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Abstract

In this manuscript we present a method that leverages social media for the
effortless learning of object detectors. We are motivated by the fact that the
increased training cost of methods demanding manual annotation, limits their
ability to easily scale in different types of objects and domains. At the same time,
the rapidly growing social media applications have made available a tremendous
volume of tagged images, which could serve as a solution for this problem.
However, the nature of annotations (i.e. global level) and the noise existing
in the associated information (due to lack of structure, ambiguity, redundancy,
emotional tagging), prevents them from being readily compatible (i.e. accurate
region level annotations) with the existing methods for training object detectors.
We present a novel approach to overcome this deficiency by using the collective
knowledge aggregated in social sites to automatically determine a set of image
regions that can be associated with a certain object. We study theoretically and
experimentally when the prevailing trends (in terms of appearance frequency)
in visual and tag information space converge into the same object, and how this
convergence is influenced by the number of utilized images and the accuracy of
the visual analysis algorithms. Evaluation results show that although the models
trained using leveraged social media are inferior to the ones trained manually,
there are cases where the user contributed content can be successfully used to
facilitate scalable and effortless learning of object detectors.
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1. Introduction

Semantic object detection is considered one of the most useful operations
performed by the human visual system and constitutes an exciting problem for
computer vision scientists. Many researchers in the field have focused on trying
to discover a scalable (in terms of the number of concepts) and effortless (in
terms of the necessary annotation) way to teach the machine how to recognize
visual objects the way a human does. The authors of [1] make the hypothesis
that once a few categories have been learned with significant cost, some infor-
mation may be abstracted from the process to make learning further categories
more efficient. Similarly in [2] when images of new concepts are added to the
visual analysis model, the computer only needs to learn from the new images,
since profiling models are used to store the information learned from previous
concepts. In the same lines the need to efficiently handle the huge amounts
of data generated on the Web, has prompted many researchers to investigate
the use of online learning algorithms [3] for exploiting those data. Motivated
by the same need but relying on a non-parametric approach, the authors of [4]
claim that with the availability of overwhelming amounts of data many prob-
lems can be solved without the need for sophisticated algorithms. The authors
present a visual analog to Google’s “Did you mean” tool, which corrects errors
in search queries by memorizing billions of query-answer pairs and suggesting
the one closest to the user query. Additionally, the authors of [5] employ multi-
ple instance learning [6] to learn models from globally annotated images, while
in [7] object recognition is viewed as machine translation that uses expectation
maximization in order to learn how to map visual objects (blobs) to concept
labels. The approaches relying on human computation such as Google Image
Labeler [8] and Peekaboom [9] for image global and regional annotation respec-
tively, also belong to the category of methods that aim at scalable and effortless
learning. Motivated by the same objective, in this work we investigate whether
the knowledge aggregated in social tagging systems by the collaboration of web
users, can help in the process of teaching the machine to recognize objects.

Machine learning algorithms for object detection fall in two main categories
in terms of the annotation granularity characterizing their learning samples. The
algorithms that are designed to learn from strongly annotated samples [10], [11],
[12] (i.e. samples in which the exact location of an object within an image is
known) and the algorithms that learn from weakly annotated samples [13], [7],
[5], [14] (i.e. samples in which it is known that an object is depicted in the image,
but its location is unknown). In the first case, the goal is to learn a mapping
from visual features fi to semantic labels ci (e.g. a face [10], [12] or a car [11])
given a training set made of pairs (fi, ci). New images are annotated by using
the learned mapping to derive the semantic labels that correspond to the visual
features of the new image. On the other hand, in the case of weakly annotated
training samples the goal is to estimate the joint probability distribution be-
tween the visual features fi and the semantic labels ci given a training set made
of pairs between sets {(f1, . . . , fn), (c1, . . . , cm)}. New images are annotated by
choosing the semantic labels that maximize the learned joint probability distri-
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bution given the visual features of the new image. Some indicative works that
fall within the weakly supervised framework include the ones relying on aspect
models like probabilistic Latent Semantic Analysis (pLSA) [13], [15] and Latent
Dirichlet Allocation (LDA) [16], [17] that are typically used for estimating the
necessary joint probability distribution.

While model parameters can be estimated more efficiently from strongly an-
notated samples, such samples are very expensive to obtain raising scalability
problems. On the contrary, weakly annotated samples can be easily obtained
in large quantities from social networks. Motivated by this fact our work aims
at combining the advantages of both strongly supervised (learn model parame-
ters more efficiently) and weakly supervised (learn from samples obtained at low
cost) methods, by allowing the strongly supervised methods to learn from train-
ing samples that can be mined from collaborative tagging environments. The
problem we consider is essentially a multiple-instance learning problem in noisy
context, where we try to exploit the noise reduction properties that characterize
massive user contributions, given that they encode the collective knowledge of
multiple users. Indeed, Flickr hosts a series of implicit links between images
that can be mined using criteria such as geo-location information, temporal
proximity between the timestamps of images uploaded by the same user, or
images associated with the same event. The goal of this work is to exploit the
social aspect of the contributed content at the level of tags. More specifically,
given that in collaborative tagging environments the generated annotations may
be considered to be the result of the collaboration among individuals, we can
reasonably expect that tag assignments are filtered by the collaborative effort of
the users, yielding more consistent annotations. In this context, drawing from a
large pool of weakly annotated images, our goal is to benefit from the knowledge
aggregated in social tagging systems in order to automatically determine a set
of image regions that can be associated with a certain object.

In order to achieve this goal, we consider that if the set of weakly annotated
images is properly selected, the most populated tag-“term” and the most popu-
lated visual-“term” will be two different representations (i.e. textual and visual)
of the same object. We define tag-“terms” to be sets of tag instances grouped
based on their semantic affinity (e.g. synonyms, derivatives, etc.). Respectively,
we define visual-“terms” to be sets of region instances grouped based on their
visual similarity (e.g. clustering using the regions’ visual features). The most
populated tag-“term” (i.e. the most frequently appearing tag, counting also its
synonyms, derivatives, etc.) is used to provide the semantic label of the object
that the developed classifier is trained to recognize, while the most populated
visual-“term” (i.e. the most populated cluster of image regions) is used to pro-
vide the set of positive samples for training the classifier in a strongly supervised
manner. Our method relies on the fact that due to the common background that
most users share, the majority of them tend to contribute relevant tags when
faced with similar type of visual content [18]. Given this fact, it is expected
that as the pool of the weakly annotated images grows, the most frequently
appearing “term” in both tag and visual information space will converge into
the same object.
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In this context, the contribution of our work is on studying theoretically
and experimentally the conditions under which the most frequently appearing
“terms” in tag and visual information space are expected to converge into the
same object. This is evident in the ideal case where tags are accurate and
free of ambiguity, and no error is introduced by the visual analysis algorithms.
However, considering that this is rarely the case, we expect that the use of
a large size dataset favors convergence since a statistically significant amount
of samples can compensate for the error introduced by noisy tagging. On the
contrary, the amount of error introduced by the visual analysis algorithms (i.e.
segmentation accuracy and clustering efficiency) hinders convergence since the
formulated clusters of image regions may not be consistent in a semantic sense.
Our purpose in this work is to examine how these two aforementioned factors
influence the convergence level between the most frequently appearing “terms”
in visual and tag information space.

Preliminary versions of this work include [19] and [20]. The main difference
with [19] is that in this early work we have followed a different methodological
approach for selecting the set of regions that can be associated with a certain
object. More specifically, the full set of image regions was split in two clusters
and the cluster with the smallest population was selected to provide the train-
ing samples for the object detection model. Although successful for the objects
that appeared frequently in social context, it was observed that our framework
performed poorly for a non-negligible number of cases. This was the reason
for turning into the methodological approach presented in this work, an early
version of which was included in [20]. However, while the focus of [20] has been
mostly on experimenting with various feature spaces and tuning the clustering
algorithm, in this manuscript we provide a solid theoretical ground for gaining
insight into the functionality of the proposed approach and deriving some con-
clusions about its success or failure. Moreover, we experimentally examine the
ability of our method in scaling to various types of objects, allowing us to derive
useful conclusions about the learning efficiency of the resulting object detection
models.

The rest of the manuscript is organized as follows. Section 2 reviews the
related literature. Section 3 describes the general architecture of the framework
we propose for leveraging social media and provides technical details for the
analysis components that are employed by our framework. Section 4 investigates
theoretically the relation between the size of the dataset, the visual analysis
error and the convergence level of the most frequently appearing tag and visual
“terms”. Our experimental study is presented in Section 5, while Section 6
discusses the results and provides some directions for future work.

2. Related Work

Lately there has been considerable interest on weakly labeled data and their
potential to serve as the training samples for various computer vision tasks. The
common objective of these approaches is to compensate for the loss in learning
from weakly annotated and noisy training data, by exploiting the arbitrary large
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amount of available samples. Web 2.0 and collaborative tagging environments
have further boosted this idea by making available plentiful user tagged data.

Our work can be considered to relate with various works in the literature
in different aspects. From the perspective of exploring the trade-offs between
analysis efficiency and the characteristics of the dataset we find similarities with
[21], [22]. In [21] the authors explore the trade-offs in acquiring training data
for image classification models through automated web search as opposed to hu-
man annotation. The authors try to learn a model that operates on prediction
features (i.e. cross-domain similarity, model generalization, concept frequency,
within-training-set model quality) and provide quantitative measures in order
to estimate when the cheaply obtained data is of sufficient quality for training
robust object detectors. In [22] the authors investigate both theoretically and
empirically when effective learning is possible from ambiguously labeled images.
They formulate the learning problem as partially-supervised multiclass classifi-
cation and provide intuitive assumptions under which they expect learning to
succeed. This is done by using convex formulation and showing how to extend
a general multiclass loss function to handle ambiguity.

There are also works [23], [24], [25] that rely on the same principle assump-
tion with our work, stating that users tend to contribute similar tags when
faced with similar type of visual content. In [23] the authors are based on social
data to introduce the concept of flickr distance. Flickr distance is a measure
of the semantic relation between two concepts using their visual characteristics.
The authors rely on the assumption that images about the same concept share
similar appearance features and use images obtained from flickr to represent a
concept. Although different in purpose from our approach the authors present
some very interesting results demonstrating that social media like flickr can
be used to facilitate various computer vision tasks. In [24] the authors make
the assumption that semantically related images usually include one or several
common regions (objects) with similar visual features. Based on this assump-
tion they build classifiers using as positive examples the regions clustered in a
cluster that is decided to be representative of the concept. They use multiple
region-clusters per concept and eventually they construct an ensemble of clas-
sifiers. They are not concerned with object detection but rather with concept
detection modeled as a mixture/constellation of different object detectors. In
the same lines, the work presented in [25] investigates inexpensive ways to gen-
erate annotated training samples for building concept classifiers. The authors
utilize clickthrough data logged by retrieval systems that consist of the queries
submitted by the users, together with the images from the retrieved results,
that these users selected to click on in response to their queries. The method is
evaluated using global concept detectors and the conclusion that can be drawn
from the experimental study is that although the automatically generated data
cannot surpass the performance of the manually produced ones, combining both
automatically and manually generated data consistently gives the best results.

The employment of unsupervised methods (e.g. clustering) for mining im-
ages depicting certain objects, is the attribute that relates our work with [26],
[14]. In [26] the authors make use of community contributed collections and
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demonstrate a location-tag-vision-based approach for retrieving images of geography-
related landmarks. They use clustering for detecting representative tags for
landmarks, based on their location and time information. Subsequently, they
combine this information with vision-assisted process for presenting the user
with a representative set of images. Eventually, the goal is to sample the for-
mulated clusters with the most representative images for the selected landmark.
In [14] the authors are concerned with images that are found in community
photo collections and depict objects (such as touristic sights). The presented
approach is based on geotagged photos and the task is to mine images contain-
ing objects in a fully unsupervised manner. The retrieved photos are clustered
according to different modalities (including visual content and text labels) and
Frequent Itemset Mining is applied on the tags associated with each cluster in
order to assign cluster labels. Eventually, the formulated clusters are used to
automatically label and geo-locate new photos.

Finally our work bares also similarities with works like, [27], [28] that op-
erate on segmented images with associated text and perform annotation using
the joint distribution of image regions and words. In [27] the problem of object
recognition is viewed as a process of translating image regions to words, much as
one might translate from one language to another. The authors develop a num-
ber of models for the joint distribution of image regions and words, using weak
annotations. In [28] the authors propose a fully automatic learning framework
that learns models from noisy data such as images and user tags from flickr.
Specifically, using a hierarchical generative model the proposed framework learns
the joint distribution of a scene class, objects, regions, image patches, annotation
tags as well as all the latent variables. Based on this distribution the authors
support the task of image classification, annotation and semantic segmentation
by integrating out of the joint distribution the corresponding variables.

3. Framework Description

3.1. General Framework Architecture

The framework we propose for leveraging social media to train object de-
tection models is depicted in Fig. 1. The analysis components that can be
identified in our framework are: a) construction of an appropriate image set,
b) image segmentation, c) extraction of visual features from image regions, d)
clustering of regions using their visual features and e) supervised learning of
object recognition models using strongly annotated samples.

More specifically, given an object ck that we wish to train a detector for (e.g.
sky in Fig. 1), our method starts from a large collection of user tagged images
and performs the following actions. Images are appropriately selected so as to
formulate a set of images that emphasizes on object ck. By emphasizing we
refer to the case where the majority of the images within the image set depict a
certain object and that the linguistic description of that object can be obtained
from the most frequently appearing tag (see Section 3.2.1 for more details).
Subsequently, clustering is performed on all regions extracted from the images
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of the image set, that have been pre-segmented using an automatic segmentation
algorithm. During region clustering the image regions are represented by their
visual features and each of the generated clusters typically contains visually
similar regions. Since the majority of the images within the selected image
set depicts instances of the desired object ck, we anticipate that the majority of
regions representing the object of interest will be gathered in the most populated
cluster, pushing all irrelevant regions to the other clusters. Eventually, we use as
positive samples the visual features extracted from the regions belonging to the
most populated cluster, to train in a supervised manner an SVM-based binary
classifier for recognizing instances of ck. After training the classifier, object
detection is performed on unseen images by using the automatic segmentation
algorithm to extract their regions, and then apply the classifier to decide whether
these regions depict ck.
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Figure 1: Proposed framework for leveraging a set of user tagged images to train a model for
detecting the object sky.
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3.2. Analysis Components

We use the notation of Table 1 to provide technical details, formalize the
functionality and describe the links between the components employed by our
framework.

Table 1: Legend of used notation

Symbol Definition

S The complete social media dataset

N The number of images in S

Sck An image set, subset of S that
emphasizes on object ck

n The number of images in Sck

I An image from S

R = Complete set of regions identified in all images of Sck

{ri, i = 1, . . . ,m} by an automatic segmentation algorithm

T = Complete set of tags contributed for all images of Sck

{ti, i = 1, . . . , n} by web users

F = Complete set of visual features
{f(ri), i = 1, . . . ,m} extracted from all regions in R

C = Set of distinct objects that appear
{ci, i = 1, . . . , t} in the image set Sck

R = Set of clusters created by performing clustering
{ri, i = 1, . . . , o} on the regions extracted from all images of Sck

based on their visual similarity (i.e. visual-terms)

T = Set of clusters created by clustering together the tags
{tj, j = 1, . . . , d} contributed for all images in Sck , based on

their semantic affinity (i.e. tag-terms)

pci Probability that tag-based image selection
draws from S an image depicting ci

TCi Number of regions depicting object ci in Sck

*we use normal letters (e.g. z) to indicate individuals of some population and bold
face letters (e.g. z) to indicate clusters of individuals of the same population

3.2.1. Construction of an appropriate image set

In this section we refer to the techniques that we use in order construct a set
of images emphasizing on object ck, based on the associated textual information
(i.e. annotations). If we define ling(ck) to be the linguistic description of ck
(e.g. the words “sky”, “heaven”, “atmosphere” for the object sky), a function
describing the functionality of this component takes as input a large set of
images and ling(ck), and returns a set of images Sck , subset of the initial set,
that emphasizes on object ck.

imageSet(S, ling(ck)) = Sck ⊂ S (1)

For the purposes of our work we use three different implementations of this
function based on the type of associated annotations.
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Keyword-based selection. This approach is used for selecting images from strongly
annotated datasets. These datasets are hand-labeled at region detail and the
labels provided by the annotators can be considered to be mostly accurate and
free of ambiguity. Thus, in order to create Sck we only need to select the images
where at least one of its regions is labeled with ling(ck).

Flickr groups. Flickr groups (http://www.flickr.com/groups/) are virtual places
hosted in collaborative tagging environments that allow social users to share
content on a certain topic which can be also an object. Although managing
flickr groups still involves some type of human annotation (i.e. a human assigns
an image to a specific flickr group) it can be considered weaker than the previous
case since this type of annotation does not provide any information about the
boundaries of the object depicted in the image. From here on we will refer to the
images obtained from flickr groups as roughly-annotated images. In this case,
Sck is created by taking a predefined number of images from a flickr group that
is titled with ling(ck). Here, the tags of the images are not used as selection
criteria. One drawback of flickr groups derives from the fact that since they are
essentially virtual places they are not guaranteed to constantly increase their
size and therefore cater for datasets of arbitrary scale. Indeed, the total number
of positive samples that can be extracted from the images of a flickr group has
an upper limit on the total number of images that have been included in this
group by the users, which is typically much smaller than the total number of
flickr images that actually depict this object. This is the reason that we also
investigate the following selection technique that operates on image tags, and is
therefore capable of producing considerably larger sets of images emphasizing
on a certain object.

SEMSOC. SEMSOC stands for SEmantic, SOcial and Content-based clustering
and is applied by our framework on weakly annotated images in order to create
sets of images emphasizing on different topics. SEMSOC was introduced by
Giannakidou et. al. in [29] and is an un-supervised model for the efficient
and scalable mining of multimedia social-related data that jointly considers
social and semantic features. Given the tendency of social tagging systems to
formulate knowledge patterns that reflect the way content is perceived by the
web users [18], SEMSOC aims at identifying these patterns and create an image
set emphasizing on ck. The reason for adopting this approach in our framework
is to overcome the limitations that characterize collaborative tagging systems
such as tag spamming, tag ambiguity, tag synonymy and granularity variation
(i.e. different description level). The outcome of applying SEMSOC on a large
set of images S, is a number of image sets Sci ⊂ S, i = 1, . . . ,m, where
m is the number of created sets. This number is determined empirically, as
described in [29]. Then in order to obtain the image set Sck that emphasizes on
object ck, we select the SEMSOC-generated set Sci where its most frequent tag
closely relates with ling(ck). Although the image sets generated by SEMSOC
are not of the same quality as those obtained from flickr groups, they can be
significantly larger favoring the convergence between the most populated visual-
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(a) Vegetation (b) Sky (c) Sea (d) Person

Figure 2: Examples of image sets generated using SEMSOC (in caption the corresponding
most frequent tag). It is clear that the majority of images in each set include instances of the
object that is linguistically described by the most frequent tag. The image is best view in
color and with magnification.

and tag-“term”. In this case, the total number of positive samples that can be
obtained is only limited by the total number of images that have been uploaded
on the entire flickr repository and depict the object of interest. Moreover, since
SEMSOC considers also the social and semantic features of tags when creating
the sets of images, the resulting sets are expected to be of higher semantic
coherence than the sets created using for instance, a straightforward tag-based
search. Fig. 2 shows four examples of image clusters generated by SEMSOC
along with the corresponding most frequent tag.

3.2.2. Segmentation

Segmentation is applied on all images in Sck with the aim to extract the
spatial masks of visually meaningful regions. In our work, we have used a K-
means with connectivity constraint algorithm as described in [30]. The output of
this algorithm, when applied to a single image, is a set of segments which roughly
correspond to meaningful objects, as shown in Fig. 1. Thus, the segmentation
analysis component takes as input the full set of images that are included in
Sck and generates an extensive set of independent image regions:

segm(Sck) = {ri ∈ R : ∀I ∈ Sck} (2)

3.2.3. Visual Descriptors

In order to visually describe the segmented regions we have employed an
approach similar to the one described in [31], with the important difference that
in our case descriptors are extracted to represent each of the identified image
regions, rather than the whole image. More specifically, for detecting interest
points we have applied the Harris-Laplace point detector on intensity channel,
which has shown good performance for object recognition [32]. In addition, we
have also applied a dense-sampling approach where interest points are taken
every 6th pixel in the image. For each interest point (identified both using
the Harris-Laplace and dense sampling) the 128-dimensional SIFT descriptor
is computed using the version described by Lowe [33]. Then, a Visual Word
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Vocabulary (Codebook) is created by using the K-Means algorithm to cluster
in 300 clusters, approximately 1 million SIFT descriptors that were sub-sampled
from a total amount of 28 million SIFT descriptors extracted from 5 thousand
training images. The Codebook allows the SIFT descriptors of all interest points
enclosed by an image region, to be vector quantized against the set of Visual
Words and create a histogram. Thus, a 300-dimensional feature vector f(ri) is
extracted ∀ri ∈ R, which contains information about the presence or absence
of the Visual Words included in the Codebook. Then, all feature vectors are
normalized so as the sum of all elements of each feature vector to be equal to 1.
Thus, the visual descriptors component takes as input the full set of independent
image regions R extracted from all images in Sck and generates an equivalent
number of feature vectors.

vis(R) = {f(ri) ∈ F : ∀ri ∈ R} (3)

3.2.4. Clustering

For performing feature-based region clustering we applied the affinity prop-
agation clustering algorithm on all extracted feature vectors F. Affinity propa-
gation was proposed by Frey and Dueck [34] and selected for our work due to
the following reasons:

a) The requirements of our framework imply that in order to learn an efficient
object detection model, clustering will have to be performed on a considerably
large number of regions, making computational efficiency an important issue.
In contrast to common clustering algorithms that start with an initial set of
randomly selected centers and iteratively refine this set so as to decrease the sum
of squared errors, affinity propagation simultaneously considers all data points
as potential centers. By viewing each data point as a node in a network, affinity
propagation recursively transmits real-valued messages along the edges of the
network until a good set of centers and corresponding clusters emerges. In this
way, it removes the need to re-run the algorithm with different initializations,
which is very beneficiary in terms of computational efficiency.

b) The fact that the number of objects depicted in the full set of images can
not be known in advance, poses the requirement for the clustering procedure
to automatically determine the appropriate number of clusters based on the
analyzed data. Affinity propagation, rather than requiring that the number of
clusters is pre-specified, takes as input a real number for each data point, called
“preference”. These “preference” values influence the number of identified clus-
ters, which also emerges from the message-passing procedure. If a priori, all data
points are equally suitable as centers (as in our case) the preferences should be
set to a common value. This value can be varied to produce different numbers
of clusters and taken for example to be the median of the input similarities (re-
sulting in a moderate number of clusters) or their minimum (resulting in a small
number of clusters). The minimum value has been used in our experiments.

Thus, the clustering component takes as input the full set of feature vectors
extracted by the visual descriptors component and generates clusters of feature
vectors based on a similarity distance between those vectors. These clusters
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of feature vectors can be directly translated to clusters of regions since there
is one to one correspondence between regions and feature vectors. Thus, the
functionality of the clustering component can be described as follows:

clust(F) = {ri ∈ R} (4)

Out of the generated clusters of regions we select the most populated rv, as
described in detail in Section 4, and we use the regions included in this cluster
to learn the parameters of a model recognizing ck.

3.2.5. Learning Model Parameters

Support Vector Machines (SVMs) [35] were chosen for generating the ob-
ject detection models due to their ability in smoothly generalizing and coping
efficiently with high-dimensionality pattern recognition problems. All feature
vectors corresponding to the regions assigned to the most populated rv of the
generated clusters, are used as positive samples for training a binary classifier.
Negative examples are chosen arbitrarily from the remaining dataset. Tuning
arguments include the selection of Gaussian radial basis kernel and the use of
cross validation for selecting the kernel parameters. Thus, the functionality of
the model learning component can be described by the following function:

svm(vis(rv), ck) = mck (5)

4. Rationale of our approach

4.1. Problem Formulation

The goal of our framework is to train an SVM-based binary classifier in order
to recognize whether a region ri of an un-seen image I depicts a certain object ck.
In order to do that, we need to provide the classifier with a set of positive and a
set of negative samples (i.e. image regions) for ck. Given that negative samples
can be chosen arbitrarily from a random population, our main problem is to find
a set of image regions depicting the object ck, (r

+, ck). However, the annotations
found in social networks are in the form of tagged images {I, (t1, t2, . . . , tn)},
which can be transformed to {(r1, r2, . . . , rm)I , (t1, t2, . . . , tn)

I} after segmenting
I into regions. Ideally, the tagged images could be used to extract the positive
samples for ck if we could perfectly cluster the visual and tag information space.
More specifically, If we take R and T to be the total set of regions and tags
extracted from all images in S respectively, by performing clustering based
on the similarity between the individuals of the same population (i.e. visual
similarity for image regions and semantic affinity for contributed tags), we are
able to generate clusters of individuals in each population as shown below:

visualCluster(R) = ri, ri ⊆ R visual-terms
tagCluster(T) = tj , tj ⊆ T tag-terms

(6)

Now, given a large set of tagged images I ∈ S this process would produce
for each object cl depicted by the images of S, a triplet of the form (ri, tj , cl).
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Ideally in each triplet, ri is the set of regions extracted from all images in S that
depict cl, and tj is the set of tags from all images in S that were contributed to
linguistically describe cl. We consider that an object cl may have many different
instantiations in both visual (e.g. different angle, illumination, etc.) and tag
(e.g. synonyms or derivatives of the words expressing the object; for instance
the object sea can be linguistically described using many different words such
as “sea”, “seaside”, “ocean”, etc.) information space. Thus, ri can be used to
provide the positive samples needed to train the SVM-based classifier, while ti
can be used to provide the linguistic description of the object that the classifier
is trained to recognize. However, the aforementioned process can only be made
feasible in the ideal case where the image analysis works perfect and there is no
noise in the contributed tags. This is highly unlikely due to the following reasons.
From the perspective of visual analysis, in case of over or under segmentation, or
in case the visual descriptors are inadequate to perfectly discriminate between
different semantic objects, it is very likely that the clustering algorithm will
create a different number of clusters than the actual number of semantic objects
depicted by the images of S, or even mix regions depicting different objects into
the same cluster. From the perspective of tag-analysis the well known problems
of social networks (i.e. lack of structure, ambiguity, redundancy, emotional
tagging) hinders the process of clustering together the tags contributed to refer
to the same object.

For this reason, in our work, we relax the constraints of the aforementioned
problem and instead of requiring that one triplet is extracted for every object cl
depicted by the images of S, we only aim at extracting the triplet corresponding
to the object ck, which is the object emphasized by the processed image set.
Thus, the first step is to create an appropriate set of images Sck that emphasizes
on object ck. Then, based on the assumption that there will be a connection
between what is depicted by the majority of the images in Sck and what is
described by the majority of the contributed tags, we investigate the level of
semantic consistency (i.e. the level of which the majority of regions included
in rv depict ck and the majority of tags included in tg are linguistically related
with ck) of the triplet (rv, tg, ck), if v and g are selected as follows. Since both
ri and tj are clusters (of images regions and tags, respectively), we can apply
the Pop(·) function on them, that calculates the population of a cluster (i.e.
the number of instances included in the cluster). Then v and g are selected
such as the corresponding clusters are the most populated from all clusters
generated by the clustering functions of eq. (6), that is v = argmaxi(Pop(ri))
and g = argmaxj(Pop(tj)).

Although the errors generated from imperfect visual analysis may have differ-
ent causes (e.g. segmentation error, imperfect discrimination between objects),
they all hinder the creation of semantically consistent region clusters. Therefore,
in our work, we consider that the error generated from the inaccurate clustering
of image regions with respect to the existing objects (errorcl−obj), incorporates
all other types of visual analysis error. Similarly, although the contributed tags
may incorporate different types of noise (i.e. ambiguity, redundancy, granularity
variation, etc.) they all hinder the process of associating a tag with the objects
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that are depicted in the image, and thus is reflected on the level of emphasis that
is given on object ck when collecting Sck . Eventually, the problem addressed in
this work is what should be the characteristics of Sck and errorcl−obj so as the
triplet (rv, tg, ck) determined as described above, to satisfy our objective (i.e.
that the majority of regions included in rv depicts ck and the majority of tags
included in tg are linguistically related with ck).

4.2. Image set construction

In order to investigate how the characteristics of the constructed image set Sc

impact the success probability of our approach, we need to analytically express
the association between the number of images included in Sc with the expected
number of appearances of any object depicted by those images. Using image
tag information to construct an image set that emphasizes on a certain object
(e.g. c1), can be viewed as the process of selecting images from a large pool
of weakly annotated images using as argument ling(c1) (along with possible
synonyms, derivatives, etc.). Although misleading and ambiguous tags will
hinder this process, the expectation is that as the number of selected images
grows, there will be a connection between what is depicted in the majority of
the selected images and what is described by the majority of the contributed
tags. This can be formalized as follows. When one picks an image from a pool
of weakly annotated images using ling(c1) as an argument, the probability that
the selected image depicts c1 is greater than the probability that the image
depicts any other object.

Let us assume that we construct an image set Sc1 ⊂ S that emphasizes
on object c1. What we are interested in is the frequency distribution of objects
ci ∈ C appearing in Sc1 based on their frequency rank. We can view the process
of constructing Sc1 as the act of populating an image set with images selected
from a large dataset S using certain criteria. In this case, the number of times
an image depicting object ci appears in Sc1 , can be considered to be equal with
the number of successes in a sequence of n independent success/failure trials,
each one yielding success with probability pci . Given that S is sufficiently large,
drawing an image from this dataset can be considered as an independent trial.
Thus, the number of images in Sc1 that depict object ci ∈ C can be expressed
by a random variable K following the binomial distribution with probability
pci . Eq. (7) shows the probability mass function of a random variable following
the binomial distribution:

Prci(K = k) =

(

n

k

)

pkci(1− pci)
n−k (7)

Given the above, we can use the expected value E(K) of a random variable
following the binomial distribution to estimate the expected number of images
in Sc1 that depict object ci ∈ C, if they are drawn from the initial dataset S with
probability pci . This is actually the value of k maximizing the corresponding
probability mass function, which is:

Eci(K) = npci (8)
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Figure 3: a) Distribution of #appearances ∀ci ∈ C based on their frequency rank, for n=100
and pc1=0.9, pc2 = 0.7, pc3 = 0.5, pc4 = 0.3, pc5 = 0.1. b) Difference of #appearances
between c1, c2, using fixed values for pc1 = 0.8 and pc2 = 0.6 and different values for n.

If we consider γ to be the average number of times an object appears in an
image, then the number of appearances (#appearances) of an object in Sc1 is:

TCi = γnpci (9)

Moreover, based on the assumption mentioned earlier in this section, we
accept that there will be an object c1 that is drawn (i.e. appears in the se-
lected image) with probability pc1 higher than pc2 , which is the probability
that an image depicting c2 is drawn, and so forth for the remaining ci ∈ C.
This assumption is experimentally verified in Section 5.1 where the frequency
distribution of objects for different image sets are measured in a manually an-
notated dataset. Finally, using eq. (9) we can estimate the expected number
of appearances (#appearances) of an object in Sc1 , ∀ci ∈ C. Fig. 3(a) shows
the #appearances ∀ci ∈ C against their frequency rank, given some example
values for pci with pc1 > pc2 > . . .. It is clear from eq. (9) that if we consider
the probabilities pci to be fixed the expected difference, in absolute terms, on
the #appearances between the first and the second most highly ranked objects
c1 and c2, increases as a linear function of n (see Fig. 3(b) for some examples).
Based on this observation and given the fact that as N increases n will also in-
crease, we examine how the population of the generated region clusters relates
with errorcl−obj and n.

4.3. Clustering

The purpose of this section is to help the reader derive some intuitive conclu-
sions about the impact of the dataset size and the error introduced by the visual
analysis algorithms errorcl−obj , on the success probability of our approach. In
order to do this we examine clustering from the perspective of how much a
possible solution deviates from the perfect case. This allows us to approximate
errorcl−obj with a measurable quantity and derive an analytical form of the
association between the visual analysis error, the size of the dataset and an
indicator of the success probability of our approach.
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Given an image set Sc1 that emphasizes on object c1 the goal of region
clustering is to group together regions representing the same object. If per-
fect grouping is accomplished in a semantic sense, the distribution of clusters’
population based on their population rank, coincides with the distribution of
objects’ #appearances based on their frequency rank. In this case, the most
populated cluster contains all regions depicting the most frequently appearing
object. However, as the visual analysis techniques are expected to introduce
error, we are interested on the connection between the errorcl−obj and the pop-
ulation of the resulting clusters. Since there is no way to explicitly measure
the errorcl−obj , we use the notation of Table 2 to approximate its effect on the
population of the generated clusters.

Table 2: Notations for Clustering

Symbol Definition

Popj Population of cluster rj
FPi,j False positives of rj with respect to ci

FNi,j False negatives of rj with respect to ci

DRi,j = Displacement of rj ,
FPi,j − FNi,j with respect to ci

Without loss of generality we work under the assumption that due to the
errorcl−obj it is more likely for the cluster corresponding to the second most
frequently appearing object, to become more populated than the cluster corre-
sponding to the first most frequently appearing object, than any other cluster.
A cluster that corresponds to an object ci is considered to be the cluster that
exhibits the highest F-measure (F1) score, with respect to that object, among
all generated clusters. Thus, the cluster corresponding to object ci is found
using function Z, which is defined as:

Z(ci,R) = rκ, κ = argmax
j

(F1(ci, rj)) (10)

where F1 is the harmonic mean of precision (prec) and recall (rec) and is calcu-
lated using the following equation:

F1(ci, wj) =
2preci,jreci,j
preci,j+reci,j

with

reci,j =
TCi−FNi,j

TCi
, preci,j =

TCi−FNi,j

Popj

(11)

Then, given that rκ has been decided to be the corresponding cluster of
ci, the population Popκ of the cluster rκ is equal to the number of regions
TCi depicting ci, adding the number of false positives FPi,κ and removing the
number of false negatives FNi,κ that have been generated from the errorcl−obj .
Thus, we have:

Popκ = TCi + FPi,κ − FNi,κ ⇒

Popκ = TCi +DRi,κ

(12)
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DRi,κ is defined to be the displacement of rk with respect to ci and is
an indicator of how much the content of rk deviates from the perfect solution.
DRi,κ shows how the Popκ of cluster rκ is modified according to the errorcl−obj

introduced by the visual analysis algorithms. Positive values of DRi,κ indicates
inflows in rκ population, while negative values indicate leakages. In the typical
case where the clustering result does not exhibit high values for FPi,κ and FNi,κ

simultaneously (see Section 5.2), DRi,κ is also an indicator of result’s quality
since it shows how much the content of a cluster has been changed with respect
to the perfect case. Let us denote rα = Z(c1,R) and rβ = Z(c2,R) the clusters
corresponding to c1 (i.e. the most frequently appearing object in Sc1) and c2
(i.e. the second most frequently appearing object in Sc1), respectively. We are
interested in the relation connecting Popα and Popβ given DR1,α, DR2,β. Thus
we have:

Popα − Popβ = TC1 +DR1,α − TC2 −DR2,β ⇒

Popα − Popβ = (TC1 − TC2) + (DR1,α −DR2,β)
(13)

We know about the first parenthesis on the right hand side of the equation
that since Sc1 emphasizes on c1 this object will appear more frequently than
any other object in Sc1 , thus TC1 − TC2 > 0. In the case where the second
parenthesis on the right hand side of the equation is also positive (i.e. DR1,α −
DR2,β > 0), the value Popα−Popβ will be greater than zero since it is the sum
of two positive numbers. This indicates that despite the errorcl−obj , cluster rα
remains the most populated of the generated clusters and continues to be the
most appropriate (i.e. in terms of the maximum F1 criterion) cluster for training
a model detecting object c1. When DR1,α − DR2,β > 0 we can distinguish
between the three qualitative cases for clustering that are described in Table 3.
The superscripts are used to indicate the sign (i.e. positive or negative) of the
corresponding displacement in each case.

If DR1,α − DR2,β < 0, the two parentheses of the right hand side of the
eq. (13) have different signs and the sign of the value Popα − Popβ depends on
the difference between the absolute values of |TC1−TC2| and |DR1,α−DR2,β |.
In this case one of the factors controlling whether the most populated cluster
rα will be the most appropriate cluster for training a model detecting c1, is
the absolute difference between TC1 and TC2, which according to our analysis
in Section 4.2 depends largely on the number of images n in Sc1 . The three
qualitative cases for clustering that we can identify when DR1,α −DR2,β < 0
are shown in Table 3.

In order to get an intuitive view of the relation between n and the proba-
bility of selecting the most appropriate cluster when DR1,α − DR2,β < 0, we
approximate the effect of errorcl−obj on the distribution of the generated clus-
ters’ population by measuring how much a certain clustering solution deviates
from the perfect solution. In order to do this, we view clustering as a recursive
process with starting point the perfect solution. Then, the deviation of some
clustering solution t + 1 from the perfect solution depends on the deviation of
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Table 3: Qualitative cases for clustering

DR+
1,α > DR+

2,β Both wα and wβ increase
their population but the
inflows of wα are greater
than the inflows of wβ .

DR1,α −DR2,β > 0
DR+

1,α DR−

2,β wα increases its popula-
tion while wβ reduces its
own.

DR−

1,α > DR−

2,β Both wα and wβ reduce
their population but the
leakages of wα are lesser
than the leakages of wβ.

DR+
1,α < DR+

2,β Both wα and wβ increase
their population but the
inflows of wα are lesser
than the inflows of wβ .

DR1,α −DR2,β < 0
DR−

1,α DR+
2,β wα reduces its popula-

tion while wβ increases
its own.

DR−

1,α < DR−

2,β Both wα and wβ re-
duce their population
but the leakages of wα

are greater than the leak-
ages of wβ .

*the superscripts indicate the sign (i.e. positive or negative) of the
corresponding displacement

the previous solution t from the perfect solution. Respectively, the population
of a cluster in solution t+1 is equal to the population of this cluster in the pre-
vious solution t, adding the number of false positives and removing the number
of false negatives that have been generated from the transition t → t+ 1. This
can be expressed using the following recursive equation:

Popt+1
k = Poptk + FP t→t+1

i,k − FN t→t+1
i,k ⇒

Popt+1
k = Poptk +DRt→t+1

i,k

(14)

If we take as starting point the perfect solution, we have Pop0k = TCi. If we
also consider DRdt

i,k to be constant for all transitions, we can find a closed-form
solution for the recursive equation:

Popt+q
k = TCi + qDRdt

i,k (15)

Where q is the number of transitions that have taken place and provides
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and intuitive measure of how much distance there is between current clustering
solution and the perfect solution. However, TCi is the number of times the
object ci appears in Sc (#appearances) and according to eq. (9) we have TCi =
γnpci. By substituting TCi in eq. (15) we have:

Popt+q
α = γnpci + qDRdt

i,k (16)

Given that DR1,α − DR2,β < 0, the population of cluster rα is increas-
ing/decreasing with a rate lower/higher from the rate that rβ increases/decreases.
So, we are interested in the number of transitions that are needed for causing the
population of rα to become equal or less to the population of rβ . The equality
corresponds to the minimum number of transitions.

Popt+qr
α − Popt+q

β ≤ 0

γnpc1 + qDRdt
1,α − γnpc2 − qDRdt

2,β ≤ 0

q ≥ γn(pc1−pc2 )

(DRdt
2,β−DRdt

1,α)

(17)

In order to derive some conclusions from this equation we need to make the
following remarks. Given our basic assumption we have pc1 > pc2 . Moreover,
given that DR1,α − DR2,β < 0 we can also accept that DRdt

1,α − DRdt
2,β < 0.

Thus, all terms on the right hand side of eq. (17) are positive. It is clear from
eq. (17) that the number of transitions q required for causing rα not to be
the most populated of the generated clusters, increases proportionally to the
dataset size n and the difference of probabilities (pc1 − pc2). It is important
to note that q does not correspond to any physical value since clustering is
not a recursive process, it is just an elegant way to help us derive the intuitive
conclusion that as n increases, there is higher probability in rα being the most
appropriate cluster for learning c1, due to the increased amount of deviation
from the perfect solution that can be tolerated.

5. Experimental study

The goal of our study is to use real social data for experimentally validating
our expectations on the size of the processed dataset and the error introduced
by the visual analysis algorithms. We examine the conditions under which the
most populated visual- and tag-“term” converge into the same object and eval-
uate the efficiency of the object detection models generated by our framework.
To this end, in Section 5.1 we experimentally verify that the absolute difference
between the first and second most frequently appearing objects in a dataset
constructed to emphasize on the former, increases as the size of the dataset
grows. Section 5.2 provides an experimental insight on the errorcl−obj intro-
duced by the visual analysis algorithms and examines whether our expectation
on the most populated cluster holds. In Section 5.3 we compare the quality of
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object models trained using flickr images leveraged by the proposed framework,
against the models trained using manually provided, strongly annotated sam-
ples. Moreover, we also examine how the volume of the initial dataset affects
the efficiency of the resulting models. In addition to the above, in Section 5.4
we examine the ability of our framework to scale in various types of objects. We
close our experimental study in Section 5.5 where we compare our work with
other existing methods in the literature.

To carry out our experiments we have relied on three different types of
datasets. The first type includes the strongly annotated datasets constructed by
asking people to provide region detail annotations of images pre-segmented with
the automatic segmentation algorithm of Section 3.2.2. For this case we have
used a collection of 536 images SB from the Seaside domain annotated in our
lab (http://mklab.iti.gr/project/scef) and the publicly available MSRC dataset
(http://research.microsoft.com/vision/cambridge/recognition)SM consisting of
591 images. The second type refers to the roughly-annotated datasets like the
ones obtained from flickr groups. In order to create a dataset of this type SG,
for each object of interest, we have downloaded 500 member images from a flickr

group that is titled with a name related to the name of the object, resulting in 25
groups of 500 images each (12500 in total). The third type refers to the weakly
annotated datasets like the ones that can be collected freely from collaborative
tagging environments. For this case, we have crawled 3000 SF3K and 10000
SF10K images from flickr, in order to investigate the impact of the dataset size
on the efficiency of the generated models. Depending on the annotation type we
use the tag-based selection approaches presented in Section 3.2.1 to construct
the necessary image sets Sc. Table 4 summarizes the information of the datasets
used in our experimental study. Note that since our approach is working on the
level of regions rather than the level of images, the number of media objects
handled by our framework (i.e. feature extraction, clustering, SVM-learning)
is much larger than the number of images depicted in Table 4, approximately
multiplied by 7.

5.1. Objects’ distribution based on the size of the image set

As claimed in Section 4.2, we expect the absolute difference between the
number of appearances (#appearances) of the first (c1) and second (c2) most
highly ranked objects within an image set Sc1 , to increase as the volume of
the dataset increases. This is evident in the case of keyword-based selection
since, due to the fact that the annotations are strong, the probability that the
selected image depicts the intended object is equal to 1, much greater than the
probability of depicting the second most frequently appearing object. Similarly,
in the case of flickr groups, since a user has decided to assign an image to the
flickr group titled with the name of the object, the probability of this image
depicting the intended object should be close to 1. On the contrary, for the
case of SEMSOC that operates on ambiguous and misleading tags this claim
is not evident. For this reason and in order to verify our claim experimentally,
we plot the distribution of objects’ #appearances in four image sets that were
constructed to emphasize on objects sky, sea, vegetation, person, respectively.

20



Table 4: Datasets Information
Symbol Source Annotation

Type

No. of Im-

ages

objects Selection

approach

SB internal
dataset

strongly an-
notated

536 sky, sea, vege-
tation, person,
sand, rock, boat

keyword
based

SM MSRC strongly an-
notated

591 aeroplane, bicy-
cle, bird, boat,
body, book, cat,
chair, cow, dog,
face, flower, road,
sheep, sing, wa-
ter, car, grass,
tree, building,
sky

keyword
based

SG flickr

groups

roughly-
annotated

12500 (500 for
each object)

sky, sea, vegeta-
tion, person and
the 21 MSRC ob-
jects

flickr groups

SF3K flickr weakly an-
notated

3000 cityscape, sea-
side, mountain,
roadside, land-
scape, sport-side

SEMSOC

SF10K flickr weakly an-
notated

10000 jaguar, turkey,
apple, bush, sea,
city, vegetation,
roadside, rock,
tennis

SEMSOC

These image sets were generated from both SF3K and SF10K using SEMSOC.
Each of the bar diagrams depicted in Fig. 4, describes the distribution of objects’
#appearances inside an image set Sc, as evaluated by humans. This annotation
effort was carried out in our lab and its goal was to provide weak but noise-
free annotations in the form of labels for the content of the images included in
both SF3K and SF10K . It is clear that as we move from SF3K to SF10K the
difference, in absolute terms, between the number of images depicting c1 and c2
increases in all four cases, advocating our claim about the impact of the dataset
size on the distribution of objects’ #appearances, when using SEMSOC.

5.2. Clustering assessment

The purpose of this experiment is to provide insight on the validity of our
approach in selecting the most populated cluster, in order to train a model
recognizing the most frequently appearing object. In order to do so we evaluate
the content of each of the formulated clusters using the strongly annotated
datasets SB and SM . More specifically, ∀ci depicted in SB or SM we obtain
Sci ⊂ SB or Sci ⊂ SM using keyword based search and apply clustering on
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(d) Person

Figure 4: Distribution of objects’ #appearance in an image set Sc, generated from SF3K

(upper line) and SF10K (bottom line) using SEMSOC

the extracted regions. Then, for each Sci we calculate the values TC1, DR1,α

and Popα for the most frequently appearing object c1 and its corresponding
cluster ra; and TC2, DR2,β and Popβ for the second most frequently appearing
object c2 and its corresponding cluster rβ . Both rα and rβ are determined based
on eq. (10) of Section 4.3. Subsequently, we examine whether rα is the most
populated among all the clusters generated by the clustering algorithm, not
only among rα and rβ (i.e. we examine if Popα = maxPopi for all generated
clusters). If this is the case we consider that our framework has succeeded in
selecting the most appropriate cluster for training a model to recognize c1 (a

√

is inserted in the corresponding entry of the Suc column of Table 5). If rα is
not the most populated cluster, we consider that our framework has failed in
selecting the appropriate cluster (a X is inserted in the corresponding entry of
the Suc. column). Table 5 summarizes the results for the 7 objects of SB and
the 19 objects of SM (the objects bicycle and cat were omitted since there was
only one cluster generated). We notice that the appropriate cluster is selected
in 21 out of 26 cases advocating our expectation that the errorcl−obj introduced
by the visual analysis process is usually limited and allows our framework to
work efficiently. By examining the figures of Table 5 more thoroughly we realize
that DR1,α −DR2,β > 0 for all success cases, with the only exception of object
sky for SB. This is in accordance with our analysis in Section 4.3 which showed
that if the relative inflow from rα to rβ is positive our framework will succeed
in selecting the appropriate cluster. In the case of object sky our analysis does
not hold due to the excessive level of over-segmentation. Indeed, by examining
the content of the images belonging to the image set Ssky ⊂ SB we realize
that despite the fact that sky is the most frequently appearing object in the
image set, after segmenting all images in Ssky and manually annotating the
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Figure 5: a) Diagram showing (FP,FN) scatter plot for rα and rβ clusters of all objects. It is
evident that the (FP,FN) pairs produced by the clustering algorithm lay close to the diagonal
(FP = FN) only when they are close to (0,0). b) Diagram showing the F-Measure scores
exhibited for the rα cluster of each object, against the observed |DRi,j | value of this cluster
normalized with the total number of true positives TCi. The qualitative aspect of |DRi,j | is
advocated by the observation that the F-measure tends to decrease as the ratio |DRi,j |/TCi

increases.

extracted regions, the number of regions depicting sky TC1 = 470 is less than
the number of regions depicting sea TC2 = 663. This is a clear indication that
the effect of over-segmentation has inverted the objects’ distribution making sea

the most frequently appearing object in Ssky. In accordance with our analysis
are also the fail cases where the relative inflow from rα to rβ is negative (i.e.
DR1,α−DR2,β < 0). In none of this 5 cases the difference between (TC1−TC2)
was high enough to compensate for the error introduced by the visual analysis
process.

Additionally, we have used the experimental observations of Table 5 in or-
der to verify the qualitative aspect of |DRi,j | mentioned in Section 4.3. More
specifically, by producing the (FP,FN) scatter plot for the rα and rβ clusters of
the 7 Seaside and 19 MSRC objects (Fig. 5(a)), we verify that no (FP,FN) pairs
lay close to the diagonal (FP = FN) unless they are close to (0,0). Thus, given
that DRi,j = FPi,j − FNi,j , there are no cases exhibiting high values for both
FP and FN and low values for |DRi,j |. This renders |DRi,j | a valid indicator
for the quality of the result since a poor quality cluster exhibiting high values
for either FP or FN, exhibit also high values for |DRi,j |. This qualitative aspect
of |DRi,j | is also verified by the diagram of Fig. 5(b). In this diagram we plot
the F-measure scores for the rα cluster of each object (see Section 5.3), against
the observed |DRi,j | value of this cluster normalized by the total number of
true positives TCi. It is evident from the diagram that the F-Measure tends to
decrease as the ratio |DRi,j |/TCi increases, showing a clear connection between
the |DRi,j | quantity used in our analysis and the quality of the result.
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Table 5: Clustering Output Insights

Sci n c1 TC1 DR1,α Popα c2 TC2 DR2,β Popβ Suc. sign(DR1,α−
DR2,β)

SB (Seaside)

Ssea ∗ 395 sea 732 -404 328 sky 395 -212 183 X -

Ssand 359 sand 422 136 558 sky 337 -103 234
√

+

Srock 53 rock 155 95 250 sea 86 47 133
√

+

Sboat 68 boat 96 120 216 sky 69 -57 12
√

+

Sperson 215 person 435 -238 198 sea 406 -99 307 X -

Svegetation80 vegetation157 140 297 sea 114 59 173
√

+

Ssky 418 sky 470 -246 224 sea 663 -324 339 X +

SM (MSRC )

Ssign 27 sign 65 101 166 building 19 -10 9
√

+

Ssky 129 sky 139 -89 50 building 115 119 234 X -

Sbuilding 88 building 209 304 513 sky 52 -17 35
√

+

Scar 6 car 6 37 43 road 7 -3 4
√

+

Sroad 74 road 94 269 363 sky 32 93 125
√

+

Stree 100 tree 226 258 484 sky 45 124 169
√

+

Sbody 32 body 54 195 249 face 19 4 23
√

+

Sface 21 face 35 121 156 body 17 10 27
√

+

Sgrass 154 grass 221 367 588 sky 48 133 181
√

+

Sbird 29 bird 58 71 129 grass 15 -6 9
√

+

Sdog 27 dog 56 84 140 road 11 21 32
√

+

Swater 62 water 113 182 295 sky 19 7 26
√

+

Scow 43 cow 109 114 223 grass 57 -51 6
√

+

Ssheep 5 sheep 13 15 28 grass 13 -11 2
√

+

Sflower 28 flower 60 103 163 grass 8 12 20
√

+

Sbook 33 book 149 -55 94 face 5 153 158 X -

Schair 19 chair 39 95 134 road 9 -3 6
√

+

Saeroplane18 aeroplane 12 50 68 sky 12 -8 4
√

+

Sboat 15 boat 25 45 70 water 25 -7 18
√

+

∗ although Popα > Popβ in this case, the population Popγ of the cluster corresponding
to the third most frequently appearing object was found to be the highest, which is why we

consider this case as a failure
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Figure 6: Performance comparison between four object recognition models that are learned
using images of different annotation quality (i.e. strongly, roughly and weakly)

5.3. Comparing object detection models

In order to compare the efficiency of the models generated using training
samples with different annotation type (i.e. strongly, roughly, weakly), we need
a set of objects that are common in all three types of datasets. For this rea-
son after examining the contents of SB, reviewing the availability of groups in
flickr and applying SEMSOC on SF3K and SF10K , we determined 4 object cat-
egories Cbench={sky, sea, vegetation, person}. These objects exhibited signifi-
cant presence in all different datasets and served as benchmarks for comparing
the quality of the different models. For each object ci ∈ Cbench one model was
trained using the strong annotations of SB, one model was trained using the
roughly-annotated images contained in SG, and two models were trained using
the weak annotations of SF3K and SF10K , respectively. In order to evaluate
the performance of these models, we test them using a subset (i.e. 268 images)
of the strongly annotated dataset SB

test ⊂ SB, not used during training. The F1

metric was used for measuring the efficiency of the models.
By looking at the bar diagram of Fig. 6, we derive the following conclusions:

a) Model parameters are estimated more efficiently when trained with strongly
annotated samples, since in 3 out of 4 cases they outperform the other models
and sometimes by a significant amount (e.g. sky, person). b) Flickr groups can
serve as a less costly alternative for learning the model parameters, since using
the roughly-annotated samples we get comparable and sometimes even better
(e.g. vegetation) performance than manually trained models, while requiring
considerable less effort to obtain the training samples. c) The models learned
from weakly annotated samples are usually inferior from the other cases, espe-
cially in cases where the proposed approach for leveraging the data has failed
in selecting the appropriate cluster (e.g. sea and sky for the SF3K dataset).
However, the efficiency of the models trained using weakly annotated samples
improves when the size of the dataset increases. From the bar diagram of Fig. 6,
it is clear that when using the SF10K the incorporation of a larger number of
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positive samples into the training set improves the generalization ability of the
generated models in all four cases. Moreover, in the case of object sea we
note also a drastic improvement of the model’s efficiency. This is attributed
to the fact that the increment of the dataset size compensates, as explained
in Section 4, for the errorcl−obj and allows the proposed method to select the
appropriate cluster. On the other hand, in the case of object sky it seems that
the correct cluster is still missed despite the use of a larger dataset. The correct
cluster is also missed for the object sky when the weakly annotated samples are
obtained from flickr groups. This shows that errorcl−obj is considerably high
for this object and does not allow our framework to select the correct cluster.

5.4. Scaling in various types of objects

In order to test the ability of our approach in scaling to various types of
objects we have performed experiments using the MSRC dataset. MSRC (SM )
is a publicly available dataset that has been widely used to evaluate the perfor-
mance of many object detection methods. The reason for choosing MSRC over
other publicly available benchmarking datasets, such as the the PASCAL VOC
challenge [36], was its widespread adoption by many works in the literature al-
lowing us to compare our work with state of the art methods (see Section 5.5).
MSRC consists of 591 hand-segmented images annotated at region detail for 23
objects. Due to their particular small number of samples horse and mountain

objects were ignored in our study. In order to test our approach for these objects
we have relied on flickr groups to obtain 21 image groups, with 500 members
each, suitable for training models for the 21 objects of SM . All images of SM

were segmented by the segmentation algorithm described in Section 3.2.2 and
the ground truth label of each segment was taken to be the label of the hand-
labeled region that overlapped with the segment by more than the 2/3 of the
segment’s area. In any other case the segment was labeled as void. The SM

was split randomly in 295 training SM
train and 296 testing SM

test images, ensuring
approximately proportional presence of each object in both sets.

In an attempt not only to evaluate the efficiency of the developed models
but also to discover whether the root cause for learning a bad model is the
selection of an inappropriate set of training samples, or the deficiency of the
employed visual feature space to discriminate the examined object, we perform
the following. Since we don’t have strong annotations for the images obtained
from flickr groups and is impossible to assess the quality of the generated clusters
as performed in Section 5.2, we train as many models as the number of generated
clusters (not only using the most populated) and test them using SM

test. Our
aim is to assess the quality of the generated clusters indirectly, by looking at the
recognition rates of the models trained with the member regions of each cluster.
The bar diagrams of Fig. 7 show the object recognition rates (measured using
the F1 metric) for the models trained using as positive samples the members
of each of the nine most populated (in descending order) clusters. The last
bar in each diagram corresponds to the performance of the model trained using
the strong annotations of SM

train and tested using SM
test. Moreover, in order to

visually inspect the content of the generated clusters we have implemented a
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viewer that is able to read the clustering output and simultaneously display all
regions included in the same cluster. By having an overall view of the regions
classified in each cluster we can better understand the distribution of clusters
to objects and derive some conclusions on the reasons that make the proposed
approach to succeed or fail. By looking at the bar diagrams of Fig. 7 we can
distinguish between four cases.

In the first case we classify the objects bird, boat, cat, dog and face that
are too diversiform with respect to the employed visual feature space and as a
consequence, none of the developed models (not even the one trained using the
manual annotations) manage to achieve good recognition rates. In addition to
that, the particular small number of relevant regions in the testing set renders
most of these objects inappropriate for deriving useful conclusions.

In the second case we classify the objects bicycle, body, chair, flower and sign

that although seem to be adequately discriminated in the visual feature space
(i.e. the model trained using the manually annotated samples performs rela-
tively well), none of the models trained using the formulated clusters manages
to deliver significantly better recognition rates from the other clusters. Thus,
none of the generated clusters contains good training samples which indicates
that the images included in the selected flickr group are not representative of
the examined object, as perceived by the MSRC annotators.

Aeroplane, book, car, grass, sky, sheep are classified in the third case includ-
ing the objects that are effectively discriminated in the visual feature space (i.e.
the model trained using the manually annotated samples performs relatively
well) and there is at least one cluster that delivers performance comparable
with the manually trained model. However, the increased errorcl−obj has pre-
vented this cluster to be the most populated, since the regions representing the
examined object are split in two or more clusters. Indeed, if we take for instance
the object sky and use the viewer to visually inspect the content of the formu-
lated clusters, we realize that clustering has generated many different clusters
containing regions depicting sky. As a result the cluster containing the regions
of textured objects has become the most populated. Fig. 8 shows indicative
images for some of the generated clusters for object sky. The clusters’ rank (#)
refers to their population. We can see that the clusters ranked #2, #3, #6
and #7 contain sky regions while the most populated cluster #1 contains the
regions primarily depicting statues and buildings. Consistently, we can see in
Fig. 7 that the performance of the models trained using clusters #2, #3 is much
better than the performance of the model trained using cluster #1.

Finally, in the last case we classify the objects cow, road, water, tree, building,
where our proposed approach succeeds in selecting the appropriate cluster and
allows the classifier to learn an efficient model. Fig. 9 presents some indicative
regions for 6 out of the 9 clusters, generated by applying the proposed approach
for the object tree. For each cluster we present five indicative images in order
to show the tendency, in a semantic sense, of the regions aggregated in each
cluster. It is interesting to see that most of the formulated clusters tend to
include regions of a certain semantic object such as tree (#1), grass (#2), sky
(#5), water (#9) or noise regions. In these cases where the errorcl−obj is
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Figure 7: Experiments on the 21 objects of MSRC dataset. In each bar diagram the nine first
bars (colored in black) show the object recognition rates (measured using F1 metric) for the
models trained using as positive samples the members of each of the nine most populated (in
descending order) clusters. The last bar (colored in gray) in each diagram correspond to the
performance of the model trained using strongly annotated samples.
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#1 Cluster - architecture (statues, buildings)

#2 Cluster - sky (but a bit noisy)

#3 Cluster - sky (best performing model)

#5 Cluster - noise

#6 Cluster - sky (mostly dark)

#7 Cluster - sky (mostly light)

Figure 8: Indicative regions from the clusters generated by applying our approach for the
object sky. The regions that are not covered in red are the ones that have been assigned to
the corresponding cluster.
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limited, it is clear that the regions of the object that appears more frequently
in the dataset (tree in this case) are gathered in the most populated cluster.

5.5. Comparison with existing methods

Our goal in the previous experiments was to highlight the potential of social
media to serve as the source of training samples for object recognition models.
Thus, we have focused on the relative loss in performance that results from
the use of leveraged rather than manually annotated training samples, and not
on the absolute performance values of the developed models. However, in or-
der to provide an indicative measure of the loss in performance that we suffer
when compared with other existing works in the literature, we calculate the
classification rate (i.e. number of correctly classified cases divided by the total
number of correct cases) of our framework for the 21 objects of MSRC. Then,
we compare the results with two methods [37], [38] that are known to deliver
state of the art performance on this dataset. Textonboost [37] uses conditional
random fields to obtain accurate image segmentation and is based on textons,
which jointly model shape and texture. The combination of Markov Random
Fields (MRF) and aspect models is the approach followed in [38] in order to
produce aspect-based spatial field models for object detection. Note that the
reported classification rates are not directly comparable since the methods are
not relying on the same set of visual features, the training/test split is likely
to be different and the results are reported at different level (in [37] at pixel
level, in [38] at the level of 20x20 image patches, and in our case at the level of
arbitrary shaped segments which are extracted by an automatic segmentation
algorithm). However, the comparison of these methods allows us to make some
useful conclusions about the trade-off between the annotation cost for training
and the efficiency of the developed models. Table 6 summarizes the classification
rates per object for each method.

On average, the accuracy obtained from our approach (45%) is inferior to
the one obtained from PLSA-MRF/I (50%) which is again inferior to the ac-
curacy obtained from Textonboost (58%). The performance scores obtained by
the three methods are ranked proportionally to the amount of annotation effort
required to train their models. Indeed, Textonboost [37] requires strongly anno-
tated images that can only be produced manually, the PLSA-MRF/I algorithmic
version of [38], requires weakly but noise-free annotated images the generation
of which typically involves light human effort, and our framework operates on
weakly but noisy annotated images that can be automatically collected from
social sites at no cost.

The costless nature of our approach motivated the execution of two ad-
ditional experiments that are essentially variations of our original approach,
mixing manually labeled data from MSRC and noisy data from flickr. More
specifically, the first variation Prop.Fram./M-F/W mixes MSRC and flickr data
at the level of images. Initially, the strong region-to-label associations provided
by MSRC are relaxed to become weak associations of the form image-to-label(s).
Then, these weakly annotated MSRC images are mixed with images from flickr
and the proposed framework is applied on the mixed set of images. Finally, the
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#1 Cluster - trees

#2 Cluster - grass

#3 Cluster - mountain with noise

#4 Cluster - noise

#5 Cluster - cloudy sky

#9 Cluster - water

Figure 9: Indicative regions from the clusters generated by applying our approach for the
object tree. The regions that are not covered in red are the ones that have been assigned to
the corresponding cluster.
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Table 6: Comparing with existing methods in object detection. The reported scores are the
classification rates (i.e. number of correctly classified cases divided by the total number of
correct cases) per object for each method.
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samples used for training the object recognition models consist of the regions
belonging to the most populated of the clusters generated from the mixed set.
The Prop.Fram./M-F/W variation is directly compared with PLSA-MRF/I [38]
since they use the MSRC annotations in the same way. The second variation
Prop.Fram./M-F/S mixes MSRC and flickr data at the level of regions. The
samples used for training the object recognition models consist of the strongly
annotated regions from MSRC plus the regions belonging to the most populated
of the clusters generated from flickr data. The Prop.Fram./M-F/S variation is
directly compared with Textonboost [37] since they use the MSRC annotations
in the same way. Table 6 shows that both variations of our approach, mixing
MSRC and flickr data, outperform their directly comparable state-of-the art
approaches. In the case of Prop.Fram./M-F/W the obtained average accuracy
(57%) outperforms PLSA-MRF/I by 7%, while in the case of Prop.Fram./M-
F/S the obtained average accuracy (62%) outperforms Textonboost by 4%.

6. Discussion of the results & Future Work

In this manuscript we have shown that the collective knowledge encoded in
social media can be successfully used to remove the need for close human super-
vision when training object detectors. The experimental results have demon-
strated that although the performance of the detectors trained using leveraged
social media is inferior to the one achieved by manually trained detectors, there
are cases where the gain in effort compensates for the small loss in performance.
In addition, we have seen that by increasing the number of utilized images we
manage to improve the performance of the generated detectors, advocating the
potential of social media to facilitate the creation of reliable and effective ob-
ject detectors. The value of social media was also advocated by the experiments
showing that when mixing manually labeled and effortlessly obtained flickr data,
we manage to outperform the state-of-the-art approaches relying solely on man-
ually labeled samples. Finally, despite the fact that there will always be a strong
dependence between the discriminative power of the employed feature space and
the efficiency of the proposed approach in selecting the appropriate set of train-
ing samples, our analysis has shown that we can maximize the probability of
success by using large volumes of user contributed content. Our plans for future
work include the investigation of techniques that will allow us to make better
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use of the tag information space when selecting the image set emphasizing on a
particular object. Alternative methods for selecting the appropriate cluster or
even merging some of the clusters to create a more suitable training set, also
fall within our intentions for improving the proposed method.
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