
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART B:CYBERNETICS 1

Evidence driven image interpretation by combining
implicit and explicit knowledge in a bayesian

network
Spiros Nikolopoulos, Georgios Th. PapadopoulosMember, IEEE, Ioannis KompatsiarisMember, IEEEand

Ioannis PatrasMember, IEEE

Abstract—Computer vision techniques have made considerable
progress in recognizing object categories by learning models that
normally rely on a set of discriminative features. However, a
drawback of those models is that, in contrast to human perception
that makes extensive use of logic-based rules, they fail to benefit
from knowledge that is provided explicitly. In this manuscript
we propose a framework that is able to perform knowledge-
assisted analysis of visual content. We use ontologies to model
domain knowledge and a set of conditional probabilities to model
the application context. Then, a bayesian network (BN) is used
for integrating statistical and explicit knowledge and perform
hypothesis testing using evidence-driven probabilistic inference.
Additionally, we propose the use of a Focus of Attention (FoA)
mechanism that is based on the mutual information between
concepts. This mechanism selects the most prominent hypotheses
to be verified/tested by the BN; hence, removing the need to
exhaustively test all possible combinations of the hypotheses set.
We experimentally evaluate our framework using content from
three domains and for three tasks, namely image categorization,
localized region labeling and weak annotation of video shotkey-
frames. The obtained results demonstrate the improvement in
performance, compared to a set of baseline concept classifiers
that are not aware of any context or domain knowledge. Finally,
we also demonstrate the ability of the proposed FoA mechanism
to significantly reduce the computational cost of visual inference,
while obtaining results comparable to the exhaustive case.

Index Terms—knowledge assisted image analysis, probabilistic
inference, bayesian networks, ontologies, focus of attention.

I. I NTRODUCTION

T HE advances in information technology have signifi-
cantly reduced the traditional spatial and temporal obsta-

cles in information exchange. Instant sharing infrastructures
enable users to easily generate and exchange considerable
amounts of digital data. However, the limitations of machine
understanding makes it difficult for automated systems to
interpret digital content in a manner coherent with human
cognition, and the need for discovering intelligent ways to
consume digital information is recognized as one of the
emerging challenges of computer science [1]. With respect
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to multimedia, the difficulty of mapping a set of low-level
visual features into semantic concepts, has motivated the use
of domain knowledge for indexing this type of data. Moreover,
as the importance of context in understanding audio-visual
stimuli has been widely recognized, the integration of con-
text and content is considered a promising approach towards
multimedia understanding [2].

In our work we introduce a framework for enhancing
image analysis using different types of evidence. Here, we
define as evidence information that (when coupled with the
principles of inference) can be used to support or disproof
a hypothesis. In our framework (depicted in Fig. 1), we use
visual stimulus, application context and domain knowledgeto
drive a probabilistic inference process that verifies or rejects a
hypothesis made about the semantic content of an image. For a
given task, the application context and the domain knowledge
are considered to be the a priori/fixed information. On the
contrary, the visual stimulus depends on the examined image
and is considered to be the observed/dynamic information. In
this manuscript, we propose a generative method for modeling
the layer of evidence so as to effectively combine and exploit
both a priori and observed information. More specifically,
first we statistically analyze the visual stimulus to obtain
conceptual information. Then, we represent domain knowledge
and application context in a computationally enabled format.
Finally, we combine everything in a bayesian network (BN)
that is able to perform inference based on soft evidence.
In this way, we provide the means to handle aspects like
causality (between evidence and hypotheses), uncertainty(of
the extracted evidence) and prior knowledge; hence, imitating
some of human’s basic perceptual operations when inspecting
images.

The main contributions of our work can be summarized
in the followings: a) We combine ontologies and bayesian
networks for the purpose of allowing in a probabilistic way
the fusion of evidence obtained at different levels of image
analysis. We propose a data-oriented learning strategy fores-
timating the parameters of the BN. b) We show how global and
regional evidence, as obtained from the application of concept
classifiers on global and local image data respectively, can
be probabilistically combined within a BN that incorporates
domain knowledge and application context. We demonstrate
that combining information in this way leads to statistically
significant improvements for the tasks of image categorization,
localized region labeling and weak annotation of video shot
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Fig. 1. Functional relations between the different components of the proposed
framework.

key-frames. c) We propose a mechanism that exploits the
mutual information between concepts, in order to significantly
reduce the computational cost of visual inference and still
achieve results comparable to the exhaustive case.

The rest of the manuscript is organized as follows. Section II
reviews the related literature. Section III presents the individ-
ual components of the proposed framework. Section IV de-
scribes the methodology for migrating the semantic constraints
expressed in an ontology into a BN. Section V details the
functional settings of the proposed framework and Section VI
describes our experimental study. Results are discussed in
Section VII.

II. RELATED WORK

Interpreting images in terms of their semantic content has
been primarily addressed by devising methods that map low-
level image visual characteristics (i.e., color, shape, texture)
to high-level descriptions (i.e., semantic concepts), without
making any use of domain knowledge and application con-
text. Some indicative works that have been presented in the
literature include [3] where the authors are based on scene-
centered rather than object-centered primitives and use the
mean of global image features to represent the gist of a scene,
[4] where scene classification is performed using bayesian
classifiers that operate on representations determined using a
codebook of region types, and [5] where the authors introduce
a visual shape alphabet representation with the aim to enable
models for new categories to benefit from the detectors build
previously for other categories. In this category of solutions
we can also classify the methods that make combined use
of global and local classification and treat images at a finer
level of granularity, usually by taking advantage of image
segmentation techniques. In [6] it is demonstrated throughsev-
eral applications how segmentation and object-based methods
improve on pixel-based image analysis/classification methods,
while in [7] a region-based binary tree representation incor-
porating adaptive processing of data structures is proposed to
address the problem of image classification. Similarly, based
on the combined use of local and global classification, [8]
proposes a multi-level approach to annotate the semantics of
natural scenes by using both the dominant image components
(salient objects) and the relevant semantic objects, [9] em-
ploys Multiple-Instance-Learning to learn the correspondence
between image regions and keywords and uses a bayesian

framework for performing classification, while [10] presents
a method where a new object is explained solely in terms
of a small set of exemplar objects (represented as image
regions). For each exemplar object a separate distance function
is learned which captures the relative importance of shape,
color, texture and position features. However, the inadequacy
of the solutions relying solely on visual information to achieve
efficient image interpretation has motivated the exploitation of
context as a valuable source of information.

Context was defined in [11] as an extra source of in-
formation for both object detection and scene classification.
Among the methods that make use of such information,
we can identify the class of methods that develop models
for spatial context-aware object detection, such as [12] that
describes one generic outdoor-scene model, [13] that presents
a model specific to individual archetypical scene types (e.g.,
beach, sunset, mountain, or urban), and [14] where multi-
ple class object-based segmentation is achieved through the
integration of mean-shift patches. Another class of methods
that make use of such extra information includes the ones
that exploit temporal context, as this can be derived from
the surrounding images of an image collection (i.e., images
drawn during a festival). In [15] the authors developed a
general probabilistic temporal context model in which the first-
order Markov property is used to integrate content-based and
temporal context cues. Temporal context has been also used
for active object recognition [16], as well as for identifying
temporally related events [17]. Imaging context (i.e., camera
metadata tags about scene capture properties, such as exposure
time and subject distance) has been also used for aiding
in a number of multimedia analysis tasks, including indoor-
outdoor classification and event detection [18]. Other works
that aim at improving the performance of individual detectors
using contextual information are the ones that model the
relationships between objects, such as [19] where contextual
features are incorporated into a probabilistic framework which
combines the outputs of several components, [20] where the
authors present a two-layer hierarchical formulation to exploit
the different levels of contextual information, and [21] where
the authors propose a region-based model which combines
appearance and scene geometry to automatically decompose a
scene into semantically meaningful regions.

There is also a number of works that exploit conceptual
context by developing techniques that are able to handle uncer-
tainty and take advantage of domain knowledge. The authors
of [22] introduce “Multijects” as a way to map time sequence
of multi-modal, low-level features to higher level semantics
using probabilistic rules. “Multinets” are also proposed for
representing higher-level probabilistic dependencies between
“Mutlijects”. In [23] “Multinets” are elaborated by introducing
BNs for modeling the interaction between concepts and using
this contextual information to perform semantic indexing of
video content. A drawback of these approaches lies on the fact
that the structure of “Multinets” is customly defined by experts
and no methodology is suggested for explicitly incorporating
the semantic constraints originating from the domain into
the analysis process. In the same lines, [24] proposes a
framework for semantic image understanding based on belief
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networks. The authors use three different image analysis tasks
to demonstrate the improvement in performance introduced
by extracting and integrating in the same knowledge-based
inference framework (based on BNs), both low-level and
semantic features. Once again, no systematic methodology is
presented on how to seamlessly integrate domain knowledge,
expressed with a standard knowledge representation language,
into the probabilistic inference process. [25] describes an
integrated approach of visual thesaurus analysis and visual
context that exploits both conceptual and topological context.
Another approach that attempts to model uncertainty and take
advantage of knowledge and context for the task of multimedia
analysis is [26]. This work uses low-level features and a BN
to perform indoor versus outdoor scene categorization. In [27]
a BN is utilized as an inference mechanism for facilitating
a classification method based on feature space segmentation.
Similarly, [28] propose a generative-model framework, namely
dynamic tree-structure belief networks (DTSBNs), and formu-
lates object detection and recognition as an inference process
on a DTSBN. Domain knowledge is also used in [29], in order
to tackle the problem that when training data is incomplete
or sparse, learning parameters in BNs becomes extremely
difficult. In their work the authors present a learning algorithm
that incorporates domain knowledge into the learning process
in order to regularize the otherwise ill-posed problem. Still,
the absence of a methodology for integrating ontological
knowledge into the inference process is what differentiates
these works from our approach.

Works that utilize ontologies as a means to encode domain
knowledge are also present in the literature. [30] presentsa
method for combining ontologies and BNs in an effort to
introduce uncertainty in ontology reasoning and mapping. The
Ontology Web Language (OWL) is augmented to allow addi-
tional probabilistic markups and a set of structural translation
rules convert an OWL ontology into a directed acyclic graph of
a BN. The conditional probability tables of the nodes are then
calculated taking into consideration the ontology semantics.
Probabilistic rules are used to cope with uncertainty and
ontologies combined with belief networks are employed to ex-
press and migrate into a computationally enabled framework,
the semantics originating from the domain. The proposed
inference approach is validated using a synthetic example and
no attempt is made to adjust the scheme for image analysis.
[31] proposes a knowledge assisted image analysis scheme that
combines local and global information for the task of image
categorization and region labeling. In this case, a sophisticated
decision mechanism that takes into account visual information,
the concepts’ frequency of appearance and their spatial rela-
tions is used to analyze images. [32] describes a scheme thatis
intended to enhance traditional image segmentation algorithms
by incorporating semantic information. In this case, fuzzy
theory and fuzzy algebra are used to handle uncertainty while a
graph of concepts carrying degrees of relationship on its edges
is employed to capture visual context. In [33] the authors build
a concept ontology using both semantic and visual similarity
in an effort to exploit the inter-concept correlations and to
organize the image concepts hierarchically. In this process, the
authors try to effectively tackle the problem of intra-concept

visual diversity by using multiple kernels. However, none of
[31], [32], [33] attempt to couple ontology-based approaches
with probabilistic inference algorithms for combining concept
detectors, context and knowledge. On the other hand, [34] uses
ontologies as a structural prior for deciding on the structure
of a BN, but in this work ontologies are mostly treated as
hierarchies that do not incorporate any explicitly provided
semantic constraints.

Finally, we should note that none of these works is con-
cerned with computational efficiency and the fact that in a real-
world inference system the number of plausible hypotheses
could suffer from a combinatorial explosion. In this manuscript
we discuss how visual inference can benefit from the use
of exclusion principles and propose a focus of attention
mechanism that is based on the mutual information between
concepts.

III. F RAMEWORK DESCRIPTION

A. Visual Stimulus

For analyzing the visual stimulus we consider the supervised
learning paradigm where a classifier is trained to identify
an object category, provided that a sufficiently large number
of examples are available. We denote byNC the set of
domain concepts and byIq the analyzed visual representation.
Depending on the circumstances,Iq can be an image region,
the whole image, a video shot, etc. A concept detector can
then be implemented using a classifierFc that is trained to
recognize instances of the conceptc ∈ NC . We denote by
Fc(Iq) the output ofFc applied to imageIq. When Fc is
a probabilistic classifier we haveFc(Iq) = Pr(c|Iq). These
probabilitiesPr(c|Iq) are essentially the soft evidence that
are provided to the BN for triggering probabilistic inference.

B. Domain Knowledge

Let R be the set of binary predicates that are used to
denote relations between concepts andO the algebra defin-
ing the allowable operators. In our framework we use the
ontology web language OWL–DL [35] to construct a structure
KD = S(NC , R,O) that describes how the domain concepts
are related to each other usingR andO ∈ DL. DL stands
for “Description Logics” [36] and constitutes a specific setof
constructors such as intersection, union, disjoint, complement,
etc. For instance, such constructors can be used to express
that two concepts are disjoint with each other and can not
be depicted in the same image simultaneously. Our goal is
to use these constructors for explicitly imposing semantic
constraints in the process of image interpretation that cannot
be captured by typical machine learning techniques. Loosely
speaking, we use the knowledge structure to obtain: a) which
of the domain concepts should be considered as evidence and
therefore used to trigger the probabilistic inference process,
and b) which evidence supports a certain hypothesis and what
are the semantic restrictions that apply in this domain. In
this sense, the knowledge structure sets the tracks to which
evidence belief is allowed to propagate by determining the
structure of the BN.
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The use of ontologies instead of some other knowledge rep-
resentation structure (e.g., conceptual graphs) was advocated
by their wide acceptance and appeal in the area of knowledge
engineering [37]. It is true that ontologies have been widely
established as the main tool for encoding explicit knowledge in
machine understandable format. This is witnessed by the fact
that in many domains considerable effort has been already
allocated on engineering ontologies that encode the existing
concepts and relations. Therefore, enabling our frameworkto
automatically handle ontologies makes it directly applicable
in these domains.

C. Application Context

The role ofKD is to capture information about the domain
in general, but not to deliver information concerning the
context of the analysis process at hand. No information is
provided to the framework regarding where within the content
the anticipated evidence are likely to reside. For instance, this
type of information could suggest the analysis mechanism
to search for evidence in specific image regions. Moreover,
information on how to quantitatively evaluate the existence
of the extracted evidence (i.e., how much each hypothesis
is affected by the existence of one evidence or another) is
also missing fromKD. Let app denote the type of application
specific information used to guide the analysis mechanism in
searching for evidence, andW = [Wi,j ] the matrix whose
elementsWi,j quantifies the effect of conceptci on cj . Then,
we consider the application contextX = S(app,W ) to be the
information consisting of bothapp andW . As will become
clear in Section IV-B,Wij is approximated by the frequency of
co-occurrence between conceptsci andcj in the training set.
This information, that is implicitly extracted from the training
data, is encoded into the Conditional Probability Tables (CPTs)
of the BN nodes and influences the probabilistic inference
process when belief propagation takes place.

D. Evidence-driven Probabilistic Inference

In order to accommodate for evidence-driven probabilistic
inference, our framework uses a BN derived from the domain
ontology. This is accomplished by performing the following
steps: a) we useKD to decide which of the domain concepts
should constitute the evidence setcE , b) we useapp to decide
where to physically search for these evidence, c) we apply
the probabilistic classifiersFc on Iq to obtain the degrees of
confidence for the concepts incE , d) we useapp and KD

to decide which of the domain concepts should constitute the
hypotheses setcH , e) we provide the degrees of confidence for
the concepts incE to the BN and trigger probabilistic inference
by using these degrees as soft evidence, f) we propagate
evidence beliefs using the network’s inference tracksR and
the corresponding causality quantification functionsWij , and
g) we calculate the posterior probabilities for all concepts in
cH and decide which of the hypotheses should be verified or
rejected.

Let h(Iq, ci) = Pr(ci|Iq) denote the function estimating
the degree of confidence that conceptci appears in imageIq.

TABLE I
LEGEND OFINTRODUCEDTERMS

Term Symbol Role
Trained
Classifier

Fc - Estimates the degree of con-
fidence that the visual repre-
sentationIq depicts concept
c.

Domain
Knowl-
edge

KD=S(NC, R, O) - Determines which concepts
belong to the evidence set
and which to the hypothesis
set. - Specifies qualitative re-
lations between evidence and
hypotheses (i.e., which evi-
dence support a certain hy-
pothesis)

Application
Context

X = S(app,W ) - Determines where to “physi-
cally” search for evidence, ex-
pressed withapp (i.e., appli-
cation specific information).
- Specifies quantitative rela-
tions (causality) between ev-
idence and hypotheses, ex-
pressed withW .

Hypotheses h(Iq, ci)=Pr(ci|Iq) and
H(Iq) = {h(Iq, ci) : ci ∈

cH}

- Constitutes the initial de-
grees of confidence for the
concepts belonging to the hy-
potheses setcH (as deter-
mined by NC ∈ KD and
app ∈ X) obtained by apply-
ing the classifiersFc to Iq .

Evidence E(Iq) = {h(Iq, ci) : ci ∈

cE}
- Constitutes the degrees of
confidence for the concepts
belonging to the evidence set
cE (as determined byNC ∈

KD andapp ∈ X) obtained
by applying the classifiersFc

to Iq .
Evidence
driven
Proba-
bilistic
Inference

h́(Iq, ci)=Pr(ci |
H(Iq), E(Iq), R,O,Wij)
and H́(Iq) = {h́(Iq, ci) :
ci ∈ cH}

- Performs inference using
h́(Iq , ci) and estimates
the posterior probabilities
H́(Iq)) using E(Iq) as
trigger, R,O ∈ KD as
belief propagation tracks
and W ∈ X as causality
quantification functions.

Semantic
Image
Interpre-
tation

c =
arg⊗

ci∈cH
(h́(Iq, ci))

Achieves semantic image in-
terpretation based on the op-
erator⊗ that depends on the
analysis task.

Let alsoH(Iq) = {h(Iq, ci) : ci ∈ cH} denote the set of con-
fidence degrees that the concepts belonging to the hypotheses
set are depicted in imageIq andE(Iq) = {h(Iq, ci) : ci ∈ cE}
the set of confidence degrees that the concepts belonging to the
evidence set are depicted in imageIq . Then, we provideH(Iq)
and E(Iq) to the BN and using probabilistic inference we
calculate the posterior probabilities of the network nodesusing
information coming from knowledgeR, O and contextWij .
If we denote býh(Iq, ci) = Pr(ci | H(Iq), E(Iq), R,O,Wij)
the function that calculates the posterior probabilities of the
network nodes, the set of posterior probabilities of the con-
cepts belonging to the hypotheses set can be represented as
H́(Iq) = {h́(Iq , ci) : ci ∈ cH}. The formula used to achieve
semantic image interpretation can be expressed as follows:

c = arg⊗
ci∈cH

(h́(Iq, ci)) (1)

⊗ is an operator (e.g.,max) that depends on the specifications
of the analysis task (Section VI describes the functionality of
this operator for each of the analysis tasks). Table I shows the
basic terms introduced in the proposed framework.
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E. Computational Efficiency

Our evidence-driven probabilistic inference framework is
essentially a method that connects a symbol (visual stimulus
in our case) to real-world objects/concepts to which the
symbol is associated. However, in the real-world the number
of plausible hypotheses could suffer from a combinatorial
explosion, rendering testing for them intractable. This problem
is usually addressed using exclusion principles determined by
the faculties of attention and perception [38]. In our case,the
exclusion principles are derived from the domain ontology
which determines the set of plausible hypotheses for each task.

Still, the computational cost for gathering the necessary
evidence is often so expensive that can be prohibitive in highly
complex domains. For this purpose we introduce a Focus of
Attention (FoA) mechanism that improves the computational
efficiency of the proposed framework. In particular, we apply
an iterative process that initially examines the hypothesis
and evidence that are more likely, in statistical terms, to be
valid. If the hypothesis is verified the process is terminated,
otherwise the next most likely hypothesis is examined. More
specifically, instead of examining the complete hypothesesset
H(Iq) = {h(Iq, ci) : ci ∈ cH}, we initially examine the
hypothesis with the maximum confidence degreeck, where
k = argmaxi(h(Iq, ci)) and ci ∈ cH . This is performed
by inserting this value to the corresponding network node
and comparing the node’s posterior probability against a pre-
defined belief threshold. If the posterior probability exceeds
the belief threshold the process is terminated. Otherwise,a
ranked list of the evidence concepts (i.e.,∀ci ∈ cE), that
would have caused maximum impact on the hypothesis if
were observed, is formed. This is performed by calculating
the mutual information between the node corresponding to the
conceptck and all other nodes corresponding to the concepts
of cE . The mutual information between two discrete random
variables is the expected reduction in entropy of one variable
(measured in bits) due to a finding in the other variable. The
mutual information betweenck andci, ∀ci ∈ cE is calculated
according the following equation:

I(ck; ci) =
∑

{true,false}

∑

{true,false}

Pr(ck, ci) log2
Pr(ck, ci)

Pr(ck)Pr(ci)
,

(2)
wherePr(ck, ci) is the joint andPr(ck), Pr(ci) the marginal
probability distributions ofck andci. The efficient calculation
of Pr(ck, ci) is performed using the junction tree [39], which
is an efficient and scalable belief propagation algorithm that
exploits a range of local representations for the network.
Subsequently, the nodes are ranked in descending order based
on their mutual information withck and the confidence degrees
of the concepts corresponding to the most highly ranked
nodes are extracted. The resulting degrees are inserted into the
BN causing belief propagation to take place. If the posterior
probability of the examined hypothesis still fails to exceed the
pre-defined belief threshold, the hypothesis is rejected and the
process is repeated for the hypothesis with the next highest
confidence value inH(Iq). If none of the hypotheses over-
comes the belief threshold the image is categorized based on

the maximum confidence degree ofH(Iq). One disadvantage
of this approach lies on the difficulty of estimating an optimal
belief threshold adapted to the statistical characteristics of each
hypothesis. However, the fact that only a small portion of the
available classifiers is required to reach a decision makes this
approach attractive for complex domains.

IV. ONTOLOGY TO BAYESIAN NETWORK MAPPING

A BN is a directed acyclic graphG = (V,A) whose nodes
v ∈ V represent variables and whose arcsa ∈ A encode
the conditional dependencies between them. Using the Bayes
theorem, and given that a subset of variables are observed,
the marginal probabilities of the remaining variables in the
network can be estimated. The reason for using BNs in our
framework is to estimate the posterior probabilitiesH́(Iq) of
the concepts in the hypothesis setcH , using the observed
confidence degreesE(Iq) of the concepts in the evidence
set cE . However, given that the network structure is capable
of encoding the qualitative characteristics of causality (i.e.,
which nodes affect which), and the Conditional Probability
Tables (CPTs) can be used to quantify the causality relations
between concepts (i.e., how much is a node influenced by
the nodes to which it is connected), the constructed BN will
be able to facilitate three different operations: a) Provide the
means to store and utilize domain knowledgeKD; this is
achieved by mappingKD to the network structure. b) Organize
and make accessible information coming from the application
contextWij ; this is achieved by the CPTs attached to the
network nodes. c) Allow the propagation of evidence belief
in a mathematically coherent manner; this is performed with
the use of message passing belief propagation algorithms.
The work of [30] describes a probabilistic extension to OWL
ontology based on BNs and define a set of structural translation
rules to convert this ontology into a directed acyclic graph.
Here, we propose an adaptation of this method that learns the
network parameters from data in contrast to being explicitly
defined by an expert.

A. Network Structure

Deciding on the structure of a BN based on an ontology can
be seen as mapping ontological elements (i.e., concepts and
relations) to graph elements (i.e., nodes and arcs). Thus, we
haveS(NC , R,O) → G(V,A), with NC → V , R → A, and
O → (V,A). The symbolO → (V,A) indicates that in order
to migrate a DL constructor into the network structure both
nodes and arcs will have to be employed. The structural trans-
formation process adopted in our framework takes place in two
stages. In the first stage, the BN incorporates the hierarchical
information of the ontology. In order to do so, all ontology
concepts are transformed into network nodes with two states
(i.e., true and false). These nodes are called concept nodes
ncn. Then, an arc is drawn between two concept nodes in the
network, if and only if they are connected with a superclass-
subclass relation inKD and with the direction from the super-
class to the subclass node. The adoption of this principle was
motivated by the fact that when an instance belongs to a certain
class it is automatically subsumed that it can also belong to
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one of its subclasses, thus imposing a kind of causality. At
the second stage, the BN incorporates the semantic constraints
between concepts that are expressed in the ontology. This is
done by creating a control nodencl for each DL constructor,
which is connected to the concept nodes that correspond to
the concepts associated with this constructor. The way in
which the connection is made depends on the type of the DL
constructor and results in a different sub-network structure, see
[30] for details. The DL constructors that can be handled by
the adopted methodology are owl:intersectionOf, owl:unionOf,
owl:complementOf, owl:equivalentClass and owl:disjointWith.

B. Parameter Learning

Once the network structure is fixed, each concept nodencn

needs to be assigned a prior probability if it is a root node
or a conditional probability table if it is a child of one or
more nodes. In [30] these probabilities are set by domain
experts and formulate the original probability distribution of
the network. In order to learn the probability distributionof
the network enhanced with the semantic constraints of the
domain, the authors developed the D-IPFP algorithm, which
is an algorithm based on the “iterative proportional fittingpro-
cedure” (IPFP). This procedure modifies a given distribution
to meet a set of constraints (i.e., the semantic constraintsof
the domain), while minimizing theKL-divergence(Kullback-
Leibler divergence) to a target distribution (i.e., the original
probability distribution of the network). The drawback of this
approach is that apart from requiring human intervention when
switching to a different domain, it is also likely to introduce
bias in the initial conditions of the BN.

In our work, we propose a variation of the aforementioned
methodology where the original probability distribution is
learned from sample data instead of being explicitly provided
by humans. The sample data are concept labels that have been
used to annotate the image dataset at both global and region
level. Given a sufficiently large amount of annotated images,
the original probability distribution of the network can be
approximated using the frequency information implicit in the
data. Such an approach is frequently employed by works that
use graph-based probabilistic networks [40], [41], where in
contrast to [30] the conditional probabilities are learnedusing
a sample portion of the data that is being modeled. However,
learning from data can only be done robustly if there is a
sufficiently large amount of samples available. In any other
case, as will become clear in Section VI-D, the estimated
conditional probabilities are inaccurate and tend to mislead
the inference process.

The conditional probabilities are learned by employing
the Expectation Maximization (EM) [42] algorithm, using
as training data the images annotated with concept labels.
Initially, we apply the EM algorithm to a BN that incorporates
only the hierarchical information of the ontology. Then, we
add the control nodes to model the semantic constraints and
we once again apply the EM algorithm to the modified BN.
Since no sample data are available for the control nodes, these
nodes are treated as latent variables with two states (i.e.,true
and false). The last step is to manually set the CPTs of all

control nodesncl as shown in [30] and set the belief of the
true state equal to 100%. This is done in order to enforce the
semantic constraints into the probabilistic inference process.

V. FRAMEWORK FUNCTIONAL SETTINGS

A. Image Analysis Tasks

This section describes how the proposed framework can be
adapted to three different image analysis tasks. For each of
these tasks we clarify the task specific contextual information
app ∈ X (i.e., where to physically search for evidence) as well
as the way that the hypothesesH(Iq) and evidenceE(Iq) sets
are determined.

Image categorizationis the task of selecting the category
conceptci that best describes an imageIq as a whole. In this
case, a hypothesis is formulated for each of the category con-
cepts, that isH(Iq) = {Pr(ci|Iq) : i = 1, . . . , n} wheren is
the number of category concepts inKD. Global classifiers (i.e.,
models trained using global image information) are appliedto
estimate the initial probability for each hypothesis. For this
task, the application contextapp determines which evidence
should be taken from the image regions extracted using a
segmentation algorithm. For instance, knowing that a specific
region depictsroad is a type of contextual information that
the algorithm can exploit when trying to decide whether the
image depicts aSeasideor aRoadsidescene. Local classifiers
(i.e., models trained using regional image information) are
applied to the pre-segmented image regionsI

sj
q , in order to

generate a set of confidence values that constitute the evidence
E(Iq) = {Pr(ći|I

sj
q ) : i = 1, . . . , k & j = 1, . . . ,m},

wherek is the number of regional concepts inKD andm is
the number of identified segments. In this case, the category
conceptsci constitute the hypothesis setcH and the regional
conceptści comprise the evidence setcE .

Localized region labeling, is the task of assigning labels
to pre-segmented image regions, with one of the available
regional conceptści. In this case, a hypothesis is formulated
for each of the available regional concepts and for each of
the image segments. That isH(Iq) = {Pr(ći|I

sj
q ) : i =

1, . . . , k & j = 1, . . . ,m}, where k is the number of
regional concepts andm is the number of identified segments.
Local classifiers are used to estimate the initial probability
for each of the formulated hypotheses. In this task, the
contextual informationapp is considered to be the image
as a whole. For example, knowing that an image depicts a
Roadsidescene can be considered the application context and
facilitate the algorithm to decide whether a specific region
depictssea or road. The degrees of confidence for each of
the category conceptsci, obtained by applying the global
classifiers toIq , constitute the evidence of this task. That is
E(Iq) = {Pr(ci|Iq) : i = 1, . . . , n}, wheren is the number
of category concepts. In this case, the regional conceptsći
constitute the hypothesis setcH and the category conceptsci
comprise the evidence setcE .

In practice, our framework can be used to improve region la-
beling when there is a conflict between the decisions suggested
by the global and local classifiers. A conflict occurs when the
concept suggested by the local classifiers does not belong to
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the set of child nodes of the concept suggested by the global
classifiers. Since there is no reason to trust one suggestion
over another we make two different hypotheses. The first
one assumes that the suggestion of the global classifiers is
correct. The regional concept corresponding to the maximum
confidence degree, among the child nodes of the category
concept, is selected and the overall impact on the posterior
probability of the regional concept is measured. The second
approach considers that the suggestion of the local classifiers is
correct. The category concept corresponding to the maximum
confidence degree, among the parent nodes of the regional
concept suggested by the local classifiers, is selected and the
overall impact on the posterior probability of the regional
concept is measured. Among the two cases, the regional
concept with the maximum positive impact on its posterior
probability is selected to label the examined region.

Weak annotation of video shot key-framesis the task of
associating a number of concepts with an image. However, in
this case, we do not associate concepts with specific image
regions. Thus, there is no distinction between category and
regional concepts and more than one labels can be assigned
to the image. A hypotheses set is formulated,H(Iq) =
{Pr(ci|Iq) : i = 1, . . . , n} wheren is the number of all
available concepts in the domain. All classifiers are employed
to extract the initial probability for all formulated hypotheses.
The application contextapp determines that evidence should
be searched for in the global image information. For instance,
if an image is being examined for the presence of the concept
sports, it would be helpful for the algorithm to know that the
conceptsoccer-playeris also depicted in the image. Thus, the
evidence are considered to be the confidence values of all other
concepts except the one examined by the current hypothesis.
That means that when we examine the hypothesisH(ck|Iq),
the evidence areE(Iq) = {Pr(ci|Iq) : ∀i ∈ [1, n]\{k}}.

B. Low-level Image Processing

The low level processing of visual stimulus consists of vi-
sual features extraction, segmentation and learning the concept
detection models. Four different visual descriptors proposed
in the MPEG-7 standard [43], namely Scalable Color, Homo-
geneous Texture, Region Shape, and Edge Histogram, were
employed as described in [31]. Segmentation was performed
using an extension of the Recursive Shortest Spanning Tree
algorithm [44] that produces a segmentation maskS = {si :
i = 1, . . . ,m} for each image, withsi representing the

identified segment. Support Vector Machines (SVMs) were
employed for learning the concept detection models (repre-
sented byFc in Table I). Global and local classifiers were
created off-line using manually annotated images as training
samples and for all concepts included inKD. The feature
space is determined by the utilized visual descriptors and a
gaussian radial basis is used as the kernel function.

For the task of weakly annotating video shot key-frames,
we have utilized the detectors released by Columbia University
[45]. In this case, individual SVMs were trained at global level
independently over each feature space and a simple late fusion
mechanism was subsequently applied to produce the average

score. Three types of features were used, namely grid color
moments, edge histogram direction and texture [45]. In all
cases the SVM-based models were constructed using the lib-
svm library [46] and their soft output (i.e., confidence degree)
was calculated based on the distance between the decision
boundary and the classified feature vector in the kernel space.
More specifically, the sigmoid functionPr(c|Iq) = 1

1+e−td

[47] was employed to compute the respective degree of
confidence for a conceptc, with t being a scale factor.

VI. EXPERIMENTAL STUDY

We present results for two datasets with different domain
complexity and volume, namely the “Personal Collection”
(PS) and the “News” (NW). PS was assembled internally in
our lab by merging various photo albums whileNW was
taken from the TRECVID 2005 competition. Our goal is
to demonstrate the improvement in performance achieved
by exploiting context and knowledge compared to baseline
detectors that rely solely on low-level visual information. We
also evaluate the proposed FoA mechanism and show that
we can significantly reduce the computational cost of visual
inference and still achieve performance comparable to the
exhaustive case. All experiments were conducted using the
Netica software for handling BNs and the Protégé ontology
editor for constructing the ontologies.

A collection of 648 imagesIPS comprised the dataset
for the PS domain. All images inIPS are annotated at
global and region detail using the set of category concepts
CG={Countrysidebuildings, Seaside, Rockyside, Forest, Ten-
nis, Roadside} and the set of regional conceptsCL={Building,
Roof, Tree, Stone, Grass, Ground, Dried-plant, Trunk, Veg-
etation, Rock, Sky, Person, Boat, Sand, Sea, Wave, Road,
Road-line, Car, Court, Court-line, Board, Gradin, Racket},
respectively. For theNW domain374 semantic concepts were
defined by the Columbia University [45] to characterize its
content. For this domain the TRECVID2005 development data
[48] containing 137 annotated video clips were used. The
annotations were provided at the level of subshots, extracted
using temporal criteria (see [45] for details). By extracting a
key-frame from each subshot, a dataset consisting of 61600
still imagesIN annotated at global level was constructed.

In both cases, an ontology was used to represent domain
knowledge. The ontology and the corresponding BN for
the PS domain are depicted in Figs. 2 and 3, respectively.
For the NW domain the ontology was constructed using
the guidelines of [49]. More specifically, the concepts were
associated on the basis of program categoriesNG={politics,
finance/bussiness, science/technology, entertainment, weather,
commercial/advertisement} that were placed at the top of the
hierarchy, having the rest of the conceptsNL as subclasses.
Subsequently, the methodology of Section IV was applied to
construct the corresponding BN. Both the ontology and the
BN of theNW domain can be accessed through our web page
[50].
IPS was split in half to formulate the testIPS

test and training
IPS
train sets, each one containing 324 images.IPS

train was used
for training the classifiersFc and learning the parameters
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Fig. 2. Ontology encoding the domain knowledge about the “Personal
Collection” domain.

of the BN. In a similar fashion, out of 137 video clips for
the NW domain, the key-frames included in the first 100
INtrain (i.e., 45276 still images) were selected for learning the
parameters of the BN. The key-frames of the remaining 37
video clipsINtest (i.e., 16624 still images) were used for testing.
Concerning the classifiers, the baseline detectors of [45] were
employed for all 372 concepts.

A. Image Categorization

We examine the efficiency of categorizing the images of
IPS
test to one of the categories inCG using three configurations.

These configurations vary in the amount of utilized context
and knowledge. In the baseline configurationCON1 we
assess the performance of image categorization based solely
on visual stimulus. Images are categorized based on the
maximum value of the global concept classifiers. The second
configurationCON2 uses context (i.e.,X = S(app,W ))
and knowledge (i.e.,KD = S(NC , R,O)) in order to extract
the existing evidence and facilitate the process of evidence
driven probabilistic inference. In this case, informationfrom
the image regions is incorporated into the analysis process
but no semantic constraints are taken into account. The BN
employed in this configuration is the one depicted in Fig. 3
without the nodes enclosed by the black frame. The joint
probability distribution (JPD) of the random variables that are
included in the BN utilized byCON2 configuration is:

Pr(C1
G, .., C

|G|
G , C1

L, .., C
|L|
L ) =

|G|∏

i=1

Pr(Ci
G)

|L|∏

j=1

Pr(Cj
L|F (Cj

L))

(3)
whereF (Cj

L) is the set of parent nodes ofCj
L according to

the directed acyclic graph of the BN. The fact that none of the
category conceptsCG has parent nodes (as shown in Fig. 3)
allows us to include in the expression of the JPD the first
product on the right hand side of eq. (3), which represents the
product of the marginal probabilities of the category concepts.
The third configurationCON3 takes into account the semantic
constraints of the domain using the methodology presented in
Section IV to construct the BN. In this case, the BN used
for performing probabilistic inference is extended with the
addition of the control nodes (i.e., the set of nodes enclosed
by the black frame of Fig. 3) that are used for modeling the
disjointness betweenTennisand all other category concepts. If

we defineCD to be the set of control nodes, the JPD defined
by the BN utilized inCON3 configuration is:

Pr(C1
G, .., C

|G|
G , C1

L, .., C
|L|
L , C1

D, .., C
|D|
D ) =

|G|∏

i=1

Pr(Ci
G)

|L|∏

j=1

Pr(Cj
L|F (Cj

L))

|D|∏

k=1

Pr(Ck
D |Ck

G, C
Tennis
G ) (4)

The use of the common superscriptk in bothCD andCG indi-
cates that every node of the subnetwork that is used to model
the disjointness between each category concept andTennis, is
conditioned on the node of the corresponding category concept
and the node corresponding toTennis. The reason for treating
CON2 and CON3 as two different configurations was to
examine how much of the overall improvement comes from
the use of regional evidence and concept hierarchy information
(CON2), and how much comes from the enforcement of
semantic constraints in the analysis process (CON3).

In both CON2 and CON3 configurations the analysis
process unfolds as follows. Initially, we formulate the hy-
potheses set using all category concepts. Then, we search for
the presence of all possible regional concepts determined in
KD (i.e., ∀cj ∈ CL) before deciding which of them should
be used as evidence. This approach requires the application
of all available classifiers, global and local, for producing
one set of confidence values for the image as a whole,
LKglobal = {Pr(ci|Iq) : ∀ci ∈ CG} (see Fig. 5, table with
title “Global Classifiers”) and one set per identified image
region,LKlocal = {Pr(cj |I

sk
q ) : ∀cj ∈ CL & ∀sk ∈ S}.

The latter is a matrix whose columns correspond to the
regions identified by the segmentation algorithm and whose
rows correspond to the confidence degrees of the regional
concepts determined inKD (see Fig. 5, table with title “Local
Classifiers”). All values ofLKglobal and the maximum per
column values ofLKlocal are introduced as soft evidence
into the corresponding nodes of the BN. Then, the network
is updated to propagate evidence impact and the concept
corresponding to the node with the highest resulting posterior
probability among the nodes representing category concepts,
is selected to categorize the image (i.e., in this case⊗ ≡ max,
see Table I). Fig. 4 shows that the performance obtained using
theCON2 is superior to the one obtained usingCON1, since
an average increase of approximately5% is observed.

The running example of Fig. 5 demonstrates how evidence
collected using regional information (CON2) can correct a
decision erroneously taken by a global classifier that relies
solely on visual stimulus (CON1). In Fig. 5, the Table
“Global Classifiers” depicts the probabilitiesPr(ci|Iq) that
are obtained after the global classifiers are applied to image
Iq. Using only this information, the image is categorized as
Seaside(i.e., this is the result ofCON1). Seasideis the
chosen category even after inserting the valuesPr(ci|Iq) into
the network and performing inference (i.e., second row of
table with title “Belief Evolution” in Fig. 5). However, as the
pieces of regional evidence (i.e., the maximum value from each
column of the “Local Classifiers” table), are inserted into the
BN, belief propagation causes the posterior probabilitiesof the
category concepts to change. The last four rows of “Belief Evo-
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that are used to model the disjointness between the conceptTennisand all other category concepts in the domain.
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lution” table illustrate how the posterior probabilities evolve
in the light of new evidence. Eventually the correct category,
which is Roadside, emerges as the one with the highest
posterior probability. It is interesting to note that only two out
of four local classifiers (the ones corresponding to regions1
and 3) predicted correctly the regional concept. Nevertheless,
this information was sufficient for our framework to infer the
correct prediction, since the relation between the concepts
grass(identified in region 1) andRoadsidewas strong enough
to raise the inferred posterior probability of this category
above the corresponding value ofSeaside. This is a reasonable
result since theSeasidecategory receives no support from the
evidencegrass, as shown in Fig. 2.

The lower of cells in Table II depict the confusion matrix
of CON2. By looking at the relations between regional and
category concepts in Fig. 2 in conjunction with Table II, it
is clear that our framework tends to confuse categories that
share many regional evidence. This is the case forRockyside
and Forest or Countryside Buildingsand Roadside. Another
interesting observation is the small amount of regional evi-
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Fig. 5. Running example of image categorization using the framework’s
CON2 configuration. The evidence extracted from image regions help to
correct a misclassification error about the image category.

dence thatTennisshares with the rest of image categories.
This can be practically considered as domain information (i.e.,
semantic constraint) and used to aid image analysis. In order to
do so, we associate theTennisconcept and all other concepts
in CG with the “owl:disjointWith” DL-constructor. Then, we
re-construct the BN using the enhanced ontology. The nodes
of the BN that are enclosed by the black frame in Fig. 3
are used to model the disjointness betweenTennis and all
other category concepts. We can see from Fig. 4, that using
the semantic constrains (CON3) the performance of image
analysis is further increased with an average improvement of
approximately6.5%, compared to the baseline configuration
(CON1). By inspecting the upper of the cells in Table II,
where the confusion matrix for theCON3 is depicted, we can
see that the improvement comes mainly from the correction
of the test samples that were mis-categorized asTennis.

In order to examine the statistical significance of this
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TABLE II
CONFUSIONMATRIX FOR IMAGE CATEGORIZATION - CON2 LOWER OF

THE CELLS - CON3 UPPER OF THE CELLS
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Tennis
98.00 0.00 0.00 2.00 0.00 0.00
94.00 0.00 2.00 4.00 0.00 0.00

Roadside
1.75 73.68 0.00 8.77 10.53 5.26
0.00 73.68 0.00 8.77 12.28 5.26

Rockyside
5.88 3.92 64.71 5.88 19.61 0.00
0.00 3.92 70.58 5.88 19.61 0.00

Seaside
0.00 5.36 3.57 91.07 0.00 0.00
0.00 5.36 3.57 91.07 0.00 0.00

Forest
0.00 10.00 8.33 10.00 71.67 0.00
0.00 10.00 8.33 10.00 71.67 0.00

C. Buildings 2.00 24.00 6.00 12.00 2.00 54.00
0.00 24.00 6.00 12.00 2.00 56.00

improvement we apply the McNemar test on the output of
CON1 and CON3 configurations. The2 × 2 contingency
table summarizing the transitions observed before and after
employing our framework is depicted in Table III. Since the
number of discordant pairs (30+15) is more than 25, the chi-
squared approximation with Yates’ correction and 1 degree of
freedom is calculated to be 4.536. Thus, thep− value calcu-
lated by the McNemar’s test equals 0.0369. By adopting the
conventional criteria on statistical significance that considers
the significance levelα to be 0.05, we havep − value < α.
Thus, it is safe to conclude that the introduced improvement
is statistically significant.

TABLE III
CONTINGENCY MATRIX - IMAGE CATEGORIZATION

before
+ - Total

after + 218 30 248
- 15 61 76

Total 233 91 324

B. Image Categorization using a Focus of Attention Mecha-
nism

In order to assess the benefit of using the proposed Focus of
Attention (FoA) mechanism, we measure the gain in computa-
tional cost in terms of two quantities. The number of classifiers
(#Classifiers) that need to be applied and the number of infer-
ences (#Inferences) that need to be performed. #Inferencesis
the number of times a confidence degree is inserted into one
of the BN nodes and as a result triggers an inference process.
When the FoA mechanism is not employed, the #Inferences
that need to be performed for analyzing a single image is
equal to the number of confidence values estimated for the
global concepts of the image (i.e., the6 values ofLKglobal in
our experiments) plus the number of regions identified in the
image (i.e., maximum per column values ofLKlocal). Thus,
the total #Inferences for the complete set of324 test images
is 324 ∗ 6 plus the number of regions identified in all324 test
images, which was calculated to be2010. Table IV shows
the #Classifiers and #Inferences for the exhaustive case of
Section VI-A (i.e.,CON3). These values will serve as the

baseline reference when estimating the computational gainof
the FoA mechanism.

TABLE IV
COMPUTATIONAL COST QUANTITIES - CON3 CONFIGURATION

324 (# Test Images) * 6 (# Global Classifiers)
+ 2010 (# Total Regions) * 25 (# Local Classifiers)

# Classifiers 52194

324(# Test Images) * 6 (# Global Classifiers)
+ 2010 (max of local classifiers per region)

# Inferences 3954

In our experimental setting the belief threshold receives one
of the following discrete values{0.1, 0.2, . . . , 1.0}. Using each
of these values as a common belief threshold for all formulated
hypotheses, we obtain10 different F-Measure scores. Given
that the belief threshold affects also the #Classifiers and the
#Inferences, we practically obtain10 pairs of values for{F-
Measure, #Classifiers} and10 pairs of values for{F-Measure,
#Inferences}. These pairs are used to draw the curves depicted
in Figs. 6(a) and 6(b). In both diagrams we demonstrate the
performance of a) the baseline concept detectors (i.e.,CON1
of Section VI-A) (black dot), b) the probabilistic inference
using exhaustive search (i.e.,CON3 of Section VI-A) (gray
dot), c) the plain FoA mechanism (solid curve), and d) the
FoA mechanism using also the methodology of Section IV
for incorporating semantic constraints (dashed curve). The
baseline figures of Table IV are also displayed in Figs. 6(a)
and 6(b) using the vertical lines. The horizontal dotted lines
are drawn for allowing comparisons with the performance of
the baseline configurations. It is clear that the proposed FoA
mechanism manages to achieve (for the optimal value of the
belief threshold, F-Measure =76, 40) performance comparable
to the one obtained by the best of the configurations in Sec-
tion VI-A, using a remarkably smaller number of classifiers.
On the other hand, for the same optimal threshold value, the
number of inferences that need to be performed increases, see
Fig. 6(b). More specifically, the number of classifiers reduces
from 52194 to 25753 (# classifiers corresponding to the peak
of the solid curve in Fig. 6(a)), while the number of inferences
increases from3954 to 4538 (# inferences corresponding to
the peak of the solid curve in Fig. 6(b)). For the case where
the FoA mechanism incorporates semantic constraints (dashed
curve), the number of applied classifiers reduces from52194
to 41560 (# classifiers corresponding to the peak of the dashed
curve in Fig. 6(a)), while the number of inferences increases
from 3954 to 6860 (# inferences corresponding to the peak of
the dashed curve in Fig. 6(b)).

In order to estimate these numbers in terms of time we have
calculated the average time per classifier and per inferenceto
be 0, 12 (sec) and0, 69 ∗ 10−3 (sec), respectively. Thus. the
gain in computational time is approximately3172 (sec) using
the plain FoA mechanism and1274 (sec) using the FoA with
semantic constraints, which can be considered as a significant
reduction of the overall computational cost. Finally, let us note
that in both approaches for image categorization (Section VI-A
and Section VI-B) the configuration incorporating semantic
constraints outperforms the other configurations. This provides
an additional argument for the effectiveness of the methodol-
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threshold that receives one of the following discrete values {0.1, 0.2, . . . , 1.0}.

ogy presented in Section IV.

C. Localized Region Labeling

In order to evaluate the performance of our framework for
the task of assigning labels to pre-segmented regions, we have
used the BN of Fig. 3 (without the nodes enclosed by the black
frame) and the JPD of eq. (3). As mentioned in Section V-A,
our framework can reinforce region labeling when there is a
conflict between the decisions suggested by the global and
local classifiers. LetChild(ck) = {cj : k →parent j} be
the subset ofCL corresponding to the child nodes ofck ∈

CG. Let alsoLKglobal = {Pr(ci|Iq) : ∀ci ∈ CG} be the
set of confidence values obtained from the global classifiers
applied to imageIq and LKsw

local = {Pr(cj |I
sw
q ) : ∀cj ∈

CL} be the set of confidence values obtained from the local
classifiers applied to a regionIswq of the image. A conflict
occurs whencl /∈ Child(cg) with g = argmaxi(LKglobal)
and l = argmaxj(LK

sw
local).

In the first case we follow the suggestion of the global
classifiers and select the conceptcg. Then, the local con-
cept cl is selected such thatl = argmaxj(LK

sw
local) and

cl ∈ Child(cg). The confidence values corresponding tocg
and cl are inserted into the BN as evidence and the overall
impact on the posterior probability of the hypothesis stating
that the region under examinationIswq depictscl is measured.
In the second case, we follow the suggestion of the local
classifiers and selectc

ĺ
, such that́l = argmaxj(LK

sw
local). The

confidence values of the global classifiers are examined and the
cǵ with ǵ = argmaxi(LKglobal) and cǵ ∈ F (c

ĺ
) is selected.

As in the previous case, the confidence values correspondingto
c
ĺ

andcǵ are inserted into the network and the overall impact
on the posterior probability of the hypothesis stating thatthe
examined regionIswq depictsc

ĺ
is measured. Eventually, the

values representing the impact on the posterior probabilities
of the two different cases are compared and depending on the
largest value,cl or c

ĺ
is chosen to label the region in question

(i.e., this is the functionality of⊗ operator depicted in Table I,
for this task). If no conflict occurs, the concept corresponding
to the local classifier with maximum confidence is selected.
Fig. 7(a) shows that when using the proposed framework an

average increase of approximately 4.5% is accomplished.
In order to apply the McNemar’s test for this case we

calculate the2 × 2 contingency matrix depicted in Table V.
Thep−value estimated by the McNemar’s test is found to be
less than0.0001 showing that the improvement is statistically
very significant, sincep− value << α.

TABLE V
CONTINGENCY MATRIX - LOCALIZED REGION LABELING

before
+ - Total

after + 1035 61 1096
- 22 892 914

Total 1057 953 2010

D. Weakly Annotating Video Shot Key-Frames

This task does not require the existence of region-level
annotations and therefore allows us to perform tests on a
much larger set of semantic concepts. The TRECVID 2005
dataset was used for this purpose. Recalling thatNG denotes
the set of category concepts that were placed at the top of the
hierarchy andNL the rest of domain concepts that were used
as subclasses ofNG, the JPD defined by the utilized BN is:

Pr(N1
G, .., N

|G|
G , N1

L, .., N
|L|
L ) =

|G|∏

i=1

Pr(N i
G)

|L|∏

j=1

Pr(N j
L|F (N j

L))

(5)
The benefit of using such a large dataset is the existence
of semantic relations between the available concepts. These
relations are necessary for assessing the effectiveness ofour
framework, since our goal is to exploit domain knowledge
for improving the efficiency of image interpretation. On the
other hand, many of the concepts appear rarely in the training
set; a fact that makes difficult approximating the conditional
probabilities using frequency information. In order to assess
the efficiency of our framework we compare its performance
against the performance of baseline concept detectors that
make no use of domain knowledge and application context.
In the first case we use the fused output of the global detec-
tors released by the Columbia University [45]. The concepts
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Fig. 7. F-Measure scores for the localized region labeling task: a) Personal Collection dataset, and b) Microsoft Research Cambridge dataset. Scores are
reported for the baseline case, where decisions are based solely on the output of the classifiers, and for the proposed framework, where knowledge and context
are employed to improve image analysis.

corresponding to theK maximum confidence values produced
by the global detectors are selected to weakly annotate the
key-frames. In the second case, the fused detection confidence
values of all classifiers are provided as evidence to the BN.
Belief propagation is performed and the resulting posteriors
are recorded for all concepts. Finally, theK concepts that
exhibit maximum positive impact on their posteriors were
selected as the analysis outcome (i.e., this is the functionality
of ⊗ operator depicted in Table I, for this task). For both cases,
K was determined by varying its value between2 and20 and
selecting the one that yields the optimal average F-Measure
score.

In order to examine the relation between a concept’s ap-
pearance frequency (AF ) in the training set and the efficiency
of the proposed framework, we report the F-Measure scores
sorted based on theAF of the concepts. By inspecting
Fig. 8(a) we observe that for the concepts withAF ≥ 10%
our framework outperforms the baseline in almost all cases.
In Fig. 8(b), where the concepts with10% > AF ≥ 5% are
depicted, we observe a similar behavior, but with the average
improvement to be inferior from that of Fig. 8(a). Finally,
Fig. 8(c) verifies that when theAF of a concept is relatively
small (Fig. 8(c) depicts concepts with5% > AF ≥ 2%)
our framework does not deliver any improvements. Similar
conclusions can be drawn whenAF < 2%. It is evident that
the availability of realistic prior and conditional probabilities
is important for the efficiency of our framework and learning
them from data is feasible only when there are enough training
samples to learn from.

E. Comparison with Existing Methods

In order to compare our work with other methods in the
literature, we apply the localized region labeling task on the
591 images of the MSRC dataset [41]IMSRC . In order
to do so, we categorized all 591 images into 6 categories
(i.e., global concepts), namelyCityscape, Countryside, Forest,
Indoors, ManMadeand Waterside. As regional concepts we
used21 out of the23 semantic classes provided by MSRC,
treating as void thehorse and mountainclasses that appear

very rarely. An ontology was created to represent the relations
between the aforementioned global and regional concepts and
a BN was derived from it using the methodology presented
in Section IV. Both of them can be accessed through our
web page [50]. All images ofIMSRC were segmented and
the ground truth label of each segment was considered to
be the label of the hand-segmented region that overlapped
with the segment by more than the 2/3 of the segment’s
area. In any other case the segment was labeled as void. We
should note that although we could use directly the hand-
segmented images of MSRC, such an approach would not
be realistic since we cannot reasonably expect segmentation
information for an unknown image. The overlap rule has been
used by many works in the literature that utilize automatic
image segmentation and need a way to decide the labels of
the automatically extracted segments. For instance, [40] uses
20× 20 image patches whose labels are considered to be the
most frequent ground truth pixel label within the block, while
[51] uses a50% overlap rule between the segment’s area and
the ground truth foreground. TheIMSRC was split randomly
in 295 trainingIMSRC

train and 296 testIMSRC
test images, ensuring

approximately proportional presence of each class in both sets.
IMSRC
train was used from training the concept classifiers, as

well as learning the parameters of the BN. Fig. 7(b) reports
the performance for the baseline concept classifiers and the
proposed framework configured as described in Section VI-C.
The performance is increased in 14 out of the 21 regional
concepts giving an average improvement of approximately
4.5%. The reason that some concepts likesky, chair, andcat
exhibit performance lower from the baseline is the following.
Our framework operates on top of the classifiers’ outcome that
usually come with a high number of erroneous predictions.
Intuitively, the framework compensates for the misleading
predictions by favoring the co-occurrence of evidence thatare
known from experience to usually co-exist and constitute the
analysis context. It does so by adjusting the final output so as
to comply with the extracted collection of evidence. Therefore,
provided that an adequate amount of evidence are accurate,
the framework is expected to make the correct decision by
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Fig. 8. F-Measure scores for the concepts of TRECVID 2005 dataset ranked based on their appearance frequency (AF) in the training set: a)AF ≥ 10%,
b) 10% > AF > 5%, and c)5% > AF > 2%.

absorbing any misleading cues produced by the erroneous
visual analysis. However, there can also be cases, like the ones
mentioned above, where the evidence extracted from context
are misleading, causing our framework to change the correct
prediction of the local classifier.

In order to present results on the same dataset with [41] and
[40], we have calculated the classification rate (i.e., number
of correctly classified cases divided by the total number of
correct cases) achieved by our framework for each of the
21 object classes in MSRC. We hereby note that the results
depicted in Table VI are not directly comparable since they
are reported at different levels. In [41] at pixel level, in [40]
at the level of 20x20 image patches, and in our case at the
level of arbitrary shaped, automatically extracted segments. In
addition, the methods are not relying on the same set of visual
features, and the training/test split is likely to be different.

It is clear that none of the approaches manages to outper-
form the others for a significant portion of the 21 classes.
Moreover, error rates are often quite different on individual
classes showing that while there are some classes that can
be modeled very efficiently using the visual features and the
model proposed by one method, there are other classes that
are best modeled using a different set of visual features and
model. For instance, while the visual features employed by
our method perform very poorly in recognizinggrass, they are
pretty efficient in recognizingcar or sky. Our aim is to use
context and knowledge in order to improve the performance
of a set of baseline concept classifiers by using their output
as evidence, and not to discover a feature space that can best
model an arbitrary set of classes.

VII. D ISCUSSION OF THERESULTS AND FUTURE WORK

The conducted experiments verified the effectiveness of our
framework in improving the performance of a set of baseline
concept classifiers by using their output as evidence. Since
this improvement derives mainly from the incorporation of
the domain knowledge and the application context to the
analysis process, we can use the proposed framework to
improve the performance of any set of concept detectors that
produce a probabilistic output. However, the results of the
experiment in Section VI-A lead us to the conclusion that
the amount and nature of the semantic information that can

be used to enhance image interpretation depends largely on
the special characteristics of the domain. More specifically,
although using the information from the knowledge structure
KD and the causality relationsWij ∈ X obtained from context
was proven to be useful in all cases, the semantic constraints
originating from the domain were only able to facilitate
image interpretation when the imposed rules were sufficiently
concrete. For instance, the disjointness between “Tennis”and
all other category concepts of thePS domain expresses a
rather strict distinction that is suggested by knowledge. On
the contrary, attempts to incorporate semantic constraints that,
although valid from the point of logic, were less strict from
the visual inference point of view didn’t lead to performance
improvements.

Furthermore, as shown in Section VI-D, a sufficiently large
amount of training data is required for approximating the prior
and conditional probabilities using frequency information. But
given that the manual annotation of images is a cumbersome
procedure, especially at region level, a solution could be to
mine the necessary annotations from social sites like Flickr
that are being populated with hundreds of user tagged images
on a daily basis. Given that literature has already reported
efforts on using this type of data [52], employing such schemes
may help overcoming some of the problems caused from the
use of limited size training sets.
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