ation (users do not use the same description level, when they refer to a concept).

There is a growing number of research efforts that attempt to overcome the afore-
mentioned limitations and exploit the dynamics of social tagging systems to
facilitate different types of multimedia applications. In [2], the authors claim that the
intrinsic shortcomings of collaborative tagging can be tackled by employing content-
based image retrieval technique. The user is facilitated in image database browsing
and retrieval by exploiting both the tag and visual features in a supplementary way.
In [25] a number of clustering techniques were employed in order to couple tagging
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information with content-based features. The clustering was tag-oriented and oc-
curred in two steps. In the first step the resources were assigned to clusters, depending
on the similarity of their accompanying tags. In the second step, visual features were
employed, in an effort to increase the purity of already created clusters. The second
step of the process could be regarded as a “misleading tags tracking phase”. Another
work that combines user data with feature-based approaches is presented in [24], that
is used to rank the results of a video retrieval system. The authors use this knowledge,
along with a multimedia ontology to build a learning personalized environment.

There are also works that address the problem of identifying photos from social
tagging systems that depict a certain object, location or event [35], [57]. In [35] the
authors make use of community contributed collections and demonstrate a location-
tag-vision-based approach for retrieving images of geography-related landmarks.
They use clustering for detecting representative tags for landmarks, based on their
location and time information. Subsequently, they combine this information with
vision-assisted process for presenting the user with a representative set of images.
In [57] the authors are concerned with images that are found in community photo
collections and depict objects (such as touristic sights). The presented approach is
based on geo-tagged photos and the task is to mine images containing objects in a
fully unsupervised manner. The retrieved photos are clustered according to different
modalities including visual content and text labels.

In all cases the authors are trying to benefit from the Collective Intelligence that
emerges from the content contributed to STSs and improve the efficiency of cer-
tain tasks. However the correlations between the tag and visual information space
that are established when the users suggest tags for the uploaded visual content, are
mostly treated as complementary sources of information that both contribute to the
semantic description of the resources. In contrast to the above this chapter investi-
gates whether the aforementioned correlations can be used to facilitate the learning
process of multimedia analysis models. For this reason in the following Section we
provide a short introduction to some of the techniques used for multimedia analysis.

3 Multimedia Analysis and Management

3.1 The Need for Semantics

The efficient management of multimedia data poses many technological challenges
in terms of indexing, querying and retrieving, that require a deep understanding of
the information at a semantic level. Driven by this need and given that machines’
perception is limited to numbers and strings, there have been many research efforts
that try to map semantic concepts or events to low level features, an issue addressed
as bridging the “semantic gap”.

The very first attempts for image retrieval were based on keyword search [50]
applied either on the associated annotations (assuming that annotations existed) or
on the images’ file names. However, these approaches apart from requiring textual
annotations of the multimedia data, they are barely as descriptive as the multimedia
content itself. To overcome these limitations, the use of the image visual charac-
teristics has been proposed. In this case, the visual content is utilized by extracting
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a set of visual features from each image or image region. By comparing the visual
features an algorithm can decide whether the two images/regions represent the same
semantic concept. Then, image retrieval is performed by comparing the visual fea-
tures of an example image/region that is associated with a semantic concept by the
user, to the visual features of all images in a given collection [20] (known as Query
By Image Content systems).

Subsequently, more sophisticated methods were proposed that aimed at simulat-
ing the functionality of human visual system by allowing the machines to mimic the
procedure followed by a human when identifying semantics in visual content. In this
direction pattern classification has been brought to the core of most image analysis
techniques in order to render a kind of meaning on visual patterns. A typical pat-
tern classification problem can be consider to include a series of sub-problems the
most important of which are: a) determining the optimal feature space, b) remov-
ing the noisy data that can be misleading, c) avoid overfitting on training data, d)
use the most appropriate distribution for the model, e) make good use of any prior
knowledge that may help you in making the correct choices, f) perform meaningful
segmentation when the related task requires to do so, h) exploit the analysis con-
text, etc. All the above are crucial for initiating a learning process that aims at using
the available training samples to estimate the parameters of a model representing
a semantic concept. In the following section we discuss and provide related refer-
ences for some of the aforementioned sub-problems, giving special emphasis on the
mechanisms of learning.

3.2 Visual Features Extraction and Regions Identification

Many problems derive from the fact that it is very difficult to describe visual content
effectively in a form that can be handled by machines. In general, feature extrac-
tion is a domain dependant problem and it is unlikely that a good feature extrac-
tor for a specific domain will work as good for another domain. The extraction of
features for efficient image representation has attracted a lot of interest in the scien-
tific community of image analysis. Motivated by the principles of human perception,
most researchers have tried to describe images/regions using color, shape and tex-
ture characteristics. Some of the most widely adopted techniques for representing
images/regions include the descriptors proposed by the MPEG-7 standard [1] that
capture different aspects of color, texture and shape. Other approaches rely on the
corners and edges that can be found inside an image in order to describe the image
using a set of interest points. The Scale-Invariant Feature Transform (SIFT) proposed
in [44] and its modifications (i.e., color SIFT, opponent SIFT, etc [59]) are considered
some of the most representative algorithms of this category. Particularly important
is also considered the vector quantization approach initially proposed in [64] where
in analogy to text, images/regions are represented as bags-of-visual words that have
been learned through an extensive training process using representative data.

Additionally, many problems derive from the fact that images tend to include
more than one objects in their content, which decreases the descriptiveness of the
feature space and raises the need for segmentation. The segmentation of images into
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regions and the use of a separate set of features for each region was introduced to
address the aforementioned issue. Segmentation techniques seek to detect groups
of pixels sharing similar visual characteristics and identify in this way meaning-
ful objects (similar to the ones identified by human visual system). In the field of
segmentation one of the most commonly used methods is Normalized Cuts [62]
which is a graph partitioning algorithm using a global criterion, the normalized cut,
for segmenting the graph. Other approaches include [52] that segments color im-
ages by applying a variance of K-means on intensity, position and texture features,
as well as [12] that is based on the Expectation-Maximization (EM) algorithm. Both
segmentation and feature extraction are two very important techniques for identify-
ing patterns in visual content. However, in order to bridge the semantic gap these
patterns will have to be classified into meaningful concepts. This is where the role
of learning takes place since it is used to estimate the parameters of a model that
will be sub-sequently used to classify new, unseen images or regions.

3.3 Learning Mechanisms

Humans can classify images through models that are built using examples for every
single semantic concept. Based on this assumption, researchers have been trying
to simulate human visual system by using machine learning algorithms to classify
the visual content. A set of training samples plays the role of the examples that
a person uses to learn a concept. Based on the prior knowledge that we have on
the training samples during the learning process, we can distinguish between the
following basic categories; unsupervised, strongly supervised, semi-supervised and
weakly supervised learning.

3.3.1 Un-supervised Learning

Unsupervised learning is a class of problems in which one seeks to determine how
the data are organized. It is distinguished from supervised learning in that the learner
is given only unlabelled examples. One of the most known forms of unsupervised
learning is clustering. The clustering output can be hard (a partition of the data into
groups) or fuzzy (where each data point has a variable degree of membership in each
output cluster) [6]. Clustering algorithms can be divided in two major categories, hi-
erarchical [32] and partitional [47]. Hierarchical methods produce a nested series of
partitions whereas partitional methods produce only one partition. Many cluster-
ing algorithms require the specification of the number of clusters to produce in the
input data set, prior to the execution of the algorithm. Barring knowledge of the
proper value beforehand, the appropriate value must be automatically determined, a
problem for which a number of techniques have been developed [13], [23]. Another
important step in any clustering scheme is the selection of a distance measure, which
determines how the similarity of two elements is calculated. The distance measure
influences the shape of the clusters, as some elements may be close to one another
according to one distance and farther away according to another.
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3.3.2 Strongly-Supervised Learning

In strongly-supervised learning there is prior knowledge about the labels of the
training samples and there is one-to-one relation between a sample and its label
(e.g., each region of the image depicted in Fig. 2 is associated with a label). The
aim of strongly-supervised learning is to generate a global model that maps input
objects to the desired outputs and generalize from the presented data to unseen situ-
ations in a “reasonable” way. Some of the most widely used types of classifiers that
typically rely on strongly annotated samples are the Neural Network (Multilayer
perceptron) [19], Support Vector Machines [51], naive Bayes [17], decision tree [8]
and radial basis function classifiers [46]. A known issue in supervised learning is
overfitting (i.e. the model describes random error or noise instead of the underlying
relationship) which is more probable to occur when the training samples are rare
and the dimensionality of the feature space is high. In order to avoid overfitting, it
is necessary to use additional techniques (e.g. cross-validation, regularization, early
stopping, Bayesian priors on parameters or model comparison), that can indicate
when further training is not resulting in better generalization.

3.3.3 Semi-supervised Learning

Semi-supervised learning algorithms try to exploit unlabeled data, which are usu-
ally of low cost and can be obtained in high quantities, in conjunction with some
supervision information. In this case, only a small portion of the data is labeled and
the algorithm aims at propagating the labels to the unlabeled data. The earliest idea
about using unlabeled data when learning a classification model is self-learning. In
self-learning, the classification model is initially trained using only the labeled data
and at each step a part of the unlabeled data is labeled according to the output of the
current model. Then, a new classification model is trained using both the labeled as
well as the data that were labeled as positive from the previous step.

Another category of semi-supervised learning algorithms is based on the cluster
assumption, according to which the points that are in the same cluster belong to

Fig. 2. An image depicting the object sea that is manually annotated at region level
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the same class. So there should be regions with high density of points (which for-
mulate the clusters) and low-density regions where the decision boundary lies in.
Most of the recent semi-supervised classification approaches aim at creating new
specialized learning algorithms that are able to combine labeled and unlabeled data.
More specifically, in order to have the ability to choose a learning algorithm with the
required attributes most state-of-the-art methods combine semi-supervised learning
with boosting techniques. Boosting is part of the ensemble learning family algo-
rithms and aims at building an ensemble by training each new model instance to
emphasize the training instances that previous models mis-classified [5]. The most
popular algorithm that utilizes the boosting method is Adaboost (short for Adap-
tive Boosting) presented in [22]. Algorithms that adopted the SemiBoost approach,
which employs the boosting method in order to improve any existing supervised
learning algorithm with unlabeled data, include [48], [37], [9].

3.3.4 Weakly-Supervised Learning

By weakly-supervised we refer to the process of learning using weakly labeled data
(i.e., samples labeled as containing the semantic concept of interest, but without
indication of which segments/parts of the sample are observations of that concept,
(as shown in Fig. 3). In this case, the basic idea is to introduce a set of latent variables
that encode hidden states of the world, where each state induces a joint distribution
on the space of semantic labels and image visual features. New images are annotated
by maximizing the joint density of semantic labels, given the visual features of the
new image [11]. The most indicative weakly-supervised learning algorithms are the
ones that are based on aspect models like probabilistic Latent Semantic Analysis
(pLSA) [63], [21] and Latent Dirichlet Allocation (LDA) [39], [58]. These models
are typically applied on weakly annotated datasets to estimate the joint distribution
of semantic labels and visual features.

3.4 Annotation Cost for Learning

Object detection schemes always employ some form of supervision as it is prac-
tically impossible to detect and recognize an object without using any semantic
information during training. However, semantic labels may be provided at different
levels of granularity (global or region level) and preciseness (one-to-one or many-
to-many relation between objects and labels), imposing different requirements on
the effort required to generate them. Indeed, there is a clear distinction between the
strong and accurate annotations that are usually generated manually and constitute a
laborious and time consuming task, and the weak and noisy annotations that are usu-
ally generated by web users for their personal interest and can be obtained in large
quantities from the Web or collaborative tagging environments like flickr5. Due to
the fact that the annotation cost is a critical factor when designing an object detec-
tion scheme with the intention to scale in many different objects and domains, in the

5 www.flickr.com
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Labels
clouds;
sea;
sun;
tree;

Fig. 3. An image depicting the object sea that is manually annotated at global level

following we distinguish the object detection methods based on the characteristics
of the dataset that they employ and the effort required for its annotation. Our goal
is to highlight the tradeoff between the annotation cost for preparing the necessary
training samples and the quality of the resulting models.

In the first category we classify the methods that use manually annotated images
at region level as the one depicted in Fig. 2. These methods rely on strongly super-
vised learning and are usually developed to recognize certain types of objects with
very high accuracy. In [70] and [66] manual annotations of faces are used in order
to train the classifiers. In [43] a method for the recognition of buildings is proposed
and in [36] an implicit shape model for the detection of cars is presented. In [71]
manual annotations at region level are used to train a probabilistic model integrat-
ing both visual features and spatial context. Annotating images at region level is
probably the task with the highest annotation cost.

Image annotations at global level, even manual ones, are easier to obtain than
region level annotations. This fact has motivated many researchers in developing al-
gorithms that rely on weakly-supervised and semi-supervised learning, and are able
to exploit global annotations for performing object detection. The Corel database is
probably the most widely used set of images annotated manually at global level (as
shown in Fig. 3) and has been used in numerous works. Jia Li and James Z. Wang
[40] used the Corel dataset to train models for each concept separately, while in [69]
it was used to evaluate the performance of an algorithm that considers the recogni-
tion of visual concepts to be part of the segmentation process. The Corel dataset has
been also used by Duygulu et. al. that presented a methodology for mapping words
to image regions using an algorithm based on EM [18], as well as in [10] where
a label propagation algorithm that incorporates time, location and visual similarity
for event and scene detection has been proposed. The widespread use of Corel and
other datasets of similar type can be mainly attributed to the fact that the global an-
notations associated with the images was noise free and accurate. This allowed the
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researchers to derive some probabilistic relations between objects and labels and
use these relations to perform object detection on new images. However, labels ac-
curacy comes with the cost of manual annotation which is something that limits the
scaling potentials of the schemes relying on such labels. This was the reason that re-
searchers turned their interest on the Web and started to investigate whether it could
be used to obtain globally annotated images.

Using the Web as a source many approaches have been proposed that obtain glob-
ally annotated images through search engines, using the name of the object as ar-
gument (see Fig. 4 for some example images obtained using the query word “sea”).
Keiji Yanai uses visual content from the Web as training images for a generic clas-
sification system [73] and in [21] the authors learn object categories from Google’s
image search. However, since search engines in their current form rely primarily on
the image filename or the surrounding text to decide whether to return an image or
not, the quality of the obtained annotations is very low. Thus, although these type of
global annotations can be obtained at practically no cost, the high level of noise ren-
ders particularly difficult the extraction of reliable probabilistic relations between
objects and labels.

Fig. 4. Images depicting the object sea, obtained automatically from the Google Image Search
engine using “sea” as the query word

For this reason, the most recent research efforts are focusing on the content that
is being massively contributed by Web users in the context of Web 2.0 applications.
In [57] object and event detection is performed by clustering images downloaded
from flickr based on textual, visual and spatial information and verified through
Wikipedia6 content. Similarly a framework that probabilistically models geographi-
cal information for event and activity detection using geo-tagged images from flickr

6 www.wikipedia.com
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is presented in [33]. Although the tag annotations that accompany the images con-
tributed by social users are less noisy from the ones obtained via the search engines,
they are still considered to be rather noisy for directly extracting the necessary prob-
abilistic relations between objects and labels, see Fig. 5 for an example image ob-
tained from Flickr along with the associated tags.

Tags:
sky; sun;
sea; surf;
sunset;
otakibeach ;
raging; storm;
gale; newzealand ;
ocean; reflections;
Sea-ward,
white gleaming
thro ' the

busy scud;
geotagged ; interestingness;
explore; explored;
in explore; frontpage ;
tomraven ; framed;
2009; q209 ;
visipix ;

Fig. 5. Image depicting the object sea, obtained automatically from Flickr along with the
associated tags

In Table 1 we summarize the pros and cons for each of the aforementioned types
of annotation. As a general conclusion we can say that manual image annotation
(either at region or global level) is a time consuming task and as such it is particu-
larly difficult to be performed on the desired volumes of content that are needed for
building robust and scalable classifiers. On the other hand, the STSs and the Web
provides cost free annotations that are very noisy to be used directly for extracting
the necessary probabilistic relations between objects and labels. The Collective In-
telligence that emerges from the tagged images aggregated in STSs would have to
be exploited towards removing the existing obstacles. In this direction we present
a method that transforms global image tags into region level annotations, in a form
suitable to be used by a strongly-supervised learning algorithm for object detection.

4 Leveraging Social Media for Training Object Detectors

As already described, machine learning algorithms fail in two main categories in
terms of the annotation granularity, the algorithms that are designed to learn from
strongly annotated samples (i.e., samples in which the exact location of an object
within an image is known) and the algorithms that learn from weakly annotated
samples (i.e., samples in which it is known that an object is depicted in the image,
but its location is unknown). In the first case, the goal is to learn a mapping from vi-
sual features fi to semantic labels ci given a training set made of pairs ( fi,ci). On the
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Table 1. Pros & Cons for the different types of annotation

Annotation Type Automated
Annotation

Scaling
Capabil-
ity

Training
Efficiency

Learning
Mechanism

Related Techniques

Region-level
(manual) (Fig. 2)

Poor Poor Excellent strongly-
supervised

Viola & Jones [70],
Sung & Poggio
[66], Li et al. [43],
Leibe et al. [36],
Wand et al. [71]

Global-level
(manual) (Fig. 3)

Fair Fair Good weakly-
supervised

Li & Wang [40],
Vascooncelos et al.
[69], Duygulu et al.
[18], Cao et al. [10]

Global-level (au-
tomatically via
Search Engines)
(Fig. 4)

Excellent Excellent Poor weakly-
supervised

Yanai [73], Fergus
et al. [21]

Global-level (au-
tomatically via
Social Networks)
(Fig. 5)

Excellent Excellent Fair weakly-
supervised

Quack et al. [57],
Dhiraj & Lue [33]

other hand, in the case of weakly annotated training samples, the goal is to estimate
the joint probability distribution between the visual features fi and the semantic
labels ci given a training set made of pairs between sets {( f1, . . . , fn),(c1, . . . ,cm)}.

While model parameters can be estimated more efficiently from strongly anno-
tated samples, such samples are very expensive to obtain. On the contrary, weakly
annotated samples can be found in large quantities especially from sources related
to social networks. Motivated by this fact, our work aims at combining the advan-
tages of both strongly supervised (learn model parameters more efficiently) and
weakly supervised (learn from samples obtained at low cost) methods, by allow-
ing the strongly supervised methods to learn object detection models from training
samples that are found in collaborative tagging environments.

4.1 Problem Formulation

The problem can be formulated as follows. Drawing from a large pool of weakly
annotated images, our goal is to benefit from the knowledge that can be extracted
from social tagging systems, in order to automatically transform some of the weakly
annotated images into strongly annotated ones. In order to do this, we consider that
if the set of weakly annotated images is properly selected from the repository of a
collaborative tagging environment, the most populated tag-“term” and the most pop-
ulated visual-“term” will be two different representations/expressions (i.e., textual
and visual) of the same object. We define tag-“terms” to be sets of tags that are pro-
vided by social users to describe an image and are grouped based on their semantic
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affinity (e.g., synonyms, derivatives, etc). Respectively, we define visual-“terms” to
be sets of image regions that are identified by an automatic segmentation algorithm
and are grouped based on visual similarity. The most populated tag-“term” (i.e., the
most frequently appearing tag, counting also its synonyms, derivatives, etc) is used
to provide the semantic label of the object that the developed classifier is trained
to identify, while the most populated visual-“term” (i.e., the cluster of image re-
gions containing the most instances) is used to provide the set of strongly annotated
samples for training the classifier. It is clear that the process of leveraging weakly
annotated images to become the strongly annotated training samples of a supervised
learning scheme, is primarily achieved through the semantic clustering of image re-
gions to objects (i.e., each cluster consists of regions that depict only one object). Us-
ing the notation of Table 2 semantic clustering can be formulated as follows. Given
a large set of images Iq ∈ Sc with annotation information of the type {( fd(r

Iq
1 ),. . . ,

fd(rIq
m)), (c1,. . . , ct )}, semantic clustering would produce pairs (wi, ci) where each

wi is a set of regions extracted from all images in Sc that depict only ci. Semantic
clustering can only be made feasible in the ideal case where the image analysis tech-
niques employed by our framework works perfect. However, this is highly unlikely
due to the following reasons. In case of over or under segmentation we will have
more or fewer regions from the actual objects in image, making perfect semantic

Table 2. Legend of Introduced Notations

Symbol Definition

S The complete social dataset

N The number of images in S

Sc An image group, subset of S that

emphasizes on object c

n The number of images in Sc

Iq An image from S

RIq = Segments identified

{r
Iq

i , i = 1, . . . ,m} in image Iq

fd(rIq

i ) = Visual features

{ fi, i = 1, . . . ,z} extracted from a region r
Iq

i

C = Set of objects that appear

{ci, i = 1, . . . ,t} in the images of group Sc

W = Set of clusters created by the

{wi, i = 1, . . . ,o} region-based clustering algorithm

pci Probability that tag-based image selection

draws from S an image depicting ci

TCi Number of regions depicting object ci in Sc
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clustering impossible. Similarly, the inadequacy of visual descriptors to perfectly
discriminate between different semantic objects is likely to lead the clustering algo-
rithm in creating a different number of clusters than the number of actual semantic
objects, or even mix regions depicting different objects into the same cluster. Thus,
instead of requiring that each wi is mapped with a ci, we only search for a single
pair (wk,cz) where the majority of regions in cluster wk depicts cz. Given that both
wi (i.e., visual-“term’) and ci (i.e., tag-“term”) are sets (of images regions and user
contributed tags, respectively), we can apply the Pop(·) function on them, that cal-
culates the population of a set (i.e., number of members). Eventually, the problem
addressed in our approach is what should be the characteristics of Sc so as the pair
(wk, cz) determined using k = argmaxi(Pop(wi)) and z = argmaxi(Pop(ci)) satisfies
our objective i.e., that the majority of regions included in wk depicts cz. Our approach
in using user contributed content to create Sc is motivated by the fact that due to the
common background that most users share, the majority of them tend to contribute
similar tags when faced with similar type of visual content [49]. This is the point
where our approach benefits from the Collective Intelligence that emerges from an
STS, in the sense that it would be over-ambitious to rely on such an assumption if
tags were to be contributed by just one or a few users. However, since the tags in
an STS originate from a significantly large amount of users, it is statically safe to
conclude that the majority of tag assignments will conform to the aforementioned
rule. Then, given this assumption it is expected that as the pool of the weakly an-
notated images grows, the most frequently appearing “term” in both tag and visual
information space will converge into the same object.

4.2 Framework Description

The framework we propose for leveraging the weakly annotated data in order to train
object detection models, is depicted in Fig. 6. The analysis components that can be
identified in our framework are, tag-based image selection, image segmentation,
extraction of visual features from image regions, region-based clustering using their
visual features and learning of object detection models using strongly annotated
samples.

More specifically, given an object c that we wish to train a detector for, our
method starts from a large collection of user tagged images and performs the fol-
lowing actions. Images are selected based on their tag information in order to for-
mulate image group(s) that correspond to thematic entities. Given the tendency of
social tagging systems to formulate knowledge patterns that reflect the way con-
tent is perceived by the web users [49], [27], tag-based processing is expected to
identify these patterns and create image group(s) each one emphasizing on a cer-
tain object. By emphasizing we refer to the case where the majority of the images
within a group depict different instances of a certain object and that the linguis-
tic description of that object can be obtained from the most frequently appearing
tag (see Section 4.3.1 for more details). Subsequently, region-based clustering is
performed on all images belonging to the image group that emphasizes on object
c, that have been pre-segmented by an automatic segmentation algorithm. During
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Fig. 6. Actions performed by our framework in order to train a model for detecting the object
sand

region-based clustering the image regions are represented by their visual features
and each of the generated clusters contains visually similar regions. Since the ma-
jority of the images within the selected group depicts instances of the desired object
c, we anticipate that the majority of regions representing the object of interest will
be gathered in the most populated cluster, pushing all irrelevant regions to the other
clusters. Eventually, we use as positive samples the visual features extracted from
the regions belonging to the most populated cluster to train (in a strongly supervised
manner) a model detecting the object c. Although noisy tags and inaccurate seg-
mentation are likely to prevent the most populated cluster from gathering all regions
depicting object c, the fact that the collection of user tagged images can be arbitrary
large (due to its “social” origin) can compensate for the loss in accuracy.

We can view the process of using image tag information to create an image group
Sc that emphasizes on object c, as the process of selecting images from a large
pool of weakly annotated images using as argument a query tag tq. tq is the linguis-
tic description of the object c. The selection criteria can be keyword-based search
(in the trivial case), pre-annotated groups, or more sophisticated approaches (see
Section 4.3.1). Although misleading and ambiguous tags always hinders this pro-
cess, the expectation is that as the number of selected images grows large and the
tag-proportions for each image crystallizes [27], there will be a connection between
what is depicted in the majority of the selected images and what is described by the
majority of the contributed tags.
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Let us assume that using tag-based selection we construct an image group Sc ⊂ S
emphasizing on object c. What we are interested in is the frequency distribution
of objects ci ∈ C appearing in Sc based on their frequency rank. We can view the
process of constructing Sc as the act of populating an image group with images
selected from a large dataset S using certain criteria. In this case, the number of
times an image depicting object ci appears in Sc, can be considered to be equal
with the number of successes in a sequence of n independent success/failure trials,
each one yielding success with probability pci . Given that S is sufficiently large,
drawing an image from this dataset can be considered as an independent trial. Thus,
the number of images in Sc that depict object ci ∈ C can be expressed by a random
variable K following the binomial distribution with probability pci . Eq. (1) shows the
probability mass function of a random variable following the binomial distribution.

Prci(K = k) =
(

n
k

)
pk

ci
(1− pci)

n−k (1)

Given the above, we can use the expected value E(K) of a random variable following
the binomial distribution to estimate the expected number of images in Sc that depict
object ci ∈ C, if they are drawn from the initial dataset S with probability pci . This
is actually the value of k maximizing the corresponding probability mass function,
which is:

Eci(K) = npci (2)

If we consider α to be the average number of times an object appears in an image,
then the number of appearances (#appearances) of an object in Sc is:

TCi = αnpci (3)

Moreover, we accept that there will be an object c1 that is drawn (i.e., appears in
the selected image) with probability pc1 higher than pc2 , which is the probability
that c2 is drawn, and so forth for the remaining ci ∈ C. This assumption is exper-
imentally verified in Section 4.4.2 where the frequency distribution of objects for
different image groups are measured in a manually annotated dataset. Finally, us-
ing eq. (3) we can estimate the expected number of appearances (#appearances)
of an object in Sc, ∀ci ∈C. Fig. 7(a) shows the #appearances ∀ci ∈ C against their
frequency rank, given some examples values of pci with pc1 > pc2 > .. .. It is clear
from eq. (3) that if we consider the probabilities pci to be fixed, the expected differ-
ence, in absolute terms, on the #appearances between the first and the second most
highly ranked objects c1 and c2, increases as a linear function of n, see Fig. 7(b)
for some examples. Additionally, apart from increasing the expected absolute dif-
ference on the #appearances between the two most frequently appearing objects,
the high values of n also minimize the probability of the case where c2 although
drawn with probability smaller that c1 appears more times in the generated image
group. In Fig. 8 we draw the probability mass function of two random variables that
correspond to objects c1, c2 of Fig. 7(b) (i.e., pc1 = 0.8, pc1 = 0.6) for three different
values of n (i.e., n = 50, n = 100 and n = 200). The probability of experiencing the
case where c2, although drawn with smaller probability, appears more times than c1
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Fig. 7. a) Distribution of #appearances ∀ci ∈C based on their frequency rank, for n=100 and
pc1 =0.9, pc2 = 0.7, pc3 = 0.5, pc4 = 0.3, pc5 = 0.1. b) Difference of #appearances between
c1, c2, using fixed values for pc1 = 0.8 and pc2 = 0.6 and different values for n.

(a) (b) (b)

Fig. 8. a) Probability mass function for n = 50 trials and pc1 = 0.8, pc2 = 0.6. b) Probability
mass function for n = 100 trials and pc1 = 0.8, pc2 = 0.6. c) Probability mass function for
n = 200 trials and pc1 = 0.8, pc2 = 0.6.

in Sc, is proportional to the surface where the two curves overlap. It is clear from
Fig. 8 that as n increases, the variance of the two random variables decrease, forcing
the surface of the overlapping region to also decrease (e.g., for n = 200 the surface
of the overlapping region is almost zero). Based on these observations, we reach the
theoretical expectation that there is higher probability in wk being a set of regions
the majority of which depict cz as n increases.

4.3 Implementing the Framework

In this section we provide details for the analysis components that are used by the
proposed framework. Due to the fact that a necessary pre-requisite for our frame-
work to work efficiently is operating on a large number of images, a discussion
about the complexity of each analysis component is also included.
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4.3.1 Tag-Based Image Selection

In this section we specify the approaches that are used to select images from a large
dataset of arbitrary content, based on their tag information. We employ one of the
following three approaches based on the associated annotations:

Keyword-based search: This approach is used for selecting images from strongly
annotated datasets. These datasets are usually hand-labeled and the tags provided
by the annotators can be considered to be mostly accurate and free of ambiguity.
Thus, in order to create Sc we need only to select the images that are tagged with
the linguistic expression of the object c.

Flickr groups: are virtual places hosted in collaborative tagging environments that
allow social users to share content on a certain topic. Although managing flickr
groups still involves some type of human annotation (i.e., a human assigns an image
to a specific group) it can be considered weaker than the previous case since this
type of annotation does not provide a full description of the objects depicted in the
image. In this case, Sc is created by taking the images contained in a flickr group
titled with the name of the object c. From here on we will refer to those images as
roughly-annotated images.

SEMSOC: stands for SEmantic, SOcial and Content-based clustering and is ap-
plied in our framework on weakly annotated images (i.e., images that have been
tagged by humans in the context of a collaborative tagging environment, but no
rigid annotations have been provided) in order to create semantically consistent
groups of images. SEMSOC was introduced by Giannakidou et. al. in [25], [26]
and is an un-supervised model for the efficient and scalable mining of multimedia
social-related data that jointly considers social and semantic features. The reason
for adopting this approach in our framework is to overcome the limitations that
characterize collaborative tagging systems such as tag spamming, tag ambiguity,
tag synonymy and granularity variation (i.e., different description level). The out-
come of applying SEMSOC on a large set of images S, is a number of image groups
Sci ⊂ S, i = 1, . . . ,m, where m is the number of created groups. This number is de-
termined empirically, as described in [25]. Then in order to obtain the image group
Sc that contains the images depicting the desired object c, we select the SEMSOC-
generated group Sci where its most frequent tag relates with c. Fig. 9 shows four
examples of image clusters generated by SEMSOC, along with the corresponding
most frequent tag.

4.3.2 Segmentation

Segmentation is applied on all images in Sc with the aim to extract the spatial masks
of visually meaningful regions. In our work we have used a K-means with connec-
tivity constraint algorithm as described in [53]. The output of this algorithm is a
set of segments RIq = {r

Iq
i , i = 1, . . . ,m}, which roughly correspond to meaningful

objects, ci ∈ C. The time efficiency of the segmentation process depends mainly
on the size of the image. The segmentation of low-resolution images is performed
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(a) Vegetation (b) Sky

(c) Sea (d) Person

Fig. 9. Examples of image groups generated using SEMSOC (in caption the corresponding
most frequent tag). It is clear that the majority of images in each group include instances of
the object that is linguistically described by the most frequent tag. The image is best view in
color and with magnification.
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considerably fast but the time efficiency of the algorithm degrades quickly as the im-
age size increases. Therefore in order to cope with high-resolution images
the authors of [53] make the reasonable assumption that the regions falling below
the 0.75% of the total image area are insignificant. Based on this assumption the
segmentation algorithm is applied on a reduced version of the image (i.e., by down-
scaling its original version). This improves the time efficiency of the algorithm but
at the expense of the quality of the segmentation result. To alleviate this, the pixels
belonging to blocks on edges between regions are reclassified using the Bayes clas-
sifier. Applying the segmentation algorithm on reduced images with reclassification
using the Bayes classifier, delivers the same segmentation quality with segmentation
time significantly reduced.

4.3.3 Visual Descriptors

In order to visually describe the segmented regions we have employed the following:
a) the Harris-Laplace detector and a dense sampling approach for determining the
interest points, b) the SIFT descriptor as proposed by Lowe [45] in order to describe
each interest point using a 128-dimensional feature vector and c) the bag-of-words
approach initially proposed in [64] in order to obtain a fixed-length feature vector
for each region. The feature extraction process is similar to the one described in [59]
with the important difference that in our case descriptors are extracted to represent
each of the pre-segmented image regions, rather than the whole image.

More specifically, for detecting interest points we have applied the Harris-Laplace
point detector on intensity channel, which has shown good performance for ob-
ject recognition [74]. In addition, we have also applied a dense-sampling approach
where interest points are taken every 6th pixel in the image. For each interest point
(identified both using the Harris-Laplace and dense sampling approach) the 128-
dimensional SIFT descriptor is computed using the version described by Lowe [45].
SIFT descriptors have been been found to be particularly robust against variations
in scale, rotation, changes in brightness and contrast, etc. A Visual Word Vocab-
ulary (Codebook) was created by using the K-Means algorithm to cluster in 300
clusters, approximately 1 million SIFT descriptors that were sub-sampled from a
total amount of 28 million SIFT descriptors, extracted from 5 thousand training im-
ages. The Codebook allows the SIFT descriptors of all interest points contained in
an image region to be vector quantized against the set of Visual Words and create
a histogram. Thus, ∀r

Iq
i ∈ RIq and ∀Iq ∈ Sc a 300-dimensional feature vector f (rIq

i )
is extracted, that contains information about the presence or absence of the Visual
Words included in the Codebook. All feature vectors were normalized so as the sum
of all dimensions to be equal with 1.

4.3.4 Clustering

For performing feature-based region clustering we applied the affinity propagation
clustering algorithm on all extracted feature vectors f (rIq

i ), ∀r
Iq
i ∈ RIq and ∀Iq ∈ Sc.

This is an algorithm that takes as input the measures of similarity between pairs of
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data points and exchanges messages between data points, until a high-quality set of
centers and corresponding clusters is found. Affinity propagation was proposed by
Frey and Dueck [23] and was selected for our work due to the following reasons:
a) The requirements of our framework imply that in order to learn a robust object
detection model, clustering will need to be performed on a considerably large num-
ber of regions, making computational efficiency an important issue. The common
approach followed by most clustering algorithms is to determine a set of centers
such that the sum of squared errors between data points and their nearest centers is
minimized. This is done by starting with an initial set of randomly selected centers
and iteratively refining this set so as to decrease the sum of squared errors. However,
such approaches are sensitive to the initial selection of centers and work well only
when the number of clusters is small and the random initialization is close to a good
solution. This is the reason why these algorithms need to re-run many times with
different initializations in order to find a good solution. In contrast to this, affinity
propagation simultaneously considers all data points as potential centers. By view-
ing each data point as a node in a network, affinity propagation recursively transmits
real-valued messages along edges of the network until a good set of centers and cor-
responding clusters emerges. In this way, it removes the need to re-run the algorithm
with different initializations which is very beneficiary in terms of computational ef-
ficiency. b) The fact that the number of objects depicted in the images of an image
group can not be known in advance, poses the requirement for the clustering pro-
cedure to automatically determine the appropriate number of clusters based on the
analyzed data. Affinity propagation, rather than requiring that the number of clus-
ters is pre-specified, takes as input a real number for each data point. This number
is called preference and has the meaning that data points with larger preferences are
more likely to be chosen as centers. In this way the number of identified centers
(number of clusters) is influenced by the values of the input preferences but also
emerges from the message-passing procedure. If a priori, all data points are equally
suitable as centers, as in our case, the preferences should be set to a common value.
This value can be varied to produce different numbers of clusters and taken for ex-
ample to be the median of the input similarities (resulting in a moderate number of
clusters) or their minimum (resulting in a small number of clusters). Given that it is
better for our framework to handle noisy rather than inadequate (in terms of indica-
tive examples) training sets, we opt for the minimum value in our experiments.

4.3.5 Learning Model Parameters

Support Vector Machines (SVMs) [61] were chosen for generating the object de-
tection models, due to their ability in smoothly generalizing and coping efficiently
with high-dimensionality pattern recognition problems. All feature vectors assigned
to the most populated of the created clusters are used as positive examples for train-
ing a binary classifier. Negative examples are chosen arbitrary from the remaining
dataset. Tuning arguments include the selection of Gaussian radial basis kernel and
the use of cross validation for selecting the kernel parameters. Considering that the
size of available samples can grow arbitrary big, training a model could become a
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particularly costly procedure. The SVMlight implementation of SVMs was used to
address the problem of large scale tasks. The algorithmic and computational im-
provements that were incorporated by the SVMlight implementation as well as the
complexity issues are analyzed in [31].

4.4 Experimental Study

The goal of our experimental study is twofold. On the one hand, we wanted to get
an experimental insight on the cluster-to-object assignment error introduced by the
visual analysis algorithms and check whether our expectation on the most populated
cluster holds. On the other hand, we aimed at comparing the quality of object mod-
els generated by the proposed framework, against the models trained by manually
provided strong annotations.

4.4.1 Datasets

To carry out our experiments we have relied on three different types of datasets.
The first type includes the strongly annotated datasets constructed by asking people
to provide region detail annotations of images pre-segmented with the automatic
segmentation algorithm of Section 4.3.2. For this case we have used a collection of
536 images from the Seaside domain annotated in our lab, denoted as SB. The second
type refers to roughly-annotated datasets like the ones formed by flickr groups. In
order to create a dataset of this type, for each object of interest, we have downloaded
500 member images from a flickr group that is titled with a name related to the
name of the object, we refer to this dataset as SG. The third type refers to the weakly
annotated datasets like the ones found in collaborative tagging environments. For
this case, we have crawled 3000 SF3K and 10000 SF10K images from flickr using the
wget7 utility and the flickr API facilities, in order to investigate the impact of the
dataset size on the robustness of the generated models. Depending on the annotation
type we use the selection approaches presented in Section 4.3.1 to construct the
necessary image groups Sc. Table 3 summarizes the information of the datasets used
in our experimental study.

4.4.2 Tag-Based Image Selection

As a result of our assumption on the tagging habits of social users, we expect the
absolute difference between the number of appearances (#appearances) of the first
(c1) and second (c2) most highly ranked objects within an image group Sc, to in-
crease as the volume of the initial dataset S increases. This is evident in the case
of keyword-based search since, due to the fact that the annotations are strong, the
probability that the selected image depicts the intended object is equal to 1, much
greater than the probability of depicting the second most appearing object. Simi-
larly, in the case of flickr groups, since a user has decided to assign an image to a

7 wget: http://www.gnu.org/software/wget
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Table 3. Datasets Information

Symbol Annotation
Type

No. of
Images

objects Selection
approach

SB strongly
annotated

536 sky, sea, veg-
etation, person,
sand, rock, boat

keyword
based

SG roughly-
annotated

4000
(500
for
each
object)

sky, sea, veg-
etation, person,
car, grass, tree,
building

flickr
groups

SF3K weakly an-
notated

3000 cityscape,
seaside, moun-
tain, roadside,
landscape,
sport-side

SEMSOC

SF10K weakly an-
notated

10000 jaguar, turkey,
apple, bush,
sea, city,
vegetation,
roadside, rock,
tennis

SEMSOC

group titled with the name of the object, the probability of this image to depict the
intended object should be close to 1. On the contrary, for the case of SEMSOC that
operates on ambiguous and misleading tags, this claim is not evident. For this reason
and in order to verify our claim experimentally, we plot the distribution of objects’
#appearances in four image groups created to emphasize on objects sky, sea, veg-
etation, person, respectively. These image groups were generated from both SF3K

and SF10K using SEMSOC. Each of the bar diagrams depicted in Fig. 10, describes
the distribution of objects’ #appearances inside an image group Sc, as evaluated by
humans. This annotation effort was carried out in our lab and its goal was to provide
weak but noise-free annotations in the form of labels for the content of the images
included in both SF3K and SF10K . It is clear that as we move from SF3K to SF10K the
difference, in absolute terms, between the number of images depicting c1 and c2,
increases in all four cases, advocating our claim about the impact of the dataset size
on the distribution of objects’ #appearances, when using SEMSOC.

4.4.3 Clustering Assessment

The purpose of this experiment is to provide an insight on the validity of our ap-
proach in always selecting the most populated cluster for training a model recog-
nizing an object described by the most frequently appearing tag. In order to do so
we evaluate the content of each of the formulated clusters using the strongly anno-
tated dataset SB. More specifically, ∀ci depicted in SB we obtain Sci ⊂ SB and apply
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Fig. 10. Distribution of objects’ #appearance in an image group Sc, generated from SF3K

(upper line) and SF10K (lower line) using SEMSOC

clustering on the extracted regions. In Fig. 11 we visualize regions distributions
among the generated clusters by projecting their feature vectors in three dimensions
using PCA (Principal Component Analysis). The regions depicting the object of in-
terest ci are marked in squares, while the other regions are marked in dots. Color
code is used to indicate a cluster’s rank according to their population (i.e., red: 1st,
black: 2nd, blue: 3rd, magenta: 4rth, green: 5th, cyan: 6th). Thus, in the ideal case
all squares should be painted red and all dots should be colored differently. Squares
being painted in colors other than red, indicate false negatives and dots painted in
red indicate false positives. We can see that our claim is validated in 4 (i.e., sand,
vegetation, rock, boat) out of 7 examined cases. In the cases of objects sea, sky and
person, the error introduced from visual analysis, prevents clustering from assigning
the regions of interest into the same cluster.

4.4.4 Comparing Object Detection Models

In order to compare the efficiency of the models generated using training samples
with different annotation type (i.e., strongly, roughly, weakly), we need a set of ob-
jects that are common in all three types of datasets. For this reason after examining
the contents of SB, reviewing the availability of groups in flickr and applying SEM-
SOC on SF3K and SF10K , we ended up with 4 object categories Cbench={sky, sea,
vegetation, person}. These objects exhibited significant presence in all different
datasets and served as benchmarks for comparing the quality of the different mod-
els. The factor limiting the number of benchmarking objects is on the one hand the
need to have strongly annotated images for these objects and from the other hand
the un-supervised nature of SEMSOC that restricts the eligible objects to the ones
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Fig. 11. Regions distribution amongst clusters. The regions depicting the object of interest
are marked in squares, while the other regions are marked in dots. Squares being painted in
colors other than red, indicate false negatives and dots painted in red indicate false positives.
This Figure is best viewed in color with magnification.
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identified by clustering the images in the tag information space. For each object
ci ∈ Cbench, one model was trained using the strong annotations of SB, one model
was trained using the roughly-annotated images contained in SG, and two models
were trained using the weak annotations of SF3K and SF10K , respectively. In order
to evaluate the performance of these models we test them using a subset (i.e., 268
images) of the strongly annotated dataset SB

test ⊂ SB, not used during training. F-
Measure was used for measuring the efficiency of the models.
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Fig. 12. Performance comparison between four object recognition models that are learned
using samples of different annotation quality (i.e., strongly, roughly and weakly)

By looking at the bar diagram of Fig. 12, we derive the following conclusions:
a) Model parameters are estimated more efficiently when trained with strongly an-
notated samples, since in 3 out of 4 cases they outperform the other models and
sometimes by a significant amount (e.g., sky, person). b) Flickr groups can serve as
a less costly alternative for learning the model parameters, since using the roughly-
annotated samples we get comparable and sometimes even better (e.g., vegetation)
performance than manually trained models, while requiring considerable less effort
to collect the training samples. c) The models learned from weakly annotated sam-
ples are usually inferior from the other cases, especially in cases where the proposed
approach for leveraging the data has failed in selecting the appropriate cluster (e.g.,
sea and sky). However, the efficiency of the models trained using weakly annotated
samples is likely to be improved if the size of the dataset is increased.

From the bar diagram of Fig. 12 it is clear that when using the SF10K the incorpo-
ration of more indicative examples into the training set improves the generalization
ability of the generated models in all four cases. However, in the case of object sea
we note also a drastic improvement of the model’s efficiency. This is attributed to
the fact that the increment of the dataset size alleviates the error introduced by visual
analysis algorithms and allows the proposed method to select the appropriate clus-
ter for training the model. In order to visually inspect the content of the generated
clusters we have implemented a viewer that is able to read the clustering output and
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simultaneously display all regions included in the same cluster. Using this viewer
to inspect the content of the formulated clusters, we realize that the selected cluster
is not the one containing the regions depicting sea when using the SF3K , whereas
the correct cluster is selected when using the SF10K . Fig. 13 and Fig. 14 show in-
dicative images for some of the generated clusters for the object sea obtained using
the SF3K and SF10K dataset respectively. The clusters’ rank (#) refers to their pop-
ulation. We can see that when using the SF3K dataset the regions depicting sea are
split in two clusters (ranked #4 and #5), while the most populated cluster #1 con-
sists of regions primarily depicting people. On the other hand, in the case of the
SF10K dataset, where the correct cluster is selected (see Fig. 14), it seems that the
larger size of the utilized dataset compensates for the error introduced by the visual
analysis algorithms.

5 Related Methods

The presented method can be considered to relate with various works in the literature
in different aspects. From the perspective of exploring the trade-offs between anal-
ysis efficiency and the characteristics of the dataset, we find similarities with [34],
[16]. In [34] the authors explore the trade-offs in acquiring training data for image
classification models through automated web search as opposed to human annota-
tion. The authors set out to determine when and why search-based models manage
to perform satisfactory and design a system for predicting the performance trade-off
between annotation- and search-based models. Essentially what the authors are try-
ing to do is to learn a model that operates on prediction features (i.e., cross-domain
similarity, model generalization, concept frequency, within-training-set model qual-
ity) and provide quantitative measures on when the cheaply obtained data is of suf-
ficient quality for training robust object detectors. In [16] the authors investigate
both theoretically and empirically when effective learning is possible from ambigu-
ously labeled images. They formulate the learning problem as partially-supervised
multiclass classification and provide intuitive assumptions under which they expect
learning to succeed. This is done by using convex formulation and showing how to
extend a general multiclass loss function to handle ambiguity.

There are also some works [72], [65], [68] that rely on the same principle as-
sumption with our method. In [72] the authors are based on social data to introduce
the concept of flickr distance. Flickr distance is a measure of the semantic relation
between two concepts using their visual characteristics. The authors rely on the as-
sumption that images about the same concept share similar appearance features and
use images obtained from flickr to represent a concept. Subsequently, the distance
between two concepts is measured using the Jensen-Shannon (JS) divergence be-
tween the constructed models. Although different in purpose from our approach the
authors present some very interesting results demonstrating that the collaborative
tagging environments like flickr can serve as a particular valuable source for mining
the necessary information for implementing various computer vision tasks. In [65]
the authors make the assumption that semantically related images usually include
one or several common regions (objects) with similar visual features. Based on this
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#1 Cluster - person

#2 Cluster - noise

#3 Cluster - sea

#4 Cluster - sea + sky

Fig. 13. Indicative regions from the clusters generated by applying our approach for the object
sea generated by the SF3K dataset. The regions that are not covered in red are the ones that
have been assigned to the corresponding cluster.
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#1 Cluster - sea

#2 Cluster - person

#4 Cluster - sand

#6 Cluster - sky

#7 Cluster - building

Fig. 14. Indicative regions from the clusters generated by applying our approach for the object
sea generated by the SF10K dataset. The regions that are not covered in red are the ones that
have been assigned to the corresponding cluster.
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assumption they build classifiers using as positive examples the regions clustered
in a cluster that is decided to be representative of the concept. They use multiple
region-clusters per concept and eventually they construct an ensemble of classifiers.
They are not concerned with object detection but rather with concept detection mod-
eled as a mixture/constellation of different object detectors. In the same lines the
work presented in [68] investigate non-expensive ways to generate annotated train-
ing samples for building concept classifiers using supervised learning. The authors
utilize clickthrough data logged by retrieval systems that consists of the queries sub-
mitted by the users, together with the images in the retrieval results, that these users
selected to click on in response to their queries. Although the training data collected
in this way can be potentially noisy, the authors rely on the fact that clickthrough
data exhibit noise reduction properties, given that they encode the collective knowl-
edge of multiple users. The method is evaluated using global concept detectors and
the conclusion that can drawn from the experimental study is that although the auto-
matically generated data cannot surpass the performance of the manually produced
ones, combining both automatically and manually generated data consistently gives
the best results.

Finally our work bares also similarities with works like [3] and [42] that operate
on segmented images with associated text and perform annotation using the joint
distribution of image regions and words. In [3] the problem of object recognition
is viewed as a process of translating image regions to words, much as one might
translate from one language to another. The authors develop a number of models for
the joint distribution of image regions and words, using weak annotations. In [42]
the authors propose a fully automatic learning framework that learns models from
noisy data such as images and user tags from flickr. Specifically, using a hierarchi-
cal generative model the proposed framework learns the joint distribution of a scene
class, objects, regions, image patches, annotation tags as well as all the latent vari-
ables. Based on this distribution the authors support the task of image classification,
annotation and semantic segmentation by integrating out of the joint distribution the
corresponding variables.

6 Conclusions

Although the quality of object detection models trained using the described method
is still inferior from the one achieved using manually trained data, we have shown
that under certain circumstances Social Media can be effectively used to facilitate
effortless learning. Particularly encouraging was the experimental observation con-
cerning the size of the dataset that showed a consistent improvement on all differ-
ent types of objects. Given that the size of publicly available content is constantly
increasing in the context of social networks, we can claim that by using a larger
collection of Social Media we will eventually achieve performance similar to the
one obtained using manually trained models. As a general conclusion we can say
that social networks can provide more semantically enhanced media than search en-
gines, in pretty much the same effort. Although the noise present in the tags hinders
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the direct use of these media for training machine learning algorithms, the Collec-
tive Intelligence that emerges from the massive participation of users in social net-
works can be used to remove the need for dedicated human supervision in machine
learning.

Another important issue is the computational cost of the proposed framework,
especially when the size of the social dataset is large. On a core 2 duo processor
running on 3.33GHz with 3.25GB of RAM, image segmentation takes place in a few
seconds and the time needed for extracting the SIFT features and creating the bag-
of-words representation of each region is of the same order. Similarly, the clustering
of regions and the calculation of the necessary support vectors are also executed
within a few seconds, on average. Thus, the time needed for analyzing a single image
for the presence of a certain concept is less than a minute, enabling the proposed
framework to be used in real life applications.
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