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Abstract—Computer vision techniques have made considerable to multimedia, the difficulty of mapping a set of low-level
progress in recognizing object categories by learning modethat  visual features into semantic concepts, has motivated ske u
normally rely on a set of discriminative features. However, a of domain knowledge for indexing this type of data. Moregver

drawback of those models is that, in contrast to human percejon the i ¢ f text i derstandi dio-vi |
that makes extensive use of logic-based rules, they fail teehefit as the importance of context in understanding audio-visua

from knowledge that is provided explicitly. In this manuscript ~ Stimuli has been widely recognized, the integration of con-
we propose a framework that is able to perform knowledge- text and content is considered a promising approach towards
assisted analysis of visual content. We use ontologies to d® multimedia understanding [2].

domain knowledge and a set of conditional probabilities to mdel In our work we introduce a framework for enhancing

the application context. Then, a bayesian network (BN) is u=d . Vi . diff tt f evid H

for integrating statistical and explicit knowledge and peirform |mgge anay§|s usmg ! ergn ypes of evidence. e.re, we
hypothesis testing using evidence-driven probabilisticriference. define as evidence information that (when coupled with the
Additionally, we propose the use of a Focus of Attention (FoA principles of inference) can be used to support or disproof
mechanism that is based on the mutual information between g hypothesis. In our framework (depicted in Fig. 1), we use
;:ong:epts._;I_’h(ijs/tm?cgagisThselBe’c\:ltsr:he most promi“e?ﬁ hyp@zest visual stimulus, application context and domain knowletige

o be verified/tested by the BN; hence, removing the need to _ . AT - .
exhaustively test all possible combinations of the hypottses set. drive a pr_Obab'“St'C inference procgss that verifies _oea‘eq a

We experimentally evaluate our framework using content fran hypothesis made about the semantic content of an image. For a
three domains and for three tasks, namely image categorizan, given task, the application context and the domain knowdedg
localized region labeling and weak annotation of video shokey- are considered to be the a prioriffixed information. On the
frames. The obtained results demonstrate the improvementni contrary, the visual stimulus depends on the examined image

performance, compared to a set of baseline concept classiie . . g .
that are not aware of any context or domain knowledge. Final, and is considered to be the observed/dynamic information. |

we also demonstrate the ability of the proposed FoA mechams this manuscript, we propose a generative method for magielin
to significantly reduce the computational cost of visual inérence, the layer of evidence so as to effectively combine and ekploi

while obtaining results comparable to the exhaustive case. both a priori and observed information. More specifically,
Index Terms—knowledge assisted image analysis, probabilistic first we Statistica”y analyze the visual stimulus to obtain
inference, bayesian networks, ontologies, focus of attenn. conceptual information. Then, we represent domain knogéded
and application context in a computationally enabled farma

l. INTRODUCTION Finally, we combine everything in a bayesian network (BN)

o ) . that is able to perform inference based on soft evidence.
T HE advances in information technology have signifiy, s way, we provide the means to handle aspects like

cantly reduced the traditional spatial and temporal ObSt@éusality (between evidence and hypotheses), uncert@fty

cles in information exchange. Instant sharing infrastiees . oy tracted evidence) and prior knowledge; hence, imifat

enable users to easily generate and exchange considergifie of human's basic perceptual operations when insgectin

amounts of digital data. However, the limitations of maem”images.

understanding makes it difficult for automated systems 101pa main contributions of our work can be summarized

interpret digital content in a manner coherent with humap 0 foliowings: a) We combine ontologies and bayesian
cognition, and tlh? fneed for discovering intelligent wa;;s Retworks for the purpose of allowing in a probabilistic way
consume digital information is recognized as one of thge fsion of evidence obtained at different levels of image
emerging challenges of computer science [1]. With respegl v sis we propose a data-oriented learning strateggsfor
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Input Process

framework for performing classification, while [10] presen
a method where a new object is explained solely in terms
of a small set of exemplar objects (represented as image
: Probabilstic | veneress regions). For each exemplar object a separate distancédanc
fference Rejection is learned which captures the relative importance of shape,
color, texture and position features. However, the inadegu
of the solutions relying solely on visual information to ashe
efficient image interpretation has motivated the explmitaof
i context as a valuable source of information.

Context was defined in [11] as an extra source of in-
Fig. 1. Functional relations between the different compitmef the proposed formation for both object detection and scene classificatio
framework. Among the methods that make use of such information,
we can identify the class of methods that develop models

key-frames. ¢) We propose a mechanism that exploits nol¢ spatial context-aware object detection, such as [18} th

. . . S escribes one generic outdoor-scene model, [13] that piese
mutual information between concepts, in order to signifiigan model specific to individual archetypical scene types. (e
reduce the computational cost of visual inference and still P yp ypes.ie.g

achieve results comparable to the exhaustive case. each, sunset, mountain, or urban), and [14] where multi-

The rest of the manuscript is organized as follows. SectionﬂIe class object-based segmentation is achieved through th

reviews the related literature. Section Il presents tlivid- integration of mean-shift patch_es. Ano_ther_class of meshod
. that make use of such extra information includes the ones
ual components of the proposed framework. Section IV dg- . . .
. o . . at exploit temporal context, as this can be derived from
scribes the methodology for migrating the semantic comga the surrounding images of an image collection (i.e., images
expressed in an ontology into a BN. Section V details th 9 9 9 e 9

functional settings of the proposed framework and Sectibn rawn during a festival). In [15] the authors developed a

describes our experimental study. Results are discusseog‘leémr""I probabilistic temporal cont_extmodel in which theti
Section VII. order Markov property is used to integrate content-based an

temporal context cues. Temporal context has been also used
for active object recognition [16], as well as for identifgi
Il. RELATED WORK temporally related events [17]. Imaging context (i.e., esn
Interpreting images in terms of their semantic content hasetadata tags about scene capture properties, such asiBxpos
been primarily addressed by devising methods that map lotime and subject distance) has been also used for aiding
level image visual characteristics (i.e., color, shaprture) in a number of multimedia analysis tasks, including indoor-
to high-level descriptions (i.e., semantic concepts)haut outdoor classification and event detection [18]. Other work
making any use of domain knowledge and application cotitat aim at improving the performance of individual detesto
text. Some indicative works that have been presented in th&ing contextual information are the ones that model the
literature include [3] where the authors are based on scemelationships between objects, such as [19] where corgkxtu
centered rather than object-centered primitives and uee fhatures are incorporated into a probabilistic framewohkchv
mean of global image features to represent the gist of a scecr@mbines the outputs of several components, [20] where the
[4] where scene classification is performed using bayesianthors present a two-layer hierarchical formulation tpleix
classifiers that operate on representations determined asi the different levels of contextual information, and [21]avh
codebook of region types, and [5] where the authors intreduithe authors propose a region-based model which combines
a visual shape alphabet representation with the aim to enahppearance and scene geometry to automatically decompose a
models for new categories to benefit from the detectors buidene into semantically meaningful regions.
previously for other categories. In this category of salos There is also a number of works that exploit conceptual
we can also classify the methods that make combined usmtext by developing techniques that are able to handlerunc
of global and local classification and treat images at a fineinty and take advantage of domain knowledge. The authors
level of granularity, usually by taking advantage of imagef [22] introduce “Multijects” as a way to map time sequence
segmentation techniques. In [6] it is demonstrated threayh of multi-modal, low-level features to higher level semasti
eral applications how segmentation and object-based rdethasing probabilistic rules. “Multinets” are also proposext f
improve on pixel-based image analysis/classification ogth representing higher-level probabilistic dependencigsvéen
while in [7] a region-based binary tree representation rincd'Mutlijects”. In [23] “Multinets” are elaborated by intragting
porating adaptive processing of data structures is praptzsse BNs for modeling the interaction between concepts and using
address the problem of image classification. Similarlyebasthis contextual information to perform semantic indexirfg o
on the combined use of local and global classification, [8]deo content. A drawback of these approaches lies on the fac
proposes a multi-level approach to annotate the semarticghat the structure of “Multinets” is customly defined by expe
natural scenes by using both the dominant image componegntsl no methodology is suggested for explicitly incorpomgti
(salient objects) and the relevant semantic objects, [9 ethe semantic constraints originating from the domain into
ploys Multiple-Instance-Learning to learn the correspemae the analysis process. In the same lines, [24] proposes a
between image regions and keywords and uses a bayediamework for semantic image understanding based on belief
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networks. The authors use three different image analysistavisual diversity by using multiple kernels. However, norfe o
to demonstrate the improvement in performance introducgl], [32], [33] attempt to couple ontology-based apprazch
by extracting and integrating in the same knowledge-baseith probabilistic inference algorithms for combining cept
inference framework (based on BNSs), both low-level andetectors, context and knowledge. On the other hand, [34 us
semantic features. Once again, no systematic methodotogpitologies as a structural prior for deciding on the strrectu
presented on how to seamlessly integrate domain knowledgéa BN, but in this work ontologies are mostly treated as
expressed with a standard knowledge representation lgegudierarchies that do not incorporate any explicitly prodde
into the probabilistic inference process. [25] describeés @emantic constraints.
integrated approach of visual thesaurus analysis and lvisuaFinally, we should note that none of these works is con-
context that exploits both conceptual and topological exint cerned with computational efficiency and the fact that inad-re
Another approach that attempts to model uncertainty anel takorld inference system the number of plausible hypotheses
advantage of knowledge and context for the task of multismediould suffer from a combinatorial explosion. In this manisc
analysis is [26]. This work uses low-level features and a Bie discuss how visual inference can benefit from the use
to perform indoor versus outdoor scene categorizationi2Tij [ of exclusion principles and propose a focus of attention
a BN is utilized as an inference mechanism for facilitatingnechanism that is based on the mutual information between
a classification method based on feature space segmentatomcepts.
Similarly, [28] propose a generative-model framework, egm
dynamic tree-structure belief networks (DTSBNSs), and ferm mn
lates object detection and recognition as an inferenceegsoc
on a DTSBN. Domain knowledge is also used in [29], in ordé¥- Visual Stimulus
to tackle the problem that when training data is incomplete For analyzing the visual stimulus we consider the supedvise
or sparse, learning parameters in BNs becomes extremilsirning paradigm where a classifier is trained to identify
difficult. In their work the authors present a learning alfon  an object category, provided that a sufficiently large numbe
that incorporates domain knowledge into the learning Beceof examples are available. We denote By the set of
in order to regularize the otherwise ill-posed problemll,Sti domain concepts and by, the analyzed visual representation.
the absence of a methodology for integrating ontologicBlepending on the circumstancdg,can be an image region,
knowledge into the inference process is what differergiatéhe whole image, a video shot, etc. A concept detector can
these works from our approach. then be implemented using a classifir that is trained to
Works that utilize ontologies as a means to encode domaétognize instances of the concept Nc. We denote by
knowledge are also present in the literature. [30] presants,(1,) the output of F. applied to imagel,. When F, is
method for combining ontologies and BNs in an effort t@ probabilistic classifier we havi.(I,) = Pr(c|I,). These
introduce uncertainty in ontology reasoning and mappif® T probabilities Pr(c|I,) are essentially the soft evidence that
Ontology Web Language (OWL) is augmented to allow addire provided to the BN for triggering probabilistic infepen
tional probabilistic markups and a set of structural tratish
rules convert an OWL ontology into a directed acyclic graph o i
a BN. The conditional probability tables of the nodes arathé- Domain Knowledge
calculated taking into consideration the ontology sencanti Let R be the set of binary predicates that are used to
Probabilistic rules are used to cope with uncertainty amtnote relations between concepts @ndhe algebra defin-
ontologies combined with belief networks are employed to eing the allowable operators. In our framework we use the
press and migrate into a computationally enabled framewodatology web language OWL-DL [35] to construct a structure
the semantics originating from the domain. The proposédp = S(N¢, R, O) that describes how the domain concepts
inference approach is validated using a synthetic example are related to each other usidgand O € DL. DL stands
no attempt is made to adjust the scheme for image analydws. “Description Logics” [36] and constitutes a specific sét
[31] proposes a knowledge assisted image analysis schae tlonstructors such as intersection, union, disjoint, cemgint,
combines local and global information for the task of imagetc. For instance, such constructors can be used to express
categorization and region labeling. In this case, a sophtsid that two concepts are disjoint with each other and can not
decision mechanism that takes into account visual infdonat be depicted in the same image simultaneously. Our goal is
the concepts’ frequency of appearance and their spatial rab use these constructors for explicitly imposing semantic
tions is used to analyze images. [32] describes a schemis thaibnstraints in the process of image interpretation thatren
intended to enhance traditional image segmentation dfgosi  be captured by typical machine learning techniques. Lgosel
by incorporating semantic information. In this case, fuzzgpeaking, we use the knowledge structure to obtain: a) which
theory and fuzzy algebra are used to handle uncertaintyevahil of the domain concepts should be considered as evidence and
graph of concepts carrying degrees of relationship on igeed therefore used to trigger the probabilistic inference pss¢
is employed to capture visual context. In [33] the authoiiklbu and b) which evidence supports a certain hypothesis and what
a concept ontology using both semantic and visual simylariare the semantic restrictions that apply in this domain. In
in an effort to exploit the inter-concept correlations aid tthis sense, the knowledge structure sets the tracks to which
organize the image concepts hierarchically. In this precbe evidence belief is allowed to propagate by determining the
authors try to effectively tackle the problem of intra-cept structure of the BN.

. FRAMEWORK DESCRIPTION



4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART BCYBERNETICS

The use of ontologies instead of some other knowledge rep-
resentation structure (e.g., conceptual graphs) was atkac

TABLE |

LEGEND OFINTRODUCEDTERMS

Symbol

Role

by their wide acceptance and appeal in the area of knowledgeTerm
engineering [37]. It is true that ontologies have been widel Jared
established as the main tool for encoding explicit knowteitg

F.

- Estimates the degree of con-
fidence that the visual repre-
sentation, depicts concept

C

machine understandable format. This is witnessed by the facqg5m
that in many domains considerable effort has been alreadyknowi-

Kp=S(N¢, R, 0)

- Determines which concepts
belong to the evidence set

allocated on engineering ontologies that encode the egisti edge B M Catins oy
concepts and relations. Therefore, enabling our framewmrk lations between evidence and
automatically handle ontologies makes it directly apitilea o o e e
in these domains. pothesis)
Application| X = S(app, W) - Determines where to “physi-
Context cally” search for evidence, ex-

C. Application Context

The role of K is to capture information about the domain
in general, but not to deliver information concerning the

pressed withapp (i.e., appli-
cation specific information).
- Specifies quantitative rela-
tions (causality) between ev-
idence and hypotheses, ex-
pressed withiV.

context of the analysis process at hand. No information iS Hypotheses

provided to the framework regarding where within the conten
the anticipated evidence are likely to reside. For instatidis
type of information could suggest the analysis mechanism
to search for evidence in specific image regions. Moreover,

5

h(Iq,ci)=Pr(ci|lq)
HH(Iq) ={h(q,ci) : ci
e}

and

€

- Constitutes the initial de-
grees of confidence for the
concepts belonlging to the hy-
potheses setc™ (as deter-
mined by No € Kp and

app € X) obtained by apply-
ing the classifierd’.. to I,.

information on how to quantitatively evaluate the existenc Evidence

of the extracted evidence (i.e., how much each hypothesis
is affected by the existence of one evidence or another) is

E(Ig) = {h(Iq,ci) : ci

€

- Constitutes the degrees of
confidence for the concepts
belonging to the evidence set
¢ (as determined bV €

Kp andapp € X) obtained

also missing fromiK p. Let app denote the type of application by applying the classifier.

specific information used to guide the analysis mechanism in__ 10 Iy. : :
hi f id s th tri h Evidence | h(lq,ci)=Pr(c; | | - Performs inference using
searching tor evi e_nce, and’ = [W; ;] the matrix whose driven H(I,),E(Iy), R,O,Wij;) | h(I;,c;) and estimates
elementsi¥; ; quantifies the effect of concept on c;. Then, Proba- and H(Iq) = {h(Iq,c;) : | the posterior probabiliies
id ’ h l . be th bilistic ci € c} H(1;)) using E(I;) as

we consider the application conteXt = S(app, W) to be the Inference wigger. RO € Kp as

belief propagation tracks
and W € X as causality
guantification functions.
Achieves semantic image in-
terpretation based on the op-
erator ® that depends on the
analysis task.

information consisting of botlapp and W. As will become
clear in Section IV-BJV;; is approximated by the frequency of
co-occurrence between concepisandc; in the training set.
This information, that is implicitly extracted from the iming
data, is encoded into the Conditional Probability TabledRTE)
of the BN nodes and influences the probabilistic inference
process when belief propagation takes place.

Semantic | ¢ |

Image arg ® . ¢ a1 (h(Ig, ci))
Interpre- ’
tation

Let alsoH(I,) = {h(I,,¢;) : ¢; € '} denote the set of con-
fidence degrees that the concepts belonging to the hypathese
set are depicted in imagg andE(I,) = {h(I,,¢c;) : ¢; € cF}

In order to accommodate for evidence-driven probabilistifie set of confidence degrees that the concepts belongihg to t
inference, our framework uses a BN derived from the dommidence set are depicted in imageThen' we providd’{([q)
ontology. This is accomplished by performing the followingind £(1,) to the BN and using probabilistic inference we
steps: a) we us&’p to decide which of the domain conceptgajculate the posterior probabilities of the network nagsing
should constitute the evidence ét, b) we useupp to decide information coming from knowledg&®, O and contextiv;;.
where to physically search for these evidence, c) we apgMye denote byh(I,,¢;) = Pr(c; | H(I,), E(I,), R,0, W)
the probabilistic classifiers:. on I, to obtain the degrees ofthe function that calculates the posterior probabilitiéghe
confidence for the concepts if’, d) we useapp and Kp  network nodes, the set of posterior probabilities of the-con
to decide which of the domain concepts should constitute thgpts belonging to the hypotheses set can be represented as
hypotheses set, e) we provide the degrees of confidence fog([q) — {h(I,,¢;) : ¢; € ¢H}. The formula used to achieve

the concepts in” to the BN and trigger probabilistic inferencesemantic image interpretation can be expressed as follows:
by using these degrees as soft evidence, f) we propagate

evidence beliefs using the network’s inference tra¢ksind ,

the corresponding causality quantification functiéfis;, and €= j?g?(h(fqv ci))

g) we calculate the posterior probabilities for all conceipt '

¢ and decide which of the hypotheses should be verified @ris an operator (e.gmax) that depends on the specifications

rejected. of the analysis task (Section VI describes the functiopalft
Let h(ly,c;) = Pr(c;|1,) denote the function estimatingthis operator for each of the analysis tasks). Table | shbess t

the degree of confidence that concepappears in imagé,. basic terms introduced in the proposed framework.

D. Evidence-driven Probabilistic Inference

)
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E. Computational Efficiency the maximum confidence degree Hf(I,). One disadvantage

Our evidence-driven probabilistic inference framework i€f this approach lies on the difficulty of estimating an opim
essentially a method that connects a symbol (visual stimulpelief thre_\shold adapted to the statistical charactessr_f each
in our case) to real-world objects/concepts to which tH&YPOthesis. However, the fact that only a small portion @& th
symbol is associated. However, in the real-world the numb@yailable classifiers is required to reach a decision makes t
of plausible hypotheses could suffer from a combinatorigPProach attractive for complex domains.
explosion, rendering testing for them intractable. Thizgbem
is usually addressed using exclusion principles deterthie IV. ONTOLOGY TO BAYESIAN NETWORK MAPPING
the faculties of attention and perception [38]. In our case, A BN is a directed acyclic grapt¥ = (V, A) whose nodes
exclusion principles are derived from the domain ontology « V' represent variables and whose arcss A encode
which determines the set of plausible hypotheses for eath tahe conditional dependencies between them. Using the Bayes
Still, the computational cost for gathering the necessatlyeorem, and given that a subset of variables are observed,
evidence is often so expensive that can be prohibitive ihlftig the marginal probabilities of the remaining variables ie th
complex domains. For this purpose we introduce a Focus médtwork can be estimated. The reason for using BNs in our
Attention (FoA) mechanism that improves the computationftamework is to estimate the posterior probabilitié$7,) of
efficiency of the proposed framework. In particular, we gppkhe concepts in the hypothesis s€t, using the observed
an iterative process that initially examines the hypothestonfidence degree&'(I,) of the concepts in the evidence
and evidence that are more likely, in statistical terms, @0 lset c®. However, given that the network structure is capable
valid. If the hypothesis is verified the process is termidateof encoding the qualitative characteristics of causalitg. (
otherwise the next most likely hypothesis is examined. Mowghich nodes affect which), and the Conditional Probability
specifically, instead of examining the complete hypothese¢s Tables (CPTs) can be used to quantify the causality relgtion
H(I,) = {h(Ig,¢i) : ¢; € ¢}, we initially examine the between concepts (i.e., how much is a node influenced by
hypothesis with the maximum confidence degrge where the nodes to which it is connected), the constructed BN wiill
k = argmax;(h(I;,c;)) and¢; € . This is performed be able to facilitate three different operations: a) Prewide
by inserting this value to the corresponding network nodaeans to store and utilize domain knowledfg; this is
and comparing the node’s posterior probability againstea prachieved by mapping p to the network structure. b) Organize
defined belief threshold. If the posterior probability exde and make accessible information coming from the applicatio
the belief threshold the process is terminated. Othervasecontext W;;; this is achieved by the CPTs attached to the
ranked list of the evidence concepts (i.€g < ), that network nodes. c) Allow the propagation of evidence belief
would have caused maximum impact on the hypothesisiif a mathematically coherent manner; this is performed with
were observed, is formed. This is performed by calculatinge use of message passing belief propagation algorithms.
the mutual information between the node correspondingeo tthe work of [30] describes a probabilistic extension to OWL
concepte;, and all other nodes corresponding to the concepsatology based on BNs and define a set of structural traoslati
of ¢¥. The mutual information between two discrete randomules to convert this ontology into a directed acyclic graph
variables is the expected reduction in entropy of one véialHere, we propose an adaptation of this method that learns the
(measured in bits) due to a finding in the other variable. Thetwork parameters from data in contrast to being expicitl
mutual information between, andc;, Ve; € ¢¥ is calculated defined by an expert.
according the following equation:

A. Network Structure
Pr(ck,c;)

I(cp;c;) = Z Z Pr(cg, ¢;) logy ———2—2 Deciding on the structure of a BN based on an ontology can
{true, false} {true, false} Pr(cr)Pr(ci) pe seen as mapping ontological elements (i.e., concepts and
(2) relations) to graph elements (i.e., nodes and arcs). Thas, w
wherePr(cy, ¢;) is the joint andPr(cy), Pr(c;) the marginal haveS(N¢, R,0) — G(V, A), with No — V, R — A, and
probability distributions of:;, and¢;. The efficient calculation O — (V, A). The symbolO — (V, A) indicates that in order
of P,(ck,c;) is performed using the junction tree [39], whichto migrate a DL constructor into the network structure both
is an efficient and scalable belief propagation algorithiat thnodes and arcs will have to be employed. The structural4rans
exploits a range of local representations for the networfarmation process adopted in our framework takes placen tw
Subsequently, the nodes are ranked in descending ordet bastages. In the first stage, the BN incorporates the hiergathi
on their mutual information witl,, and the confidence degreesnformation of the ontology. In order to do so, all ontology
of the concepts corresponding to the most highly rankedncepts are transformed into network nodes with two states
nodes are extracted. The resulting degrees are insertethmt (i.e., true and false). These nodes are called concept nodes
BN causing belief propagation to take place. If the posteria.,. Then, an arc is drawn between two concept nodes in the
probability of the examined hypothesis still fails to exddébe network, if and only if they are connected with a superclass-
pre-defined belief threshold, the hypothesis is rejectebithe subclass relation ik, and with the direction from the super-
process is repeated for the hypothesis with the next highekiss to the subclass node. The adoption of this principke wa
confidence value irH (I,). If none of the hypotheses over-motivated by the fact that when an instance belongs to ainerta
comes the belief threshold the image is categorized basedatass it is automatically subsumed that it can also belong to
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one of its subclasses, thus imposing a kind of causality. Abntrol nodes:.; as shown in [30] and set the belief of the
the second stage, the BN incorporates the semantic cantstrairue state equal to 100%. This is done in order to enforce the
between concepts that are expressed in the ontology. Thisénantic constraints into the probabilistic inferencecpss.
done by creating a control node, for each DL constructor,
which is connected to the concept nodes that correspond to V. FRAMEWORK FUNCTIONAL SETTINGS
the concepts associated with this constructor. The way in )
which the connection is made depends on the type of the B 'Mage Analysis Tasks
constructor and results in a different sub-network stmggtsee  This section describes how the proposed framework can be
[30] for details. The DL constructors that can be handled ®dapted to three different image analysis tasks. For each of
the adopted methodology are owl:intersectionOf, owl:nflf these tasks we clarify the task specific contextual infoionat
owl:complementOf, owl:equivalentClass and owl:disjuifth. app € X (i.e., where to physically search for evidence) as well
as the way that the hypothesEg1,) and evidencer(1,) sets
are determined.
Image categorizationis the task of selecting the category
Once the network structure is fixed, each concept noge concepte; that best describes an imaggas a whole. In this
needs to be assigned a prior probability if it iS a root nodsase, a hypothesis is formulated for each of the category con
or a conditional probability table if it is a child of one orcepts, that isH (I;) = {Pr(ci|ly) : i = 1,...,n} wheren is
more nodes. In [30] these probabilities are set by domaime number of category conceptslin,. Global classifiers (i.e.,
experts and formulate the original probability distrilautiof models trained using global image information) are appieed
the network. In order to learn the probability distributioh estimate the initial probability for each hypothesis. Foist
the network enhanced with the semantic constraints of tteesk, the application contextpp determines which evidence
domain, the authors developed the D-IPFP algorithm, whighould be taken from the image regions extracted using a
is an algorithm based on the “iterative proportional fittprg- segmentation algorithm. For instance, knowing that a $igeci
cedure” (IPFP). This procedure modifies a given distributiacegion depictsroad is a type of contextual information that
to meet a set of constraints (i.e., the semantic constraintsthe algorithm can exploit when trying to decide whether the
the domain), while minimizing th&L-divergence(Kullback- image depicts &easider aRoadsidescene. Local classifiers
Leibler divergence) to a target distribution (i.e., thegaval (i.e., models trained using regional image informatiorg ar
probability distribution of the network). The drawback bfs applied to the pre-segmented image regidjts in order to
approach is that apart from requiring human interventioenvh generate a set of confidence values that constitute thermade
switching to a different domain, it is also likely to introc E(I,) = {Pr(é|l’) : i = 1,....k & j = 1,...,m},
bias in the initial conditions of the BN. wherek is the number of regional concepts Kip andm is
In our work, we propose a variation of the aforementiongtie number of identified segments. In this case, the category
methodology where the original probability distributioa i conceptsc; constitute the hypothesis sef and the regional
learned from sample data instead of being explicitly predid concepts; comprise the evidence sef.
by humans. The sample data are concept labels that have bedrocalized region labeling is the task of assigning labels
used to annotate the image dataset at both global and regimrpre-segmented image regions, with one of the available
level. Given a sufficiently large amount of annotated image®gional concepts;. In this case, a hypothesis is formulated
the original probability distribution of the network can bdor each of the available regional concepts and for each of
approximated using the frequency information implicit fret the image segments. That B (1,) = {Pr(¢|ly’) : i =
data. Such an approach is frequently employed by works that.. .,k & j = 1,...,m}, wherek is the number of
use graph-based probabilistic networks [40], [41], where Fregional concepts ana is the number of identified segments.
contrast to [30] the conditional probabilities are learmsithg Local classifiers are used to estimate the initial probgbili
a sample portion of the data that is being modeled. Howevéar each of the formulated hypotheses. In this task, the
learning from data can only be done robustly if there is @ntextual informationapp is considered to be the image
sufficiently large amount of samples available. In any othes a whole. For example, knowing that an image depicts a
case, as will become clear in Section VI-D, the estimatdRibadsidescene can be considered the application context and
conditional probabilities are inaccurate and tend to raislefacilitate the algorithm to decide whether a specific region
the inference process. depictsseaor road. The degrees of confidence for each of
The conditional probabilities are learned by employinthe category concepts;, obtained by applying the global
the Expectation Maximization (EM) [42] algorithm, usingclassifiers tol,, constitute the evidence of this task. That is
as training data the images annotated with concept labei¥1,) = {Pr(c;|I;) : i = 1,...,n}, wheren is the number
Initially, we apply the EM algorithm to a BN that incorporate of category concepts. In this case, the regional concépts
only the hierarchical information of the ontology. Then, weonstitute the hypothesis sef and the category concepts
add the control nodes to model the semantic constraints ammmprise the evidence sef.
we once again apply the EM algorithm to the modified BN. In practice, our framework can be used to improve region la-
Since no sample data are available for the control nodesethbeling when there is a conflict between the decisions sugdest
nodes are treated as latent variables with two statest(ue., by the global and local classifiers. A conflict occurs when the
and false). The last step is to manually set the CPTs of atbncept suggested by the local classifiers does not belong to

B. Parameter Learning
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the set of child nodes of the concept suggested by the globabre. Three types of features were used, namely grid color
classifiers. Since there is no reason to trust one suggestivoments, edge histogram direction and texture [45]. In all
over another we make two different hypotheses. The firsases the SVM-based models were constructed using the lib-
one assumes that the suggestion of the global classifiersvsn library [46] and their soft output (i.e., confidence asgr
correct. The regional concept corresponding to the maximumas calculated based on the distance between the decision
confidence degree, among the child nodes of the categbgundary and the classified feature vector in the kernelespac
concept, is selected and the overall impact on the posteriore specifically, the sigmoid functiodr(c|l;) = w%fd
probability of the regional concept is measured. The secoft?] was employed to compute the respective degree of
approach considers that the suggestion of the local classif confidence for a concept with ¢ being a scale factor.
correct. The category concept corresponding to the maximum
confidence degree, among the parent nodes of the regional Vi
concept suggested by the local classifiers, is selectedrend t
overall impact on the posterior probability of the regional We present results for two datasets with different domain
concept is measured. Among the two cases, the regiogamplexity and volume, namely the “Personal Collection”
concept with the maximum positive impact on its posteridPS and the “News” NW). PSwas assembled internally in
probability is selected to label the examined region. our lab by merging various photo albums whidWV was
Weak annotation of video shot key-framess the task of taken from the TRECVID 2005 competition. Our goal is
associating a number of concepts with an image. However,tth demonstrate the improvement in performance achieved
this case, we do not associate concepts with specific imd@e exploiting context and knowledge compared to baseline
regions. Thus, there is no distinction between category afigtectors that rely solely on low-level visual informatiotie
regional concepts and more than one labels can be assighls@ evaluate the proposed FOA mechanism and show that
to the image. A hypotheses set is formulatddl(l,) = We can significantly reduce the computational cost of visual
{Pr(ci|I;) : i =1,...,n} wheren is the number of all inference and still achieve performance comparable to the
available concepts in the domain. All classifiers are engdoyexhaustive case. All experiments were conducted using the
to extract the initial probability for all formulated hygases. Netica software for handling BNs and the Rigit ontology
The application contexipp determines that evidence shoulcditor for constructing the ontologies.
be searched for in the global image information. For instanc A collection of 648 images/”® comprised the dataset
if an image is being examined for the presence of the concépt the PS domain. All images inI”% are annotated at
sports it would be helpful for the algorithm to know that theglobal and region detail using the set of category concepts
conceptsoccer-playeiis also depicted in the image. Thus, th€'c={Countrysidebuildings, Seaside, Rockyside, Forest, Ten-
evidence are considered to be the confidence values of aif othis, Roadsidg and the set of regional concegts ={ Building,
concepts except the one examined by the current hypotheBigof, Tree, Stone, Grass, Ground, Dried-plant, Trunk, Veg-
That means that when we examine the hypothékis;|7,), etation, Rock, Sky, Person, Boat, Sand, Sea, Wave, Road,
the evidence aré&(I,) = {Pr(c;|1,) : Vi € [1,n]\{k}}. Road-line, Car, Court, Court-line, Board, Gradin, Racket
respectively. For th&lW domain374 semantic concepts were
i defined by the Columbia University [45] to characterize its
B. Low-level Image Processing content. For this domain the TRECVID2005 development data
The low level processing of visual stimulus consists of vi48] containing 137 annotated video clips were used. The
sual features extraction, segmentation and learning theepi annotations were provided at the level of subshots, exdact
detection models. Four different visual descriptors psgub using temporal criteria (see [45] for details). By extragtia
in the MPEG-7 standard [43], namely Scalable Color, Hom&ey-frame from each subshot, a dataset consisting of 61600
geneous Texture, Region Shape, and Edge Histogram, weti#h images/”¥ annotated at global level was constructed.
employed as described in [31]. Segmentation was performedn both cases, an ontology was used to represent domain
using an extension of the Recursive Shortest Spanning Tie®wledge. The ontology and the corresponding BN for
algorithm [44] that produces a segmentation mask {s; : the PS domain are depicted in Figs. 2 and 3, respectively.
i = 1,...,m} for each image, withs, representing the For the NW domain the ontology was constructed using
identified segment Support Vector Machines (SVMs) wetbe guidelines of [49]. More specifically, the concepts were
employed for learning the concept detection models (repm@ssociated on the basis of program categoNes={politics,
sented byF, in Table I). Global and local classifiers werdinance/bussiness, science/technology, entertainmeather,
created off-line using manually annotated images as trginicommercial/advertisementhat were placed at the top of the
samples and for all concepts included Iip. The feature hierarchy, having the rest of the concepls as subclasses.
space is determined by the utilized visual descriptors andSabsequently, the methodology of Section IV was applied to
gaussian radial basis is used as the kernel function. construct the corresponding BN. Both the ontology and the
For the task of weakly annotating video shot key-frameBN of the NW domain can be accessed through our web page
we have utilized the detectors released by Columbia Urityers[50].
[45]. In this case, individual SVMs were trained at globade 17 was split in half to formulate the te$f.%, and training
independently over each feature space and a simple latnfusi/’?; = sets, each one containing 324 imaggs;, was used

train

mechanism was subsequently applied to produce the averfgetraining the classifiersf. and learning the parameters

. EXPERIMENTAL STUDY
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owiThing T D s W€ defineCp to be the set of control nodes, the JPD defined
22'55.23 by the BN utilized inCON3 configuration is:
Roadside
Roadside Seaside Forest cgt?lzfg‘ge Tennis Rocky side
NS ‘ > Gl 1 G A1 Ll D
Road e \0,’/’.&\\ Court -line PT(CGW"’ a ’CL"WC‘L "CD"WCL ‘):

< N RS % G ~p| |
| N I Prce) [T Pr(ciipen) [T Pr(chice, c&m) @)

Gradin i=1 j:l k=1

Boat Vegetation Gras Trunk Sky Dried -

plnt Tree The use of the common superscripin bothCp andCg indi-
cates that every node of the subnetwork that is used to model
Fig. 2. Ontology encoding the domain knowledge about thers@eal the disjointness between each category concepflandis is
Collection” domain. conditioned on the node of the corresponding category qince
and the node corresponding Tennis The reason for treating
CON2 and CON3 as two different configurations was to

of the BN. In a similar fashion, out of 137 video clips for
the NW domain, the key-frames included in the first 10

IN .. (i.e., 45276 still images) were selected for learning th
parameters of the BN. The key-frames of the remaining ?ONZ.)' and hO.W “?“Ch comes _from the enforcement of
semantic constraints in the analysis proce&s® {V3).

video clipsI}Y,, (i.e., 16624 stillimages) were used for testing: . . .
Concerning the classifiers, the baseline detectors of [45¢w In both CON2 and CON3 c_:qnﬂguraﬂons the analysis
process unfolds as follows. Initially, we formulate the hy-

employed for all 372 concepts. potheses set using all category concepts. Then, we search fo
o the presence of all possible regional concepts determimed i
A. Image Categorization Kp (i.e., V¢; € Cr) before deciding which of them should
We examine the efficiency of categorizing the images bk used as evidence. This approach requires the application
IS to one of the categories il using three configurations. of all available classifiers, global and local, for prodggin
These configurations vary in the amount of utilized conterine set of confidence values for the image as a whole,
and knowledge. In the baseline configuratiGtON1 we LKgopa = {Pr(ci|ly) : Ve; € Ca} (see Fig. 5, table with
assess the performance of image categorization based sdiile “Global Classifiers”) and one set per identified image
on visual stimulus. Images are categorized based on tegion, LKjocar = {Pr(c;|[j*) : Vej € O, & Vs € S}
maximum value of the global concept classifiers. The secombie latter is a matrix whose columns correspond to the
configurationCON2 uses context (i.e.X = S(app,W)) regions identified by the segmentation algorithm and whose
and knowledge (i.e.Kp = S(N¢, R,0)) in order to extract rows correspond to the confidence degrees of the regional
the existing evidence and facilitate the process of evidenconcepts determined i p (see Fig. 5, table with title “Local
driven probabilistic inference. In this case, informatibpom Classifiers”). All values ofLK g1, @and the maximum per
the image regions is incorporated into the analysis procesdumn values ofL K., are introduced as soft evidence
but no semantic constraints are taken into account. The BNo the corresponding nodes of the BN. Then, the network
employed in this configuration is the one depicted in Fig. i3 updated to propagate evidence impact and the concept
without the nodes enclosed by the black frame. The joinbrresponding to the node with the highest resulting pmster
probability distribution (JPD) of the random variablesttaee probability among the nodes representing category coscept

xamine how much of the overall improvement comes from
e use of regional evidence and concept hierarchy infoomat

included in the BN utilized byCON?2 configuration is: is selected to categorize the image (i.e., in this case max,
see Table I). Fig. 4 shows that the performance obtainedjusin
tel IL| the CON2 is superior to the one obtained usi6@ N1, since

1 IGl 1 ILly i J jyyan average increase of approximatg$y is observed.
Pr(Ce, 0", O 00 = [ PriCo) [T PrictiFey)) The running example of Fig. 5 demonstrates how evidence
‘ ‘ (3) collected using regional informatiorC(ON2) can correct a
where F(C7) is the set of parent nodes 6f;, according to decision erroneously taken by a global classifier that selie
the directed acyclic graph of the BN. The fact that none of tremlely on visual stimulus ON1). In Fig. 5, the Table
category concept€’s has parent nodes (as shown in Fig. 3)Global Classifiers” depicts the probabilitieBr(c;|1,;) that
allows us to include in the expression of the JPD the firare obtained after the global classifiers are applied to émag
product on the right hand side of eq. (3), which represems th,. Using only this information, the image is categorized as
product of the marginal probabilities of the category cquise Seaside(i.e., this is the result o CON1). Seasideis the
The third configuratio® O N3 takes into account the semanticchosen category even after inserting the valBesc;|I;) into
constraints of the domain using the methodology presemtedthe network and performing inference (i.e., second row of
Section IV to construct the BN. In this case, the BN usetdble with title ‘Belief Evolutiori in Fig. 5). However, as the
for performing probabilistic inference is extended withe thpieces of regional evidence (i.e., the maximum value froonea
addition of the control nodes (i.e., the set of nodes endloseolumn of the Local Classifiers table), are inserted into the
by the black frame of Fig. 3) that are used for modeling tHBN, belief propagation causes the posterior probabildfehe
disjointness betweetennisand all other category concepts. Ifcategory concepts to change. The last four rowBafief Evo-

i=1 j=1
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Nodes Modeling
Disjoint Constructor

E
fase 5T falze

Fig. 3. Bayesian network derived from the ontology of Fig. @daling the “Personal Collection” domain. The nodes in thelb frame are control nodes
that are used to model the disjointness between the coffegptisand all other category concepts in the domain.

Image Categorization Evalution

I CON1
[ conz
[lcons
Global Classifier] Local Classifiers |
2 Tennis 45,97 Region1] Reg\ong Reg\ojS Regio}w
§ Roadside 54,21 Board 48,51 49,51 50,64 46,8
= Rockyside| 47,07 Court 49,72 52,53 51,83 54,01
|_'L Seaside 56,31 Person 52,56 50,16 51,3: 52,93
Forest 52,46 Gradin 49,07 53,01 51,4 51,6
C.Building: 56,00 Court line 50,13 49,25 51,8t 51,9
Racket 48,93 50,99 50,2 48,301
Sky 47,03 | 60,69 74,54 56,03
Dried plant 47,14 49‘@ 48,0 47,97
' Grass 56,36 53,29 47,66 50,31
< & & (;) & Road 52,35 48,47| 49,4 54,97
,;} o@ b\Q @ Vegetatior] 49,17 47,18 46,8 53,74
& < Q,\'% @e Ground || 5055 4856/ 50,7 49,51
o Belief Evolution ‘ Road line| 48,55 49,93 49‘8$ 50,1
% Tennis| Roadside Rockysifle Seagide Fgrest C‘Bmlﬁi\ 0S Car 47,83 49,51 47,6q 47,9;
Prior Probabilitie: 154 17,6 15,7 17,8 185 154 Trunk 48,82 47,68 49,00 48,4
Global 134 20,2 14,2 21,2 20,1 18,8 Rock 49,13 47,40 47,79 48,0
Evidence-Region| 134 21,7 14,2 21,2 20,9 20,6 Glacier 50,00 50,00 50,0( 50,0f
Evidence-Region| 134 235 15,2 229 215| 22,6 Sea 48,73 51,32 47,8 44,08
Fig. 4. F-Measure scores for the task of image categorizaiging CON1: Evidence-Regiony 134 272 17,3 263 | 22,8 26,8 sand 49,62| 47,86 49,66 4741
ags . . . Evidence-Regiond 134 27,2 17,6 26,9 22,8 274 Wave 52,85 46,54 47,96 48,2
the output of the global concept classifiers is used to csaEgdohe image, Boat || 4976 | 49.74] 476 487
. H H e Tree 50,47 47,61 48,4 48,2!
CON2: uses also knowledge_and application context fo_r categg the o | a05s] doe0 408y 4seh
image, and CON3: takes also into account the semantic eamtstrexpressed Building || 44,62 | 4771 4614 43.9
Roof 48,60 52,30 49,47 49,9(

in an ontology.

Fig. 5. Running example of image categorization using tlenéwork’s

- . . I CON?2 configuration. The evidence extracted from image regiorp t®
lution” table illustrate how the posterior probabilities evolVeyrrect a misclassification error about the image category.

in the light of new evidence. Eventually the correct catggor
which is Roadside emerges as the one with the highest
posterior probability. It is interesting to note that onlyotout dence thatTennisshares with the rest of image categories.
of four local classifiers (the ones corresponding to regibnsThis can be practically considered as domain informatian, (i
and 3) predicted correctly the regional concept. Neveei®l semantic constraint) and used to aid image analysis. Iir tode
this information was sufficient for our framework to infereth do so, we associate tHennisconcept and all other concepts
correct prediction, since the relation between the comscept Cg with the “owl:disjointWith” DL-constructor. Then, we
grass(identified in region 1) an@Roadsidevas strong enough re-construct the BN using the enhanced ontology. The nodes
to raise the inferred posterior probability of this catggorof the BN that are enclosed by the black frame in Fig. 3
above the corresponding value®¢asideThis is a reasonable are used to model the disjointness betwdemnisand all
result since th&Seasidecategory receives no support from thether category concepts. We can see from Fig. 4, that using
evidencegrass as shown in Fig. 2. the semantic constrains (CON3) the performance of image
The lower of cells in Table Il depict the confusion matrixanalysis is further increased with an average improvemgnt o
of CON2. By looking at the relations between regional andpproximately6.5%, compared to the baseline configuration
category concepts in Fig. 2 in conjunction with Table Il, {CON1). By inspecting the upper of the cells in Table II,
is clear that our framework tends to confuse categories tivaltere the confusion matrix for théO N3 is depicted, we can
share many regional evidence. This is the caseRfockyside see that the improvement comes mainly from the correction
and Forest or Countryside Buildingsand Roadside Another of the test samples that were mis-categorizedemis
interesting observation is the small amount of regionat evi In order to examine the statistical significance of this
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TABLE Il

CONFUSIONMATRIX FOR IMAGE CATEGORIZATION- CON2 Lower of  Daseline reference when estimating the computational gfain
THE CELLS- CON3 UPPER OF THE CELLS the FOA mechanism.
© © ] TABLE IV
" 2 E\ s — S COMPUTATIONAL COSTQUANTITIES - CON3 CONFIGURATION
£ T < 2 3 &
% S @ ncé & i o 324 (# Test Images) * 6 (# Global Classifiers)
+ 2010 (# Total Regions) * 25 (# Local Classifiers)
. 98.00 | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 _
Tennis 94.00 | 0.00 | 2.00 | 400 | 0.00 | 0.00 # Classifiers 52194
Roadside 1.75 | 73.68 | 0.00 8.77 | 10.53 | 5.26 324(# Test Images) * 6 (# Global Classifiers)
0.00 | 73.68 | 0.00 8.77 | 12.28 | 5.26 + 2010 (max of local classifiers per region)
Rockyside 588 | 392 | 6471 | 588 | 19.61 | 0.00 # Inferences 3954
0.00 | 392 | 7058 | 588 | 19.61 | 0.00
Seaside 0.00 | 5.36 | 357 | 91.07 | 0.00 | 0.00
0.00 | 5.36 | 357 | 91.07 | 0.00 | 0.00 : : ; ;
— 000 | o001 533 | 1000 71671 000 In our exp_enm_ental setting the belief threshold receives o
ores 0.00 | 10.00 | 833 | 10.00 | 71.67 | 0.00 of the following discrete valuef0.1, 0.2, ..., 1.0. Using each
C. Buildings || 2.00 | 24.00 | 6.00 | 12.00 | 2.00 | 54.00 i
500 | 2400 | 600 | 1200 | 200 | 26:00 of these values as a common belief threshold for all fornedlat

hypotheses, we obtaii0 different F-Measure scores. Given
that the belief threshold affects also the #Classifiers &ed t

improvement we apply the McNemar test on the output gilnferences, we practically obtair0 pairs of values for{F-
CON1 and CON3 configurations. The2 x 2 contingency Measure, #Classifie}sgndlo pairs of values fm{F—Measure_,
table summarizing the transitions observed before and affgn;grengeﬁ Tht(ejsg [:t;alrls atr)e llflsgq to draw the dcurves dep'Ctﬁd
employing our framework is depicted in Table Ill. Since thd! 19S. (@) and 6(b). In c,)t lagrams we demonstrate the
number of discordant pair8({+ 15) is more than 25, the chi- performance of a) the baseline concept detectors (lO.V1

squared approximation with Yates’ correction and 1 degfee %f_Section VI'_A) (black dpt), b) the probe_lbilistic inferemc
freedom is calculated to be 4.536. Thus, the value calcu- USING exhaustive search (L.&ON3 of Section VI-A) (gray

lated by the McNemar’s test equals 0.0369. By adopting tlﬂgz’ ©) tf;}e p_Ialn FC.)A m?cha;usm (Sr?“g lcurve),f %nd fj) th
conventional criteria on statistical significance that sidars fo . mechanism using aiso the mgt 0 c(;ogk)‘/ 3 ectlonTh
the significance level to be 0.05, we have — value < a. O incorporating semantic constraints (dashed curveke

Thus, it is safe to conclude that the introduced improvemetﬁi?Seline figu_res of Tablg IV_are also displayed in Figs. _6(a)
is statistically significant. and 6(b) using the vertical lines. The horizontal dotte@din

are drawn for allowing comparisons with the performance of

TABLE Il the baseline configurations. It is clear that the proposel Fo
CONTINGENCY MATRIX - IMAGE CATEGORIZATION mechanism manages to achieve (for the optimal value of the
before belief threshold, F-Measure#, 40) performance comparable
+ - | Total to the one obtained by the best of the configurations in Sec-
aer+ | 28 301 2% tion VI-A, using a remarkably smaller number of classifiers.
Total | 233 91| 324 On the other hand, for the same optimal threshold value, the

number of inferences that need to be performed increases, se
Fig. 6(b). More specifically, the number of classifiers reshic
o . . from 52194 to 25753 (# classifiers corresponding to the peak
B. Image Categorization using a Focus of Attention Mech@s the solid curve in Fig. 6(a)), while the number of infereac
nism increases from8954 to 4538 (# inferences corresponding to
In order to assess the benefit of using the proposed Focustef peak of the solid curve in Fig. 6(b)). For the case where
Attention (FoA) mechanism, we measure the gain in computdéie FOA mechanism incorporates semantic constraints édash
tional cost in terms of two quantities. The number of classifi curve), the number of applied classifiers reduces fi@104
(#Classifiers) that need to be applied and the number of-infép 41560 (# classifiers corresponding to the peak of the dashed
ences (#Inferences) that need to be performed. #Inferéscesurve in Fig. 6(a)), while the number of inferences incresase
the number of times a confidence degree is inserted into dnem 3954 to 6860 (# inferences corresponding to the peak of
of the BN nodes and as a result triggers an inference procdbs. dashed curve in Fig. 6(b)).
When the FoA mechanism is not employed, the #Inferencedn order to estimate these numbers in terms of time we have
that need to be performed for analyzing a single image dslculated the average time per classifier and per inference
equal to the number of confidence values estimated for the 0,12 (sec) ando, 69 = 10~2 (sec), respectively. Thus. the
global concepts of the image (i.e., thevalues of LK g105; i gain in computational time is approximatedy72 (sec) using
our experiments) plus the number of regions identified in thke plain FOA mechanism an®74 (sec) using the FOA with
image (i.e., maximum per column values bf(;,.,;). Thus, semantic constraints, which can be considered as a sigrtifica
the total #Inferences for the complete set3@fl test images reduction of the overall computational cost. Finally, lstnote
is 324 x 6 plus the number of regions identified in 824 test thatin both approaches for image categorization (SectieA V
images, which was calculated to 2010. Table IV shows and Section VI-B) the configuration incorporating semantic
the #Classifiers and #Inferences for the exhaustive casecohstraints outperforms the other configurations. Thisiges
Section VI-A (i.e.,CON3). These values will serve as thean additional argument for the effectiveness of the methodo
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F-Measure vs Number of Classifiers F-Measure vs Number of Inferences
90 90 |
FoA (plain) 1 FoA (plain)
— — — FoA (semantics) 85r — — — FoA (semantics)

85 Exhaustive Case
(Sec.VI-A, CON3) |

8t | ol

Exhaustive Case
(Sec. Vji-A, CON3)

75r

701

o | o 701 T g
g Baseline Concept Detectors i g 65 | Baseline Concept Detectors
> 60 (Sec.VI-A, CON1) ‘ > . (Sec, VI-A, CON1)
w w
60+
551 [ |
50t ‘ s !
Number of applied Classifiers — Exhaustive Case |
5 | 50t i Number of Inferences — Exhaustive Case
| |
40( I 45 i
. ‘ ‘ o ‘ ‘ » ‘ \ ‘ ‘ ‘ ‘ ‘ ‘
[ 2 4 6 8 10 0 2000 0 6000 8000 10000 12000 14000 16000
# Classifiers x 10" # Inferences

Fig. 6. F-Measure scores using the Focus of Attention meshmagainst: a) # Classifiers, b) # Inferences. Each pointdnrae corresponds to a belief
threshold that receives one of the following discrete val{@1, 0.2, ..., 1.9.

ogy presented in Section V. average increase of approximately 4.5% is accomplished.
In order to apply the McNemar's test for this case we

calculate the2 x 2 contingency matrix depicted in Table V.

Thep—wvalue estimated by the McNemar’s test is found to be

In order to evaluate the performance of our framework fQgss tharn.0001 showing that the improvement is statistically
the task of assigning labels to pre-segmented regions, we h@ery significant, since — value << a.

used the BN of Fig. 3 (without the nodes enclosed by the black

C. Localized Region Labeling

frame) and the JPD of eq. (3). As mentioned in Section V-A, TABLE V
our framework can reinforce region labeling when there is a ~ CONTINGENCYMATRIX - LOCALIZED REGIONLABELING
conflict between the decisions suggested by the global and before
local classifiers. LetChild(cy) = {c¢j : k —parent j} b€ + - | Total
after + 1035 61 1096

the subset ofCy corresponding to the child nodes of < . 22 892 | 914
Cq. Let also LK giopar = {Pr(ci|lly) : Ve; € Cg} be the Total | 1057  953] 2010
set of confidence values obtained from the global classifiers

applied to imagel, and LK}, = {Pr(c;|I;v) : Ve €

C1} be the set of confidence values obtained from the lodal Weakly Annotating Video Shot Key-Frames

classifiers applied to a regiofy of the image. A conflict  This task does not require the existence of region-level

occurs whence; ¢ Child(cg) With g = argmax,;(LKgoba) annotations and therefore allows us to perform tests on a

and! = argmax; (LK} ;). much larger set of semantic concepts. The TRECVID 2005
In the first case we follow the suggestion of the globalataset was used for this purpose. Recalling fiiatdenotes

classifiers and select the concegt Then, the local con- the set of category concepts that were placed at the top of the

cept ¢; is selected such that = argmax;(LK;" ;) and hijerarchy andV; the rest of domain concepts that were used

c € Child(cy). The confidence values correspondingclo as subclasses d¥, the JPD defined by the utilized BN is:
and ¢; are inserted into the BN as evidence and the overall

impact on the posterior probability of the hypothesis atati le] IL|

that the region under examinatidp depictsc; is measured. Pr(N}, ~-,N‘GG‘,N57 ._’N\LL\) _ HPT(Né> H Pr(Ni|F(N{))
In the second case, we follow the suggestion of the local i i

classifiers and seleef, such thal = argmax;(LK;" ). The (5)

confidence values of the global classifiers are examinedend The benefit of using such a large dataset is the existence
cg With g = argmax; (LK g00q1) @andeg € F(c;) is selected. of semantic relations between the available concepts.€Thes
As in the previous case, the confidence values correspotalingelations are necessary for assessing the effectivenesarof

c; andey are inserted into the network and the overall impaétamework, since our goal is to exploit domain knowledge
on the posterior probability of the hypothesis stating tiha for improving the efficiency of image interpretation. On the
examined regionj« depictsc; is measured. Eventually, theother hand, many of the concepts appear rarely in the tiginin
values representing the impact on the posterior probigsilit set; a fact that makes difficult approximating the condiion

largest valueg; or ¢; is chosen to label the region in questiorthe efficiency of our framework we compare its performance
(i.e., this is the functionality of operator depicted in Table I, against the performance of baseline concept detectors that
for this task). If no conflict occurs, the concept corresppngd make no use of domain knowledge and application context.
to the local classifier with maximum confidence is selecteth the first case we use the fused output of the global detec-
Fig. 7(a) shows that when using the proposed framework tors released by the Columbia University [45]. The concepts
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Fig. 7. F-Measure scores for the localized region labelemk:t a) Personal Collection dataset, and b) Microsoft ReBe@ambridge dataset. Scores are
reported for the baseline case, where decisions are bak#yl @o the output of the classifiers, and for the proposechémaork, where knowledge and context
are employed to improve image analysis.

corresponding to th& maximum confidence values producedery rarely. An ontology was created to represent the iati
by the global detectors are selected to weakly annotate thetween the aforementioned global and regional concepits an
key-frames. In the second case, the fused detection confidea BN was derived from it using the methodology presented
values of all classifiers are provided as evidence to the BM. Section IV. Both of them can be accessed through our
Belief propagation is performed and the resulting postsrioweb page [50]. All images of 5%¢ were segmented and
are recorded for all concepts. Finally, ti¢ concepts that the ground truth label of each segment was considered to
exhibit maximum positive impact on their posteriors werbe the label of the hand-segmented region that overlapped
selected as the analysis outcome (i.e., this is the furalitgn with the segment by more than the 2/3 of the segment’s
of ® operator depicted in Table I, for this task). For both casearea. In any other case the segment was labeled as void. We
K was determined by varying its value betwerand20 and should note that although we could use directly the hand-
selecting the one that yields the optimal average F-Meassegmented images of MSRC, such an approach would not
score. be realistic since we cannot reasonably expect segmemtatio
In order to examine the relation between a concept’s ajpformation for an unknown image. The overlap rule has been
pearance frequency() in the training set and the efficiencyused by many works in the literature that utilize automatic
of the proposed framework, we report the F-Measure scoligsage segmentation and need a way to decide the labels of
sorted based on thelF of the concepts. By inspectingthe automatically extracted segments. For instance, [46% u
Fig. 8(a) we observe that for the concepts wili” > 10% 20 x 20 image patches whose labels are considered to be the
our framework outperforms the baseline in almost all casanost frequent ground truth pixel label within the block, iehi
In Fig. 8(b), where the concepts witt0% > AF > 5% are [51] uses &0% overlap rule between the segment’s area and
depicted, we observe a similar behavior, but with the averathe ground truth foreground. ThE ¢ was split randomly
improvement to be inferior from that of Fig. 8(a). Finallyin 295 training/M5FC and 296 tesf7%¢ images, ensuring
Fig. 8(c) verifies that when thd ' of a concept is relatively approximately proportional presence of each class in betth s
small (Fig. 8(c) depicts concepts withfs > AF > 2%) IMSEC was used from training the concept classifiers, as
our framework does not deliver any improvements. Similavell as learning the parameters of the BN. Fig. 7(b) reports
conclusions can be drawn wheh? < 2%. It is evident that the performance for the baseline concept classifiers and the
the availability of realistic prior and conditional prohliies proposed framework configured as described in Section VI-C.
is important for the efficiency of our framework and learninghe performance is increased in 14 out of the 21 regional
them from data is feasible only when there are enough trgininoncepts giving an average improvement of approximately
samples to learn from. 4.5%. The reason that some concepts Bkg chair, andcat
exhibit performance lower from the baseline is the follogvin
Our framework operates on top of the classifiers’ outcome tha
sually come with a high number of erroneous predictions.
ntuitively, the framework compensates for the misleading
predictions by favoring the co-occurrence of evidence #nat
@own from experience to usually co-exist and constituge th
analysis context. It does so by adjusting the final outputsso a
to comply with the extracted collection of evidence. Theref
provided that an adequate amount of evidence are accurate,
the framework is expected to make the correct decision by

E. Comparison with Existing Methods

In order to compare our work with other methods in th
literature, we apply the localized region labeling task ba t
591 images of the MSRC dataset [4I}7°%C. In order
to do so, we categorized all 591 images into 6 categori
(i.e., global concepts), nameGityscape Countryside Forest
Indoors ManMadeand Waterside As regional concepts we
used21 out of the23 semantic classes provided by MSRC
treating as void théhorse and mountainclasses that appear
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Fig. 8. F-Measure scores for the concepts of TRECVID 200asdstranked based on their appearance frequency (AF) imaiming set: a)AF > 10%,
b) 10% > AF > 5%, and ¢)5% > AF > 2%.

absorbing any misleading cues produced by the erronedigsused to enhance image interpretation depends largely on
visual analysis. However, there can also be cases, likerthe othe special characteristics of the domain. More specificall
mentioned above, where the evidence extracted from contakhough using the information from the knowledge struetur
are misleading, causing our framework to change the corrd€p and the causality relatiori¥’;; € X obtained from context
prediction of the local classifier. was proven to be useful in all cases, the semantic congraint

In order to present results on the same dataset with [41] amiiginating from the domain were only able to facilitate
[40], we have calculated the classification rate (i.e., nembimage interpretation when the imposed rules were suffilgient
of correctly classified cases divided by the total number abncrete. For instance, the disjointness between “Teranid’
correct cases) achieved by our framework for each of tladl other category concepts of tHeS domain expresses a
21 object classes in MSRC. We hereby note that the resuitdher strict distinction that is suggested by knowledga. O
depicted in Table VI are not directly comparable since theiie contrary, attempts to incorporate semantic cons ait,
are reported at different levels. In [41] at pixel level, #0] although valid from the point of logic, were less strict from
at the level of 20x20 image patches, and in our case at tte visual inference point of view didn’t lead to performanc
level of arbitrary shaped, automatically extracted segmdn improvements.
addition, the methods are not relying on the same set of visuaFurthermore, as shown in Section VI-D, a sufficiently large
features, and the training/test split is likely to be difet. amount of training data is required for approximating thiempr

It is clear that none of the approaches manages to outpamnd conditional probabilities using frequency informatiBut
form the others for a significant portion of the 21 classegiven that the manual annotation of images is a cumbersome
Moreover, error rates are often quite different on indieidu procedure, especially at region level, a solution could de t
classes showing that while there are some classes that n@ne the necessary annotations from social sites like Flick
be modeled very efficiently using the visual features and thigat are being populated with hundreds of user tagged images
model proposed by one method, there are other classes tivata daily basis. Given that literature has already reported
are best modeled using a different set of visual features agffiorts on using this type of data [52], employing such schem
model. For instance, while the visual features employed Inyay help overcoming some of the problems caused from the
our method perform very poorly in recogniziggass they are use of limited size training sets.
pretty efficient in recognizingar or sky Our aim is to use
context and knowledge in order to improve the performance ACKNOWLEDGMENT
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