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Abstract

This work presents a method for the efficient indexing of tagged images. Tagged

images are a common resource of social networks and occupy a large portion

of the social media stream. Their basic characteristic is the co-existence of two

heterogeneous information modalities i.e. visual and tag, which refer to the

same abstract meaning. This multi-modal nature of tagged images makes their

efficient indexing a challenging task that apart from dealing with the hetero-

geneity of modalities, it needs to also exploit their complementary information

capacity. Towards this objective, we propose the extension of probabilistic La-

tent Semantic Analysis to higher order, so as to become applicable for more

than two observable variables. Then, by treating images, visual features and

tags as the three observable variables of an aspect model, we learn a space of

latent topics that incorporates the semantics of both visual and tag information.

Our novelty is on using the cross-modal dependencies learned from a corpus of

images to approximate the joint distribution of the observable variables. By

penalizing the co-existence of visual content and tags that are known from ex-

perience to exhibit low dependency, we manage to filter out the effect of noisy

content in the resulting latent space.
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cross modal dependencies, aspect models, social media

1. Introduction

Semantic image indexing has been recognized as a particularly valuable task

for various applications of content consumption. Current literature has made

considerable progress in this direction especially for uni-modal scenarios. How-

ever, it is generally accepted that multi-modal analysis has the potential to

further improve this process, provided that the obstacles arising from the het-

erogeneous nature of different modalities can be overcome. This is based on the

fact that independently of whether the different modalities act cumulatively or

complementary, when combined, they encompass a higher amount of informa-

tion that can be exploited to improve the efficiency of the performed task. Web

2.0 and social networks have primarily motivated this idea by making available

plentiful user tagged images [1]. In addition, the significant improvement of

automatic image annotation systems like [2, 3, 4, 5], further motivates multi-

modal analysis since the automatically extracted labels can take the place of

tags and facilitate semantic image indexing using both the visual and textual

modalities.

The need to obtain a joint, unique representation of tagged images calls for

techniques that will manage to handle the very different characteristics exhibited

by the visual and tag information. This is true both in terms of the raw features’

nature, i.e. sparse, high-dimensional tag co-occurrence vectors extracted from

tag descriptions, compared to usually dense and low-dimensional descriptors

extracted from visual content, as well as in terms of their semantic capacity, i.e.

while abstract concepts like “freedom” are more easily described with text, am-

biguous concepts like “rock” are more easily grounded using visual information.

Based on the above, one can pursue a solution to the multi-modal indexing prob-

lem by defining a joint feature space where the projection of uni-modal features

will yield a homogeneous and semantically enriched image representation.

The most trivial approach in this direction is to define a joint feature space
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by concatenating the individual uni-modal features extracted from both modal-

ities, also known as early fusion. However, by indiscriminately placing features

extracted from different modalities into a common feature vector, the resulting

space is likely to be dominated by one of the combined modalities or lose its

semantic consistency. This was the reason that researchers turned into the sta-

tistical characteristics of the data to overcome these problems. For instance, [6]

uses information theory and a maximum entropy model in order to integrate

heterogeneous data into a unique feature space, [7] finds statistical independent

modalities from raw features and applies super-kernel fusion to determine their

optimal combination, [8] presents several cross-modal association approaches

under the linear correlation model, while [9] rely on canonical correlation anal-

ysis to learn the cross-modal associations and use them for semantic image

indexing.

The most recent approaches rely on the use of probabilistic Latent Semantic

Analysis (pLSA) to facilitate the combination of heterogeneous modalities. The

pLSA-based aspect or topic model is a method originally proposed in [10] that al-

lows to map a high-dimensional word distribution vector to a lower-dimensional

topic vector (also called aspect vector). This model assumes that the content

depicted by every image can be expressed as a mixture of multiple topics and

that the occurrences of words in this content is a result of the topic mixture.

Thus, the latent layer of topics that is introduced between the image and the

tag or visual words appearing in its content, acts as a feature space where both

types of words can be combined meaningfully. Moreover, given that the goal

of pLSA is to learn a set of latent topics that will act as bottleneck variables

when predicting words, apart from handling the heterogeneity of multimodal

sources, pLSA is also encouraged for discovering the hidden relations between

images. Examples of pLSA-based approaches include [11] where pLSA is used

to infer which visual patterns describe each concept, as well as [12] where Latent

Dirichlet Allocation (LDA) [13] is used to model each image as the mixture of

topics/object parts depicted in the image.

However, even if the space of latent topics can be considered to satisfy the
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requirement of combining the words extracted from heterogeneous modalities

without introducing any bias or rendering them meaningless, it still neglects

the fact that, being different expressions of the same abstract meaning, there is

a certain amount of dependance between the tag and visual words that appear

together very frequently. This additional requirement motivates the employ-

ment of methods that will allow the cross-word dependencies to influence the

nature of the extracted latent topics. In this context we examine the use of high

order pLSA to improve the semantic capacity of the derived latent topics. High

order pLSA is essentially the application of pLSA to more than two observable

variables allowing the incorporation of different word types into the analysis

process. We treat images, visual features and tags as the three observable vari-

ables of an aspect model and we manage to extract a set of latent topics that

incorporate the semantics of both the visual and tag information space. The

innovative aspect of our approach is the integration of cross-word dependencies

into the update rules of high order pLSA, and specifically in the approximation

of the joint distribution between images, visual features and tags. In this way,

we succeed in devising a feature extraction scheme where the co-existence of two

words that are known from experience to appear together rather frequently is

more important in defining the latent topics, than the co-existence of two words

that rarely appear together and are likely to be the result of noise. For estimat-

ing the cross-words dependencies between visual and tag words we introduce the

concept of word-profiles. A word-profile is a vector representing the occurrence

distribution of a word in a large corpus of images. Given that word-profiles are

essentially binary vectors with dimensionality equal to the number of images in

the corpus, their vector distance constitutes a natural way for measuring the

dependency between the words of two different modalities.

Finally, our contribution lies also on proposing a distributed calculation

model for high-order pLSA. This model benefits from the multi-core facilities

offered by modern processors and renders the proposed approach applicable in

large scale datasets, which is a crucial requirement when engineering an indexing

scheme. The main advantages of this model, consists in reducing the total
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computational cost by a factor that approximates the number of cores offered

by the utilized processor, as well as in regulating the memory requirements of

the algorithm independently of the dataset size.

The remaining of this work is structured as follows. In Section 2 we re-

view the related literature, while in Section 3 we formulate image retrieval as

a problem of defining a semantics sensitive feature space. Section 4 describes

different approaches for defining a multi-modal feature space and presents our

approach on how to apply high order pLSA using cross-word dependencies. A

distributed calculation model for high order pLSA is presented in Section 5,

showing ways to tackle the high computational and memory requirements of

our method. Finally, our experimental findings are presented in Section 6 and

concluding remarks are drawn in Section 7.

2. Related work

The multi-modal aspect that is intrinsic in social media prompted many

researchers to investigate specialized methods for their multi-modal analysis.

Among the existing works we identify the ones relying on the use of aspect or

topic models [14] and the definition of a latent semantic space. For instance

the authors of [15, 16] use a pLSA-based model to support multi-modal image

retrieval in flickr, using both visual features and tags. They propose to extent

the standard single-layer pLSA model to multiple layers by introducing not just

a single layer of topics, but a hierarchy of topics. In this way they manage

to effectively combine the heterogeneous information carried by the different

modalities of an image. Similarly, pLSA is also the model adopted by the ap-

proach presented in [17] for multi-modal image retrieval. However in this case

the authors propose an approach to capture the patterns between images (i.e.

text words and visual words) using the EM algorithm to determine the hidden

layers connecting them. Although the authors’ goal is to exploit the interactions

between the different modes when defining the latent space, they eventually im-

plement a simplified model where they assume that a pair of different words
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are conditionally independent given the respective image. This is different from

our approach that uses the cross-modal dependencies learned from a corpus of

images to approximate the joint distribution of the observable variables. A mod-

ified version of the pLSA framework is also adopted in [18] where the authors

propose a visual language model for object categorization. In this model, prob-

abilistic latent topic analysis is employed to capture the spatial dependencies of

local image patches by considering that the neighboring visual words extracted

from these patches are dependent on each other. Based on this assumption,

the visual words of the neighboring patches are formulated as the observation

variables of an aspect model and the EM algorithm is employed to solve the

optimization problem. However, in order to obtain analytically tractable den-

sity estimation for their models, they consider unigram, bigram and trigram

models of the neighboring patches, which essentially models how often two or

three neighboring patches co-occur in the same image. Again, this is different

from our approach where instead of relying to the co-occurrence of visual and

tag words in each image, we use the cross-modal dependencies learned from a

corpus of images to approximate the joint probability distribution. Finally, the

use of aspect models is also the approach followed in [19] for performing tag

ranking and image retrieval. The authors extend the model of Latent Dirich-

let Allocation (LDA) [13] to a new topic model called regularized LDA, which

models the interrelations between images and exploits both the statistics of tags

and visual affinities. In this way, they enforce visually similar images to pick

similar distributions over topics.

In a similar fashion the authors of [20] propose an approach for the multi-

modal characterization of social media by combining text features (e.g. tags)

with spatial knowledge (e.g. geotags). The proposed approach is based on

multi-modal Bayesian models which allow to integrate spatial semantics of so-

cial media in well-formed, probabilistic manner. In [21] a dual cross-media

relevance model (DCMRM) is proposed for automatic image annotation, which

performs image annotation by maximizing the joint probability of images and

words. The proposed dual model involves two types of relations, word-to-word
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and word-to-image relations, both of which are estimated by using search tech-

niques on the web data. Although using both the visual and textual modalities,

the focus of this work is mainly on using web images and commercial search

engines to estimate the joint probability of images and words, which is different

from our approach where the joint probability distribution is estimated based on

the co-occurrence of visual features and tags in a large corpus of tagged images.

In [22] the authors present an effective method for multi-label image classifica-

tion, where a multi-label classifier based on uni-modal features and an ensemble

classifier based on bi-modal features are integrated into a joint classification

model to perform semantic image annotation. In this work latent semantic in-

dexing is used to obtain the correlations among different labels and incorporate

them into the classification process, however in contrast to our work no mech-

anism is presented for estimating and using the cross-modal dependencies, i.e.

dependencies between visual features and semantic labels. The concept of Flickr

distance presented in [23] is another case that aims to exploit the visual and

textual information that characterize social media. Flickr distance is a measure

of the semantic relation between two concepts using their visual characteristics.

The authors rely on the assumption that images about the same concept share

similar appearance features and use images obtained from flickr to build a visual

language model for each concept. Then, the Flickr distance between different

concepts is measured by the square root of Jensen-Shannon (JS) divergence

between the corresponding visual language models.

Improving the retrieval performance of tagged images has been also encoun-

tered as a problem of tag relevance learning, with the visual content serving

as the driver of the learning process. In this direction the authors of [24, 25]

rely on the intuition that if different persons label visually similar images us-

ing the same tags, these tags are likely to reflect the objective aspects of the

visual content. Then, based on this intuition, they propose a neighbor voting

algorithm for learning tag relevance by propagating common tags through the

visual links introduced by visual similarity. Similarly, the work presented in

[26] proposes the use of a multi-edge graph for discovering the tags associated
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with the underlying semantic regions in the image. Each vertex in the graph is

characterized with a unique image and the multiple edges between two vertices

are defined by thresholding the pairwise similarities between the individual re-

gions of the corresponding images. Then, based on the assumption that any

two images with the same tag will be linked at least by the edge connecting the

two regions corresponding to the concerned tag, the repetition of such pairwise

connections in a fraction of the labeled images is used to infer a common “visual

prototype”. Tag relevance learning is also the problem addressed in [27], which

aims at leaning an optimal combination of the multi-modality correlations and

generate a ranking function for tag recommendation. In order to do this, the

authors use each modality to generate a ranking feature, and then apply the

Rankboost [28] algorithm to learn an optimal combination of these features.

Recently, there has been also an increasing interest on extending the aspect

models to higher order through the use of Tensors [29]. Under this line of

works we can mention the tag recommendation system presented in [30] that

proposes a unified framework to model the three types of entities that exist in

a social tagging system: users, items and tags. These data are represented by a

3-order tensor, on which latent semantic analysis and dimensionality reduction

is performed using the Higher Order Singular Value Decomposition (HOSVD)

technique [31]. The HOSVD decomposition is used also by the authors of [17]

in order to decompose a 3-order tensor in which the first dimension is images,

the second is visual words and the third is the text words. By applying the

HOSVD decomposition on this 3-order tensor the authors aim to detect the

underlying and latent structure of the images by mapping the original data into

a lower dimensional space. Finally, a 3-order tensor is used also by the authors

of [32] that propose an approach to capture the latent semantics of Web data.

In order to do that the authors apply the PARAFAC decomposition [33] which

can be considered as a multi-dimensional correspondent to the singular value

decomposition of a matrix. In this case the extracted latent topics are used for

the task of relevance ranking and producing fine-grained descriptions of Web

data.
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Finally, the manifold learning algorithms has also received a lot of research

attention for the purpose of combining the various modalities carried in multime-

dia items. The authors of [34] present a novel approach for near-duplicate video

retrieval where they propose a new algorithm for multiple feature hashing that

makes use of the key-frame’s manifold information when learning the necessary

hash codes. In [35] the authors rely on the assumption that images reside on a

low-dimensional sub-manifold and propose a geometrically motivated relevance

feedback scheme, which is naturally conducted only on the image manifold in

question rather than the total ambient space. Low-level visual features includ-

ing color, texture, etc, are mapped into high-level semantic concepts using a

Radial Basis Function (RBF) neural network that exploits the user interactions

in query-by-example system. Identifying the manifold structure using a set of

images has been also employed for face recognition in [36]. The authors of this

work model the manifold structure using a nearest-neighbor graph which pre-

serves the local structure of the image space. Then, each face image in the image

space is mapped into a low-dimensional face subspace, which is characterized by

a set of feature images, called Laplacianfaces. This sub-space exhibits high dis-

crimination power and manages to decrease the error rates in face recognition.

Finally, in the direction of exploiting the relations at the level of multimedia

documents and at the level of media objects expressed by different modalities,

the authors of [37] first construct a Laplacian media object space for media

object representation of each modality and a multimedia documents semantic

graph to learn the semantic correlations between documents. Then, the char-

acteristics of media objects propagate along the semantic graph and a semantic

space is constructed to perform cross-media retrieval.

3. Problem formulation

In order to index tagged images based on their semantic meaning we need

to define a feature space where the distance between two images is proportional

to their semantic affinity. To put this formally, given an image d, the set of
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concepts depicted by this image Cd = {c1, c2, . . . , c|C|}, a representation F d
S =

{fs1 , fs2 , . . . , fs|S|} of the image in feature space S, the distance dist(F di

S , F
dj

S ) ≥

0 between the representations of two images in S and a set of D images indexed

based on their representations; we need to define the feature space S where ∀d ∈

D the typical image retrieval process Q(dq, D) = rankr(dist(F
dq

S , F dr

S )) returns

a ranked list of all images in D such that when dist(F
dq

S , F di

S ) ≤ dist(F
dq

S , F
dj

S )

it also stands that |Cdq ∩Cdi | ≥ |Cdq ∩Cdj |. Thus, image retrieval is essentially

a problem of defining a semantics sensitive feature space. In the following we

describe different techniques for defining a feature space suitable for indexing

tagged images.

4. Building a semantics sensitive space for tagged images

4.1. Codebook-based representation

One of the most popular approaches for image representation is based on

defining a set of representative “words” (i.e. a CodebookW = {w1, w2, . . . , w|W |}),

that are able to span a sufficiently large portion of the information space that

they are used to describe. Then, based on this Codebook each image can be

represented as an occurrence count histogram of the representative “words” in

its content. The critical factor in this process is to define a highly expressive

Codebook, so as to cover every potential instantiation of the image content. In

the following we describe how the Codebook representation approach can be

applied in the case of visual content and tags, as well as how to mix different

Codebooks for obtaining a multi-modal image representation.

4.1.1. Visual codebook

In order to represent the visual information carried by an image using the

aforementioned Codebook-based approach, we need to define the set of visual

words that will act as the representative “words” of our information space. For

the purposes of our work we have used the scheme adopted in [38] that consists

of the following 3 steps: a) the Difference of Gaussian filter is applied on the
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gray scale version of an image to detect a set of key-points and scales respec-

tively, b) the Scale Invariant Feature Transformation (SIFT) [39] is computed

over the local region defined by the key-point and scale, and c) a Visual Word

Vocabulary (i.e. Codebook V = {v1, v2, . . . , v|V |}) [40] is created by applying

the k-means algorithm to cluster in K clusters, the total amount of SIFT de-

scriptors that have been extracted from all images. In cases where the memory

and computational requirements of k-means are prohibitive for the full set of

SIFT descriptors, the common practice is to sub-sample the collection of de-

scriptors so as to create a clustering input with reasonable computational and

memory requirements. Although this strategy is likely to result in a visual code-

book of inferior quality, the impact on the quality of the resulting bag-of-words

representations is in most cases marginal. Then, using the Codebook V we

vector quantize the SIFT descriptor of each interest point against the set of

representative visual words. This is done by mapping the SIFT descriptor to

its closest visual word and increasing the corresponding word count. By doing

this for all key-points found in an image, the resulting K-dimensional image

representation is the occurrence count histogram of the visual “words” in its

content, F d
V = {fv1 , fv2 , . . . , fv|V |}.

4.1.2. Tag codebook

A similar approach has been adopted for representing the tag information

that accompanies an image using a tag Codebook. As in the previous case, we

need to define the set of representative tag “words” that will manage to span

a sufficiently large portion of the tag information space. However, in this case

there is no need to employ clustering for determining which words should be

included in the Tag Word Vocabulary (i.e. Codebook T = {t1, t2, . . . , t|T |}).

Instead, from a large volume of utilized tags we need to select the ones with

minimum level of noise and maximum usage by the users. For the purposes

of our work we have used the Codebook construction process followed in [38].

More specifically, a large number of images are downloaded from flickr along

with their accompanying tags. Among the total set of unique tags that have
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been used by the users, there is a number of tags that appear more than 100

times. Many of these unique tags arise from spelling errors, while some of them

are names etc, which are meaningless for general image annotation. Thus, all

these tags that appear more than 100 times are checked against the WordNet

Lexical Database [41] and after removing the non-existing ones, we end up with

the final list of tags. Out of this final list we select the firstN that have been used

more frequently to form the tag Codebook. Eventually, we use this Codebook

to obtain for each image a N -dimensional occurrence count histogram of the

tag “words” in its content, F d
T = {ft1 , ft2 , . . . , ft|T |}.

4.1.3. Combining visual and tag codebooks

The most straightforward approach to produce a multi-modal image repre-

sentation is to consider a combined Codebook composed by simply extending the

list of representative visual-“words” with the list of representative tag-“words”

(i.e. V T = {v1, v2, . . . , v|V |, t1, t2, . . . , t|T |}). In this case the generated image

representation is essentially the concatenation of visual- and tag-based repre-

sentations, which results in a (K+N)-dimensional occurrence count histogram,

F d
V T = {fvt1 , fvt2 , . . . , fvt|V |+|T |}.

Moreover, apart from the simple concatenation we have also employed two

additional approaches for combining the visual and tag-based features spaces.

In the first case the distance between two images is calculated as the average

of the distances between their visual and tag-based representation, which are

calculated independently in each feature space and normalized to yield a value

between [0,1]. In the second case, Canonical Correlation Analysis (CCA) [42] is

employed to learn a basis of canonical components for both the visual and tag

feature space, which define a sub-space that maximize the correlation between

the two modalities. Using these components the original visual and tag-based

representations are projected into the extracted sub-spaces and concatenated to

form a joint image representation.

The major drawback of all aforementioned codebook-based combination ap-

proaches is that concatenation is performed between heterogeneous quantities.
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This results in an non-uniform feature space that is unable to exploit the com-

plementary effect of different modalities. Motivated by this fact, pLSA has been

proposed to create a uniform space for the combination of different modalities.

4.2. Mixture of latent topics

pLSA aims at introducing a latent (i.e. unobservable) topic layer between

two observable variables (i.e. images and words in our case). Let us denote

D = {d1, . . . , d|D|} the set of images and W = {w1, . . . , w|W |} the set of words.

The key idea is to map high-dimensional word occurrence count vectors, as the

ones described in Section 4.1, to a lower dimensional representation in a so-

called latent semantic space [10]. pLSA is based on a statistical model which

has been called aspect model [14]. The aspect model is a latent variable model

for co-occurrence data n(d,w) (see Fig 1(a) for an example), which associates

an unobserved class variable z ∈ Z = {z1, . . . , z|Z|} with each observation as

shown in Fig. 1(b). Then, given that P (w|d) is the conditional probability of

words given images that can be obtained by performing row-wise normalization

of n(d,w), a joint probability model over the set of images D and the set of

words W is defined by the mixture:

P (d,w) = P (d)P (w|d), P (w|d) =
∑
z∈Z

P (w|z)P (z|d) (1)

where P (d) denotes the probability of an image to be picked, P (z|d) the prob-

ability of a topic given the current image, and P (w|z) the probability of a word

given a topic.

[Figure 1 about here.]

Once a topic mixture P (z|d) is derived for an image d, we have a high-level

representation of this image with less dimensions from the initial representa-

tion that was based on the co-occurrence of words. This is because we com-

monly choose the number of topics |Z| to be much smaller than the number of

words so as to act as bottleneck variables in predicting words. The resulting
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|Z|−dimensional topic vectors can be used directly in an image retrieval setting,

if we take the distance (e.g. L1, Euclidean, cosine) between the topic vectors of

two images to express their similarity.

4.2.1. Visual-based latent topics

In the visual information space, pLSA can be applied by considering the

representative visual “words” of the visual codebook to constitute the second

observable variable. Then, using the co-occurrence vectors between images and

visual words n(d, v), each image of D can be represented in the visual-based

latent space using the following joint probability model:

P (d, v) = P (d)P (v|d), P (v|d) =
∑

zv∈ZV

P (w|zv)P (zv|d) (2)

In the visual-based latent space P (zv|d), the vector elements of each image

representation denote the degree to which an image can be expressed using the

corresponding visual based latent topics, F d
ZV = {fzv1 , fzv2 , . . . , fzv|ZV |}.

4.2.2. Tag-based latent topics

Similarly, in the tag information space pLSA can be applied by considering

the representative tag “words” of the tag codebook to constitute the second

observable variable. Then, using the tag-word co-occurrence vectors between

images and tag words n(d, t), each image of D can be represented in the tag-

based latent space using the following joint probability model:

P (d, t) = P (d)P (t|d), P (t|d) =
∑

zt∈ZT

P (w|zt)P (zt|d) (3)

In the tag-based latent space P (zt|d), the vector elements of each image rep-

resentation denote the degree to which an image can be expressed using the

corresponding tag-based latent topics, F d
ZT = {fzt1 , fzt2 , . . . , fzt|ZT |}

4.2.3. Combining visual and tag based latent space

Motivated by the fact that both topic vectors refer to the so-called latent se-

mantic space and express probabilities (i.e. the degree to which a certain topic
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exists in the image), we assume that the topics obtained from both modal-

ities are homogeneous and can be indiscriminately considered as the repre-

sentative “words” of a combined codebook. Based on this assumption, an

image representation that combines information from both modalities can be

constructed by concatenating into a common multi-modal image representa-

tion, the two image representations of visual and tag based latent space, F d
Z =

{fzv1 , fzv2 , . . . , fzv|ZV | , fzt1 , fzt2 , . . . , fzt|ZT |}.

However, even if the concatenation is performed between values of similar

nature (i.e. latent topics obtained through the application of pLSA), the simple

combination of visual and tag based topics completely neglects the dependencies

that may exist between the original visual- and tag-“words”. Thus, even if

we know by experience that the visual word vi has low dependency with the

tag word tj , there is no way for the aforementioned approach to exploit this

knowledge. This shortcoming was the basic motivation for applying high order

pLSA as detailed subsequently.

4.3. High order pLSA

[Figure 2 about here.]

High order pLSA is the extension of pLSA to more than two observable

variables. Using high order pLSA our goal is to apply the previously described

aspect model for our three observable variables namely images, visual words

and tag words. Using the asymmetric approach for pLSA, the generative model

for our three observable variables is graphically represented in Fig 2 and can be

expressed as follows:

P (d, v, t) = P (d)
∑
Z

P (v|z)P (t|z)P (z|d) (4)

In this case, if we introduce R(z, v, t, d) to indicate which hidden topic z is

selected to generate v and t in d such that
∑

z R(z, v, t, d) = 1, the complete

likelihood can be formulated as:
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L =
∑
D

∑
V

∑
T

P (d, v, t)
∑
Z

R(z, d, v, t) (5)

[logP (d) + logP (v|z) + logP (t|z) + logP (z|d)]

and the function that we need to maximize is:

E[L] =
∑
D

∑
V

∑
T

P (d, v, t)
∑
Z

P (z|d, v, t) (6)

[logP (d) + logP (v|z) + logP (t|z) + logP (z|d)]

Thus, using Expectation Maximization (EM) [43] the latent topics can be

learned by randomly initializing P (v|z), P (t|z) and P (z|d) and iterating through

the following steps:

E-step:

P (z|d, v, t) = P (v|z)P (t|z)P (z|d)∑
Z P (v|z)P (t|z)P (z|d)

(7)

M-step:

P (d) =

∑
V

∑
T

∑
Z P (d, v, t)P (z|v, t, d)∑

D

∑
V

∑
T

∑
Z P (d, v, t)P (z|v, t, d)

P (v|z) =
∑

D

∑
T P (d, v, t)P (z|v, t, d)∑

D

∑
T

∑
V P (d, v, t)P (z|v, t, d)

P (t|z) =
∑

D

∑
V P (d, v, t)P (z|v, t, d)∑

D

∑
T

∑
V P (d, v, t)P (z|v, t, d)

P (z|d) =
∑

V

∑
T P (d, v, t)P (z|v, t, d)∑

Z

∑
V

∑
T P (d, v, t)P (z|v, t, d)

(8)
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whereas for indexing a new image Iq we just need to repeat the above steps

but without updating P (d), P (v|z) and P (t|z) that have been obtained from

the learning stage. The iterations stop when the value of eq.(6) converge to its

maximum (either local or global). The convergence properties of the algorithm

have been proven in [44] and [45]. As convergence criterion we use the relative

change of E[L] between consecutive iterations, as shown in eq.(9). If this relative

change is below a predefined threshold thre the process is terminated, otherwise

the EM steps are repeated.

Ecurrent[L]− Eprevious[L]

abs(Eprevious[L])
=

 ≥ thre, repeat

< thre, terminate
(9)

In eqs.(5-8) we have used the joint probability distribution P (d, v, t) of the

observable variables (i.e. documents, visual words and tag words), in order to

formulate high order pLSA. Due to the normalizing denominators, instead of

P (d, v, t) any un-normalized approximation to it can be used. The classical

pLSA formulations use the frequency of occurrence n(d, v, t), which is the num-

ber of times a visual word vi appears together with a tag word tj in a given

image dk. However, in our effort to incorporate prior knowledge into the gener-

ation process of the latent topics, we have followed an approach where P (d, v, t)

is approximated using the cross-word dependencies. More specifically, we ac-

cept that there is a certain degree of dependence on how visual words appear

together with tag words, and that this dependence can be learned from data. In

order to estimate these dependencies we introduce the concept of word-profiles.

The word-profile is a |D|-dimensional binary vector that models the occurrence

distribution of a word in a set of |D| images, having 1’s in the places corre-

sponding to the images where the word appears at least once and 0 in all other

places. In other words, the word-profiles are the column vectors of n(d, t) and

n(d, v) after thresholding them with 1. Using the occurrence distribution of

each word in a corpus of images, we have a natural way to estimate the depen-

dency between words of different type (i.e. visual and tag), by measuring their

vector distance. For the purposes of our work, given that the values of word-
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profiles cannot be negative, we have used the complement of cosine similarity

to calculate the dependency between two words v and t. In a set of preliminary

experiments the jaccard distance and mutual information were also tested for

quantifying the dependency between v and t. However, the cosine similarity

metric was found to deliver the latent space with the best retrieval performance

and was favored for our experiments. Thus, the cross-word dependency between

v and t is calculated as shown below.

J(v, t) = 1− v ∗ t
∥ v ∥∥ t ∥

(10)

Then, ∀v ∈ V and ∀t ∈ T we calculate J(v, t) in order to measure the depen-

dency degree of every possible combination between the visual and tag words.

Finally, we incorporate this information during the approximation of P (d, v, t)

as follows:

P (d, v, t) = n(d, v) ∗ n(d, t) ∗ J(v, t) (11)

where n(d, v) and n(d, t) are the matrices n(d, v), n(d, t) after thresholding. The

rationale behind using eq.(11) to approximate P (d, v, t) is to penalize or favor

the contribution of some pair (v, t) to the sum of eq.(8), based on the prior

knowledge that we have about the dependency of v with t. In this way, the

co-existence of a pair (v, t) with high cross-word dependency is more important

in defining the mixture of latent topics, than the co-existence of a pair with low

cross-word dependency, which can be the result of noise. In the remaining of

the manuscript, including the result tables presented in Section 6, all references

to high-order pLSA imply the version of the model described in eqs.(4-8) using

the eqs.(10) and (11) to approximate P (d, v, t).

5. A distributed model for calculating high-order pLSA

Although flexible for incorporating two or more random variables in a single

latent space, high-order pLSA comes at the price of particularly high compu-

tational and memory requirements. As illustrated in eqs.(7-8) the algorithmic
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implementation of high order pLSA will have to store in memory and traverse

one 4-dimensional array for executing the update steps of EM. Given that the di-

mensionality of the codebook-based representation in both tag and visual space

can range from a few hundreds to a few thousands, it is obvious that the re-

sulting 4-dimensional matrix will become difficult to handle when the number

of considered images becomes high. Although data sparseness can be used to

alleviate this burden, still the high dimensionality of the matrices that need to

be processed renders the proposed approach intractable for very large datasets.

Motivated by this fact, we propose a distributed calculation model for high-

order pLSA that could benefit from the multi-core facilities offered by modern

processors. Drawing from the literature in distributed clustering [46] and in

analogy with the approach presented in [47] for distributed pLSA, we divide the

full set of images into equally sized nodes. Each of these nodes is able to apply

the algorithm locally and periodically communicate with a central super-node in

order to synchronize with the other nodes. More specifically, using the notation

of Section 4.3, the algorithm proceeds as follows:

1. Initially, the normalized, term-document co-occurrence matrices P (d, v)

and P (d, t) are split along the images dimension into equally sized chunks

P i(d, v) and P i(d, t). Every chunk is then transmitted to one of the K

nodes so that each node carries the information for |D|/K images, except

the last node that may have less.

2. The super-node initializes with random values the matrices P (v|z), P (t|z),

P (z|d) and with equal priors the matrix P (d). A copy of the matrices

P (v|z) and P (t|z) is transmitted in all K nodes, while the matrices P (d)

and P (z|d) are split along the images dimension into equally sized chunks

P i(d) and P i(z|d), in order to be transmitted to each of the K nodes.

3. Each node calculates the local joint probability distribution P i(z|d, v, t)

according to eq.(7) and estimates the local value Ei[L] according to eq.(6).

Then, the super-node sums the Ei[L] values collected from all nodes in

order to calculate the central E[L] value for this iteration.
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4. Each node locally calculates P i(d, v, t) based on eq.(11), by using P i(d, v)

and P i(d, t), as well as the cross-words dependencies J(v, t) that are com-

mon for all nodes.

5. After calculating P i(d, v, t) each node locally proceeds to the maximization

step and produces the local matrices P i(d), P i(v|z), P i(t|z) and P i(z|d).

The only difference from eq.(8) is that all 4 matrices are un-normalized

(i.e. all denominators in eq.(8) are set to 1).

6. The local matrices P i(v|z) and P i(t|z) are collected from all nodes. The

super-node performs element wise summation across i and normalizes the

resulting matrices so that each column sum to 1. In this way the super-

node updates the values of the global matrices P (v|z) and P (t|z), which

are once again transmitted to all nodes.

7. Using the updated global matrices P (v|z) and P (t|z) and the correspond-

ing P i(d) and P i(z|d) each node re-calculates the new local joint proba-

bility distribution Ṕ i(z|d, v, t) according to eq.(7) and estimates the new

local value of Éi[L] according to eq.(6). As in step 4, the super node sums

the Éi[L] values collected from all nodes in order to calculate the new

central É[L] value.

8. Using É[L] and E[L] the super-node checks whether the convergence cri-

terion of eq. (9) is satisfied. If yes, the local matrices P i(z|d) from all

nodes are collected and concatenated in order to re-assemble the global

matrix P (z|d). If not, the process continues with Step 4.

By adopting this model for the distributed calculation of high order pLSA

the benefit is twofold. Firstly, the fact that there is no need for communication

or concurrent memory access between the nodes, allows them to run in parallel

and synchronize only when they need to communicate with the super node. This

parallel computation allow us to expect a reduction of the total computational

time by a factor that approximates the number of cores offered by the utilized

processor. Secondly, the proposed distributed model provides an elegant way

for regulating the memory requirements of the algorithm independently of the
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dataset size. Indeed, given that in a non-parallel mode the minimum amount

of data that should be loaded into RAM is bounded by P i(z|d, v, t) instead of

P (z|d, v, t), allow us to implement a version of the model that fits the memory

specifications of the utilized computer. This can be done by using more nodes

with smaller size or vice versa. In section 6.3.4 of our experimental study we

measure the gain in computational cost of the distributed calculation model and

show how we can regulate our algorithm to process a significantly large set of

images.

Finally, we should mention that apart from dealing with computational and

memory limitations, the distributed calculation model is also suggested for ap-

plications where data sources are distributed over a network and collecting all

data at a central location is not a viable option. These applications include

privacy-preserving environments where each node is only allowed to share a

sub-set or an encoded representation of the local data, as well as sensor net-

works where each node collects a set of observations and needs to design local

processing rules that perform at least as well as global ones, which rely on all

observations being centrally available.

6. Experimental Evaluation

Our experimental evaluation is primarily focused on comparing the perfor-

mance achieved by the different feature spaces described in Section 4, in an

image retrieval setting. Our aim is to verify that by exploiting the multi-modal

nature of tagged images and introducing the cross-word dependencies when per-

forming the modality fusion, we succeed in defining a feature space that is more

sensitive to semantics. We also verify the efficiency of our approach in han-

dling tasks of varying requirements by evaluating its performance in an image

clustering setting. Moreover, we experimentally measure the gain in computa-

tional cost achieved by the distributed calculation model and show how we can

significantly reduce the memory requirements of our algorithm and run high

order pLSA on a significantly large set of images. Finally, we compare our work
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with two state-of-the-art approaches that are also oriented towards exploiting

the multi-modal nature of tagged images for improving the performance of an

image retrieval system.

6.1. Data set

To carry out our evaluation we have used the NUS WIDE1 and the SO-

CIAL20 dataset2. The NUS WIDE dataset was created by the NUS’s Lab for

Media Search [38] and contains 269, 648 images that have been downloaded from

flickr together with their tags. The NUS WIDE dataset was selected due to its

appropriateness for evaluating the examined retrieval and clustering tasks, its

origin in social media (i.e. flickr) and its ability to facilitate large scale experi-

ments. For all images we have used the 500-dimensional co-occurrence vectors

for visual words and the 1000-dimensional co-occurrence vectors for tag-words

that were released by the authors. Although sections 4.1.1 and 4.1.2 provide a

few details about the uni-modal feature extraction process, additional informa-

tion about this process as well as the statistical characteristics of the dataset

(i.e. frequency distribution of tags, tags per image, etc) can be found in [38].

The ground-truth for all images with respect to 81 concepts has been provided

to facilitate evaluation. The full set of 269, 648 images has been split by the

authors to 161, 789 train and 107, 859 test images. In our initial set of exper-

iments that involved tuning the algorithm and observing its behavior against

specific parameter we have used a sub-sample of 5, 000 (Itrain) images for train-

ing and 5, 000 (Itest) images for testing (cf. Sections 6.3.1-6.3.4). Then, using

the distributed calculation model described in Section 5 we have applied our ap-

proach on the full scale of the NUS WIDE dataset, which constitutes a realistic

configuration for an indexing framework (cf. Section 6.3.5).

On the other hand, the SOCIAL20 dataset consists of 19, 971 images down-

loaded from flickr along with their tags. The ground-truth information contains

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2http://staff.science.uva.nl/∼xirong/index.php?n=DataSet.Social20
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annotations with respect to 20 visually diverse concepts for the full set of im-

ages. The SOCIAL20 dataset was selected due to its origin in social media

(i.e. flickr) and the nature of its ground-truth information consisting of visually

diverse concepts. The employed uni-modal feature extraction process has been

identical with the one used in the NUS WIDE dataset, however in this case

we have constructed more extended vocabularies resulting in 2000-dimensional

feature vectors for both the visual and tag information space. The reason for

doing so was on the one hand to demonstrate that the proposed distributed cal-

culation model can efficiently deal with high dimensional image representations,

and on the other hand to verify that high-order pLSA can deliver improvements

with respect to baselines that employ large size vocabularies. Out of the 19, 971

images, 13314 have been used for training and 6657 for testing, corresponding

to the 2/3 and 1/3 of the total dataset, respectively.

In both datasets, in order to remove the effects of incomplete tagging and

noisy annotation, we have applied the restriction that all utilized images should

have at least one concept present in their annotation info and at least one tag

present in their tag-based representation.

6.2. Evaluation protocol

The adopted evaluation protocol is implemented as follows. Initially a set

of training images is utilized to learn all necessary parameters that require

training, such as the latent topics of simple and high order pLSA, as well as

to calculate the cross-words dependencies between the visual and tag words.

Subsequently, using the learned parameters the training images are indexed.

Finally, an independent set of testing images is used to query the index and

evaluate the system’s performance based on the relevance between the query

and the retrieved images.

For assessing the relevance between the query and the retrieved images we

have used the Average Precision (AP) metric. AP favors the algorithms that

are able not only to retrieve the correct images, but to retrieve them as early

as possible in a ranked list of results. This is a crucial attribute for an image
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retrieval system since users rarely take the time to browse through the results

beyond the first pages. Average precision is expressed by the following equation.

AP =

∑N
r=1 Pr(r) · rel(r)

# relevant images
(12)

where r is the current rank, N is the number of retrieved images, rel() is a binary

function that determines the relevance of the image at the given rank with the

query image. rel() outputs 1 if the image in the given rank is annotated with

at least one concept in common with the query image and 0 otherwise. Pr(r)

is the precision at rank r and is calculated by:

Pr(r) =
# relevant retrieved images of rank r or less

r
(13)

AP measures the retrieval performance of the method using one image as

query. Finally, in order to facilitate fast image matching the images were indexed

using a kd-tree multidimensional indexing structure [48] that supports k-NN

(Nearest Neighbor) queries.

Apart from the AP and in order to evaluate the efficiency of our algorithm

in a task different from image retrieval, we have also implemented the Nor-

malized Mutual Information (NMI) measure for clustering comparison. NMI

belongs to the class of information theoretic based measures that rely on the

mutual information shared between two random variables. The mutual informa-

tion measures how much knowing one of these variables reduces the uncertainty

about the other, which makes it appropriate for measuring the similarity be-

tween two clustering solutions. The NMI measure that we have used in our

work is a normalized version of the Mutual Information defined as:

NMI(U, V ) =
I(U, V )√
H(U)H(V )

(14)

where I(·) calculates the Mutual Information between the clustering solutions

U and V and H(·) calculates the information entropy of each solution. NMI

takes the value of 1 when the two clustering solutions are identical and 0 when

they are independent. More information about NMI can be found in [49].
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6.3. Results

6.3.1. Retrieval performance

In order to obtain one global performance score for all query images we

employed the Mean Average Precision (MAP) score, which is the mean of AP

scores over the full set of query images. In our experiments we have set the

value of N to be equal with the total number of indexed images. As base-

line we have used the performance scores obtained using the 8 different feature

spaces described in Section 4 namely visual-words, tag-words, visualtag-words,

avgnorm-visualtags-words, cca-visualtag-words, plsavisual-words, plsatag-words

and plsavisual plsatag-words. The performance score for the proposed approach

appears under highOrder-plsa. The number of topics in all cases involving as-

pect models was selected to be 30, except from the plsavisual plsatag-words case

where the concatenation of the uni-modal plsa models resulted in a dimension-

ality of 60 topics. Moreover, in order to counterbalance the effect of initial

randomization all experiments involving aspect models were repeated 5 times

to obtain an average performance value. Table 1 shows the MAP scores for all

evaluated feature spaces and for both the NUS WIDE and SOCIAL20 datasets.

With respect to the NUS WIDE dataset, we notice that visual-words per-

forms better than tag-words. As expected, the straightforward combination of

both modalities by simply concatenating their word count vectors visualtag-

words, fails to combine them efficiently and performs slightly better than the

visual modality, which seems to be the modality that dominates the joint fea-

ture space. However, the situation does not get any better when using the

avgnorm-visualtag-words or the cca-visualtag-words approach to combine the

uni-modal feature spaces. The fact that the performance scores in both cases

reside very close to the scores achieved by the uni-modal feature spaces, shows

that the heterogeneity of the feature spaces renders their efficient combination

a challenging task. When moving to the space of pLSA-based latent topics we

can see an increase of the retrieval performance for both uni-modal cases, which

verifies the efficiency of aspect models to discover semantic relations between
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the images. Moreover, it is interesting to note that the relative improvement

achieved by plsatag-words is considerably higher than the relative improvement

of plsavisual-words. This can be attributed to the ability of pLSA in more

efficiently handling sparse data, since the co-occurrence table of tag-words is

much more sparse than the corresponding table of visual words. Additionally,

the performance achieved by plsavisual plsatag-words introduces some improve-

ment over the uni-modal cases, in contrast to the behavior of visualtag-words.

This verifies the ability of the latent space to more efficiently combine the het-

erogeneous modalities of tagged images, compared to the original space of word

counts. Finally, the performance achieved by the proposed method verifies the

usefulness of cross-word dependencies in creating a semantics sensitive feature

space. Indeed, we can see that highOrder-plsa outperforms all other cases that

neglect this kind of dependencies, introducing an improvement of approximately

1.8% units over the best performing baseline.

With respect to the SOCIAL20 dataset, we notice a big difference between

the performance achieved by the visual and textual modality, i.e. tagwords out-

perform visualwords by a significant amount. As in the previous case, the joint

feature space resulting from the straightforward combination of both modalities

is dominated from the visual modality, since the performance score of visualtag-

words is identical with the performance of visual-words. The cca-visualtag-words

seems to be heavily affected by the heterogeneity of the visual and tag-based

representations since the obtained performance score is lower than the worse

of the uni-modal cases. On the contrary, the situation gets better when using

the avgnorm-visualtag-words, where by normalizing and averaging the indepen-

dently calculated distances we succeed in devising a feature space that is not

dominated by one of the modalities. However, the improvement is only marginal

compared to the best performing uni-modal case since we fail to exploit the com-

plementary information capacity of both modalities. In a fashion similar to the

previous dataset the pLSA-based uni-modal feature spaces (i.e. plstag-words

and plsavisual-words) deliver improvements with respect to their corresponding

baselines, while the additional improvement introduced by their straightforward
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concatenation shows again that the space of latent topics is more appropriate for

combining the two different modalities. Finally, we notice that highOrder-pLSA

significantly improves the retrieval performance of the resulting latent space,

introducing an increase of approximately 24, 8 units over the best performing

baseline. The fact that the images in SOCIAL20 are annotated with strictly one

concept per image and that the 20 concepts utilized for annotation are selected

based on their visually diversity3, seems to particularly favor the employment

of cross-modal dependencies in constructing a feature space sensitive to the

semantics of these concepts.

[Table 1 about here.]

In order to gain more insight into the retrieval performance of our system

we have calculated the MAP on a concept basis. In order to do this, for each

concept, we have used only the images depicting this concept to query the

index. Then, the MAP score of this concept is calculated by averaging the AP

scores obtained for each of the issued queries. Figs. 3 and 4 depict the MAP

scores achieved by the plsavisual plsatag-words and highOrder-plsa approaches

for the 30 concepts that appear more frequently in the NUS WIDE test set and

the 9 concepts that appear with a statistically safe frequency (more than 100

times) in the SOCIAL20 dataset. We can see that the proposed highOrder-plsa

approach outperforms the best performing baseline in 21 out of the 30 concepts

considered from the NUS WIDE dataset and in all 9 concepts considered from

the SOCIAL20 dataset.

[Figure 3 about here.]

[Figure 4 about here.]

Figs. 5, 6 are two illustrative examples that demonstrate the effect of aspect

models and the potential of multi-modal analysis in the performance of image

3http://staff.science.uva.nl/∼xirong/index.php?n=DataSet.Social20
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retrieval. Fig. 5 shows in ranked order the first 10 images retrieved using tag-

words, plsatag-words and highOrder-plsa. With the query image depicting a

rhino, the retrieval system manages to correctly retrieve various pictures of

rhinos in the first 10 results. However, when using tag-words we can see that

the system retrieves 2 outliers in the first 10 results, with the first of them being

placed at rank #2 and the second at rank #8. The situation improves when

using plsatag-words where the outliers are now placed at rank #7 and #9.

Finally, the highOrder-plsa approach verifies the complementary information

capacity of visual and tag words since there is only one outlier among the first

10 retrieved images which is placed at rank #6. In a similar fashion Fig. 6 shows

in ranked order the first 10 images retrieved using visual-words, plsavisual-words

and highOrder-plsa. With the query image depicting the concept kitchen all

three feature spaces manage to retrieve pictures of a kitchen scene. However,

as verified by the outliers existing at rank #4, #5, #7 and #10, visual-words

relying solely on the image visual features tend to confuse the kitchen with

the classroom scene. Using plsavisual-words the system reduces the number of

outliers to 3 which are now placed at rank #3, #4 and #6, however it is not until

we employ the highOrder-plsa space before we succeed in completely removing

the outliers from the ranked list of 10 results. It is evident in these examples that

the multi-modal nature of tagged images provides a solid ground for discovering

their semantic relations and that the proposed approach is efficient in doing so.

[Figure 5 about here.]

[Figure 6 about here.]

6.3.2. Clustering Performance

In order to examine whether the proposed approach for semantic image in-

dexing is appropriate for tasks other than image retrieval, we have designed an

experiment where the task was to mine the conceptual categories characterizing

a set of images. Relying on the fact that the authors of the NUS WIDE dataset

[38] provide a concept list where each of the 81 annotation concepts is classi-
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fied to one of six categories namely Event/Activities, Program, Scene/Location,

People, Objects and Graphics, the examined task was to automatically identify

these categories by performing clustering on the images included in our test

set Itest. In each case one of the aforementioned feature spaces was used for

calculating the distance similarity matrix. Then, NMI was employed to com-

pare each of the obtained clustering solutions against the solution derived from

the ground truth information. The L1-norm metric was used to calculate the

similarity distance between images and the k-means algorithm was employed to

perform clustering. In all cases, the number of requested clusters was set to be

equal with the number of categories and 100 repetitions were imposed on the

clustering process in order to alleviate the sensitivity of k-means to the initial

conditions. The obtained results are depicted in Table 2.

[Table 2 about here.]

It is evident from the NMI scores that the tag information space is more

efficient in identifying the existing categories. Indeed, the clustering solutions

obtained using tag-words and plsatag-words are much closer to the optimal solu-

tion than using visual-words and plsavisual-words, respectively. The poor perfor-

mance of the visual information space is also observed in the cases of visualtag-

words and plsavisual plsatag-words, where the inclusion of visual-words in a joint

space with tags has a negative effect on the clustering efficiency of the resulting

space. This is also the case for avgnorm-visualtag-words and cca-visualtag-words

where the performance scores observed, are very close to the visual-words base-

line. Nevertheless, the use of cross-word dependencies by highOrder-plsa allows

the resulting space to filter out the misleading information of visual words and

obtain a clustering solution that is closer to the optimal case than all other base-

lines. This is an additional argument for the efficiency of the proposed approach

in handling tasks of varying requirements.
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6.3.3. Latent space dimensionality and convergence threshold

In this section we present the experiments performed on the sub-sample

of the NUS WIDE dataset in order to observed the behavior of our algorithm

against two parameters, the dimensionality of the latent space and the conver-

gence threshold employed for terminating the EM steps.

In the first case we investigate the impact of the dimensionality employed

for the latent space on the retrieval performance of the pLSA-based methods.

Our interest is on roughly estimating the number of dimensions where a perfor-

mance peak is exhibited by each of the examined cases. Fig. 7 plots the MAP

scores achieved by each method against the dimensionality of the latent space.

We can see that the performance peak for highOrder-plsa appears between the

range of 15− 30 dimensions. A similar kind of behavior is also exhibited by the

uni-modal aspect models (i.e. plsatag-words and plsavisual-words) where the

performance peak is located around the 30 dimensions. However, this is not the

case for plsavisual plsatag-words where the number of latent topics will have to

reach 60 before achieving the peak of its performance. Thus, the proposed ap-

proach reaches its performance peak using considerably fewer dimensions than

the best performing baseline. This fact constitutes an additional advantage of

our approach since the efficiency of the indexing mechanisms, which are typ-

ically employed in image retrieval systems, benefit substantially from the low

dimensionality of the utilized feature space.

[Figure 7 about here.]

In the second case, we examine the relation between the convergence thresh-

old employed during the EM procedure and the retrieval performance of the

resulting feature space. As already mentioned in Section 4.3 the iterations of

the EM algorithm stop when the value of eq.(6) becomes lower than a prede-

fined threshold. In all experiments so far this threshold was set to 10−3. Here,

we evaluate the retrieval performance of the proposed approach using as con-

vergence threshold the values 10−4, 10−5 and 10−6. Fig. 8 shows the MAP

scores for each of the aforementioned values. It is evident that by making the
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convergence criterion more strict the retrieval performance of the resulting la-

tent space increases. However, for values that are very close to zero (e.g. 10−5

and 10−6) the improvement is only marginal and does not compensates for the

increased computational overhead.

[Figure 8 about here.]

6.3.4. Distributed calculation model

In order to estimate the gain in computational cost achieved by the proposed

distributed calculation model, we have used the sub-sample of the NUS WIDE

dataset and measured the time required by our high-Order pLSA algorithm

to complete on an i7-950 processor with 4 physical cores and 12GBs of RAM,

using the centralized and the distributed calculation model respectively. More-

over, for the distributed case we have considered two different configurations.

In the first configuration titled “Distributed Memory”, we consider that the

memory facilities of the utilized computer are adequate to load in RAM the

4-dimensional P (z|d, v, t) array that derives from the processed dataset, while

in the second case titled “Distributed (Disk)”, we consider that the memory re-

quired to load the P (z|d, v, t) array exceeds the available resources. In this case

the hard disk is used by each node to store and load the corresponding chunk

P i(z|d, v, t) in every iteration. Table 3 demonstrates our experimental findings.

We can see that the time required by our algorithm to complete reduces by a

factor of ≈ 4 when employing the memory-based distributed calculation model,

which is a reasonable outcome given that the whole process has been parallelized

in 4 physical cores. On the other hand, when employing the configuration of

the algorithm using the hard disk, the computational overhead introduced by

read/write operations doubles the execution time but still remains considerably

lower than the centralized version. Table 3 also depicts the computational cost

required by some of the baseline algorithms presented in Section 6.3.1 that in-

volve the calculation of an aspect model, namely plsatag-words, plsavisual-words

and plsavisual plsatag-words. It is evident that since these algorithms do not

require the calculation of high-order models, the execution time is significantly
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lower. However, the gain in performance compensates for the computational

overhead.

[Table 3 about here.]

6.3.5. High-Order plsa in large scale

By exploiting the ability of the distributed calculation model to regulate its

memory requirements, we have managed to apply the proposed high order pLSA

algorithm to the full set of images provided by the NUS WIDE dataset. More

specifically, we have applied high order pLSA on 121, 920 train and 81, 589 test

images, which is the set that constitutes the full NUS WIDE dataset after re-

moving the images that did not satisfy the restrictions described in Section 6.1.

Table 4 shows the obtained MAP scores for all features space examined in Sec-

tion 6.3.1, apart from the avg-norm-visualtag-words case that can not be sup-

ported by our kd-tree indexing infrastructure making the corresponding experi-

ment extremely time-consuming. It is interesting to note that the improvements

observed when moving from one feature space to another are equivalent to those

observed in Table 1, advocating the effectiveness of our method to increase the

semantic capacity of the resulting space, independently of the dataset scale.

[Table 4 about here.]

6.4. Comparison with existing methods

In order to compare our work with state-of-the-art methods in multi-modal

indexing we have generated three additional feature spaces by implementing the

methods proposed in [16], [17] and [18]. More specifically, we have implemented

one of the variations presented in [16] that treats the visual and tag-based latent

topics obtained from the application of the uni-modal pLSA, as the observed

words for learning a second level pLSA model. This model (ml-plsa [16]) allows

the image to be represented as a vector of meta-topics as illustrated in Fig. 9.

Similarly, we have also implemented the multi-modal pLSA scheme (mm-plsa)

presented in [17]. In this work the authors’ goal is to exploit the interactions
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between the different modes when defining the latent space. However, in order to

simplify their model, they assume that the pair of random variables representing

the visual and tag words are conditional independent, given the respective image

di. Given this assumption, we have P (v|t, d) = P (v|d) and the joint probability

model of text words, visual words and images can be written as:

P (d, v, t) = P (d)P (t|d)P (v|t, d) ⇒ P (d, v, t) = P (d)P (t|d)P (v|d) (15)

Finally, we have also adopted the approach presented in [18] for approximat-

ing the joint probability distribution. In this work, the unigram, bigram and

trigram models adopted by the authors, suggest that the probability density

estimations can be approximated by the co-occurrence counts of the observable

variables. If we adopt this approach in our case, we have P (v|t, d) = P (v
⊙

t|d),

with
⊙

counting how many times vj appears together with ti in dk. Then, in

this case, the joint probability model of text words, visual words and images

can be written as:

P (d, v, t) = P (d)P (t|d)P (v|t, d) ⇒ P (d, v, t) = P (d)P (t|d)P (v
⊙

t|d) (16)

Given eqs. 15 and 16 we have used the EM-steps of Section 4.3 to generate

a feature space for the mm-plsa and the count-plsa model, respectively. Both

of these models are different from our approach presented in Section 4.3, since

in our case P (d, v, t) is approximated using the cross-word dependencies (c.f.

eq. 11). Table 5 compares the performance of the three methods obtained

using both the sub-sample of the NUS WIDE dataset, as well as the SOCIAL20

dataset.

[Figure 9 about here.]

[Table 5 about here.]

The fact that in both datasets the performance of mm-plsa model is lower

than two of the baselines presented in Section 6.3.1 shows that there is impor-

tant information neglected under the cross words independence assumption, and
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the approximation of P (d, v, t) without using the cross-words dependencies is

misleading in the generation of a semantics sensitive latent space. This is fur-

ther advocated by the fact that count-plsa, which also neglects the cross-word

dependencies, is once again outperformed by the best performing baselines of

Section 6.3.1. On the other hand, the ml-plsa model manages to introduce some

improvement over the best performing baseline of Section 6.3.1. However, the

improvement is marginal showing the the second level pLSA has little to offer

when applied on dense data (i.e. such as the data produced by the application

of the first level of pLSA). Finally, the fact that highOrder-plsa outperforms all

other methods in both datasets shows that using the cross-word dependencies

to approximate the joint distribution of the observable variables, is a promising

direction towards combining the semantics of both visual and tag information

space in a semantics sensitive latent space.

7. Conclusions

In conclusion, we should stress the great potential of exploiting the infor-

mation carried by the different modalities of tagged images when designing a

semantics sensitive feature space. The use of aspect models has proven to be

an efficient solution for overcoming the heterogeneity of sources, allowing the

resulting feature space to benefit from their complementary information capac-

ity. Moreover, our experiments have shown that, being different representations

of the same abstract meaning, the visual and tag words appearing in the im-

age content exhibit some cross-word dependencies that can be used to improve

the effectiveness of the resulting feature space. We have shown how the use

of high order pLSA can be used to incorporate this type of dependencies and

lead to performance improvements. In addition, by implementing a distributed

model for the calculation of high order pLSA, we have shown how to benefit

from multi-core facilities offered by modern processors and how to regulate the

memory requirements of our algorithm so as to become applicable for datasets

of very large size.

34



Moreover, the fact that the resulting latent space is semantically enhanced

with information from both visual and tag information space renders the pro-

posed approach appropriate for supporting various different tasks in social me-

dia consumption. For instance, it can be used to support tag-based image

search, where tag relevance learning is achieved through visual content sim-

ilarity [24, 25], or even diverse image search, where the retrieval mechanism

is devised to ensure that the ranked list of results will consist of both rele-

vant and diverse images [50] in the top places. Finally, it is important to note

that although the approach presented in this work performs fusion between the

modalities of visual features and tags, a similar methodology can be used to

incorporate additional modalities of social media such as geo-located or user-

related information. Increasing the number of considered modalities will be the

main focus of our future work.
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Figure 1: a) co-occurrence data table n(d,w) for images and words, b) the standard pLSA
model.
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Figure 2: Graphical representation of the highOrder-plsa model
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Figure 5: Indicative retrieval examples using the tag-words, plsatag-words and the cross-
words-profiles approach for generating the feature space.
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Figure 6: Indicative retrieval examples using the visual-words, plsavisual-words and the cross-
words-profiles approach for generating the feature space.
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Figure 9: Graphical representation of the ml-plsa model [16]
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Table 1: Performance scores for image retrieval - Mean Average Precision (%)

Feature Space #dims NUS WIDE SOCIAL20

tag-words 1000 29,45 26,76
visual-words 500 31,07 10,38

visualtag-words 1500 31,08 10,38
avgnorm-visualtag-words - 30,22 27,93
cca-visualtag-words 1000 29,88 5,6

plsatag-words 30 35,674 33,92
plsavisual-words 30 31,728 10,69
plsavisual plsatag-words 60 35,906 34,54

highOrder-plsa 30 37,75 59,40
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Table 2: Performance scores for image clustering

Feature Space #dims NMI

tag-words 1000 0.0448
visual-words 500 0.0164

visualtag-words 1500 0.0166
avgnorm-visualtag-words - 0.0204
cca-visualtag-words 1000 0.0187

plsatag-words 30 0.06591
plsavisual-words 30 0.01977
plsavisual plsatag-words 60 0.04809

highOrder-plsa 30 0.07979
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Table 3: Execution time for different calculation models
Method Calculation model Elapsed Time (sec)

Train Test

plsatag-words - 946 78
plsavisual-words - 250 17

plsavisual-plsatag-words - 1196 95

highOrder-plsa
Centralized 12288 2502
Distributed (Memory) 3563 349
Distributed (Disk) 6687 549
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Table 4: Performance scores for image retrieval - Full NUS WIDE Dataset

Feature Space #dims MAP (%)

tag-words 1000 29,90
visual-words 500 30,470

visualtag-words 1500 30,476
cca-visualtag-words 1000 29.25

plsatag-words 30 35,512
plsavisual-words 30 31,128
plsavisual plsatag-words 60 35,686

highOrder-plsa 30 38,50
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Table 5: Performance scores for image retrieval - Mean Average Precision (%)

Feature Space #dims NUS WIDE SOCIAL20

ml-plsa 30 35,956 35,05
mm-plsa 30 34,162 33,36
count-plsa 30 35,266 33,12
highOrder-plsa 30 37,75 59,40
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Research Highlights

1. H1: We combine the visual and tag information of images.

2. H2: We use high order pLSA for generating a semantics sensitive latent

space.

3. H3: We introduce the concept of word-profiles for measuring the cross-

words dependency.

4. H3: We implement a distributed calculation model for high order pLSA.

5. H4: We evaluate our approach for the tasks of image retrieval and clus-

tering.
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