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Abstract Automatic segmentation of the hippocam-

pus from 3D magnetic resonance imaging mostly relied

on multi-atlas registration methods. In this work, we

exploit recent advances in deep learning to design and

implement a fully automatic segmentation method, of-

fering both superior accuracy and fast results. The pro-

posed method is based on deep Convolutional Neural

Networks (CNNs) and incorporates distinct segmenta-

tion and error correction steps. Segmentation masks are

produced by an ensemble of three independent mod-

els, operating with orthogonal slices of the input vol-

ume, while erroneous labels are subsequently corrected

by a combination of Replace and Refine networks. We

explore different training approaches and demonstrate

how, in CNN-based segmentation, multiple datasets

can be effectively combined through transfer learning
techniques, allowing for improved segmentation quality.

The proposed method was evaluated using two differ-

ent public datasets and compared favorably to existing

methodologies. In the EADC-ADNI HarP dataset, the

correspondence between the method’s output and the

available ground truth manual tracings yielded a mean

Dice value of 0.9015, while the required segmentation

time for an entire MRI volume was 14.8 seconds. In

the MICCAI dataset, the mean Dice value increased to

0.8835 through transfer learning from the larger EADC-

ADNI HarP dataset.
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1 Introduction

Medical studies have proved that there is a close rela-

tionship between the hippocampus and memory func-

tion (Scoville and Milner 2000). Volume reduction and

morphological degeneration of the hippocampus have

been associated with the existence of neurological dis-

eases, such as the Alzheimer’s disease and other forms

of dementia (Du et al 2001). Additionally, patients with

extensive hippocampal damage may suffer from depres-

sion (Bremner et al 2000), epilepsy (Bernasconi et al

2003) or schizophrenia (Harrison 2004).

Structural and volumetric analysis of the hippocam-

pus can aid clinicians in the diagnosis and early de-

tection of related pathologies (Jack et al 2011). Thus,

the hippocampus has been the subject of several lon-

gitudinal studies and medical research projects (Le-

ung et al 2010; Bateman et al 2012). Analysis of the

hippocampus is usually performed using magnetic res-

onance imaging (MRI) of the brain (Fig. 1). While

manual segmentation of the hippocampus by specially

trained human raters is considered to be the gold stan-

dard, it is also laborious and expensive. Furthermore,

manual segmentations are susceptible to inter-rater and

intra-rater variability.

The aforementioned limitations of manual tracing

highlight the need for developing automated segmen-

tation methods, especially when dealing with large

datasets. Over the last years, automatic segmentation

of the hippocampus attracted great scientific and re-

search interest. As a result, many different approaches



2 Dimitrios Ataloglou et al.

Fig. 1 A sagittal brain MRI slice (left), zoomed hippocampal
region with the outline of the left hippocampus depicted in
yellow (middle) and 3D reconstruction of the left hippocam-
pus (right).

have been proposed, which can be classified into differ-

ent categories.

The most popular one is based on multi-atlas regis-

tration and fusion techniques. First, multiple atlas im-

ages are registered (usually non-linearly) to the new

image. The computed transformations are then applied

to the manual segmentation masks, producing one sep-

arate segmentation for each used atlas. Methods differ

in terms of total number of used atlases and their se-

lection method. Individual segmentations are combined

to a final result using a variety of fusion techniques,

such as majority or average voting (Collins and Pruess-

ner 2010), use of global (Langerak et al 2010) or local

(Coupé et al 2010) weights, joint label fusion (Wang

et al 2013) and accuracy maps (Sdika 2010). Multi-atlas

methods are robust to anatomical variability, but their

performance depends on registration quality and seg-

mentation time increases linearly with the number of

registrations.

Another category is based on Active Contour Mod-

els (ACM), which evolve according to the intensity in-

formation of the image. Their performance depends

largely on the existence of clear edges at the boundaries
of the segmented object. To produce better segmenta-

tions, Active Shape Models incorporate prior knowl-

edge about the shape of the structure to the evolution

of the contour (Shen et al 2002). In Yang et al (2004),

the shapes of both the hippocampus and neighbour-

ing structures were modeled using Principal Compo-

nent Analysis and a set of manually segmented atlases.

A combination of the multi-atlas framework with

ACM was proposed in Zarpalas et al (2014a). The

method was based on 3D Optimal Local Maps (OLMs),

which locally control the influence that image informa-

tion and prior knowledge should have at a voxel level.

The OLMs were built using an extended multi-atlas

concept. In Zarpalas et al (2014b), the ACM evolu-

tion was controlled again through a voxel-level map.

Blending of image information and prior knowledge was

based on three-phase Gradient Distribution on Bound-

ary maps, having one phase for the strong edge bound-

ary parts, where image gradient information is to be

trusted, a second one for the blurred/noisy boundary,

where image regional information is to be trusted, and a

third one for the missing boundaries, where shape prior

knowledge should take the lead to influence the overall

ACM.

The last category of segmentation methods is based

on machine learning (Morra et al 2010; Tong et al 2013).

Typical methods of this category include the training of

a classifier, based on a training set of atlases. Conven-

tional machine learning methods usually extract a set

of hand-crafted features from every training instance,

which is then used to optimize the classifier’s param-

eters. The same set of features is then extracted from

each new image and fed to the trained classifier, which

produces the segmentation mask.

Convolutional Neural Networks (CNNs) have been

proposed as a new type of classifier (LeCun et al 1998).

In correspondence with conventional neural networks,

CNNs also consist of interconnected neurons, organized

in successive layers. However, in CNNs, neurons of a

single layer share trainable parameters and are usually

connected only with a subset of the previous layer’s

neurons, thus having a limited field of view. The po-

tential value of CNNs became evident when Krizhevsky

et al (2012) won the 2012 ImageNet Large Scale Visual

Recognition Challenge (Russakovsky et al 2015). Since

then, CNNs have been utilized to address a variety of

image processing problems. Advances in the field al-

lowed the training of much deeper networks with better

distinctive capabilities (He et al 2016).

Recently, deep learning methods have been ap-

plied in the medical domain, including various applica-

tions on structural brain MRI. More specifically, CNNs

have been utilized for the segmentation of brain tis-

sue (Moeskops et al 2016; Zhang et al 2015; Chen et al

2016), tumor (Havaei et al 2017; Pereira et al 2016) and

lesions (Kamnitsas et al 2017; Brosch et al 2016). Seg-

mentation of anatomical structures using CNNs have

been studied in Choi and Jin (2016) for the striatum

and in Shakeri et al (2016) and Dolz et al (2017) for the

thalamus, caudate, putamen and pallidum. CNN-based

segmentation of basal ganglia (including the hippocam-

pus) has been also explored in Milletari et al (2017);

Wachinger et al (2017); Kushibar et al (2017). Finally,

CNNs have been used for brain extraction (Kleesiek

et al 2016) and full brain segmentation (de Brébisson

and Montana 2015; Mehta et al 2017).

In this work, we leverage the unique properties of

CNNs to design and train a fully automatic segmenta-

tion method, aiming to provide superior segmentation

accuracy compared to previous methods, while substan-

tially reducing the required segmentation time. Com-

pared to existing CNN-based segmentation methods,

the proposed method differs in various ways. A com-
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parative analysis is presented in the remainder of this

section, focusing mostly on methods that segment the

hippocampus and other anatomical brain structures.

Most previous methods, (de Brébisson and Mon-

tana 2015; Mehta et al 2017; Kushibar et al 2017), pre-

formed the segmentation in a single step. In contrast,

we split the processing pipeline into distinct stages and

include an error correction mechanism to further boost

the overall performance. In the first stage, a segmenta-

tion mask of both hippocampi is computed. Erroneous

labels are subsequently corrected by an independent

module. The processing pipeline in Choi and Jin (2016)

also involved two stages. However, in that case the first

stage operated in lower resolution and only performed

an approximate localization of the structure, which was

segmented in the second stage. In contrast, our first

stage completes both at once and provides high quality

segmentation masks to the error correction module.

Contrary to methods that use 3D patches as input

to a single CNN (Wachinger et al 2017), in each pro-

cessing stage of the proposed method, the MRI volume

is decomposed in orthogonal slices, which are fed into

an ensemble of three independent CNNs. The final 3D

segmentation is obtained by fusing the individual seg-

mentations. Orthogonal slices have also been used in

de Brébisson and Montana (2015); Mehta et al (2017);

Kushibar et al (2017), but fusion in these cases was

performed within the CNN, before the final classifica-

tion layers. Using a different approach, Milletari et al

(2017) stucked the three orthogonal 2D patches to form

a 3-channel input, which was then processed by a sin-

gle CNN. In our architecture, we perform a late fusion

of the outputs of independent CNNs, which we train

separately, allowing them to optimize better for each

slicing operation. Furthermore, by using model ensem-

bles we manage to improve the segmentation quality

and eliminate spatial inconsistencies without the need

of complicated post-processing, as was the case in Shak-

eri et al (2016); Wachinger et al (2017); Milletari et al

(2017), where Conditional Random Fields and Hough

voting where utilized for such purposes.

In general, previously proposed CNN-based medical

image segmentation methods used shallower networks,

with fewer convolutional layers (de Brébisson and Mon-

tana 2015; Wachinger et al 2017; Mehta et al 2017).

While easier to train, these lower capacity models ex-

hibit inferior distinctive capabilities and may prove in-

adequate for the segmentation of complex structures,

such as the hippocampus. Deeper CNNs can general-

ize better to unseen cases, but their training can suf-

fer from vanishing or exploding gradients (Glorot and

Bengio 2010). To overcome such difficulties, we make

extensive use of Residual Blocks (He et al 2016) and

Batch Normalization layers (Ioffe and Szegedy 2015)

in all CNNs. This enables us to design and effectively

train deeper networks, achieving higher segmentation

quality.

Lastly, we explore and validate the importance of

transfer learning in the medical domain, where large an-

notated datasets are rare. In contrast to other segmen-

tation methods, CNNs inherently require a sufficiently

large training dataset, in order to be able to properly

generalize to previously unseen cases (Sun et al 2017).

When sufficiently large datasets are not available, the

performance of CNNs can be improved by exploit-

ing transfer learning techniques (Razavian et al 2014;

Yosinski et al 2014). In our case, we were able to utilise

the CNNs trained with the EADC-ADNI Harp dataset

and fine-tune them to the smaller MICCAI dataset.

Despite the fact that different manual segmentation

protocols were used (HarP and brainCOLOR respec-

tively), such combination of multiple datasets proved

notably advantageous, leading to the conclusion that

such strategies could greatly benefit the community, by

offering robust and extendible automatic segmentation

mechanisms.

2 Materials

Two different open access datasets were used for train-

ing and testing, with a total of 135 atlases. Those

datasets include cases with a wide variety of ages, med-

ical diagnoses and MR scanners, therefore assisting in

the demonstration of the robustness of our method.

2.1 EADC-ADNI HarP dataset

We used the preliminary version of the dataset provided

by the EADC-ADNI Harmonized Protocol project

(Boccardi et al 2015), consisting of 100 3D MP-RAGE

T1-weighted MRIs and the corresponding segmentation

masks of both hippocampi. This dataset includes MRIs

from elderly people, with four different medical diag-

noses: healthy (Normal), Mild Cognitive Impairment

(MCI), Late Mild Cognitive Impairment (LMCI) and

Alzheimer’s Disease (AD). A total of 15 different MR

scanners (1.5 and 3.0 Tesla) were used for the acquisi-

tion of the images. The distribution of participants per

clinical and demographic characteristic is presented in

Table 1.

All MRIs were obtained from the Alzheimers Dis-

ease Neuroimaging Initiative (ADNI) database (Jack

et al 2008) and have the same dimensions of 197×233×
183 voxels, with a voxel size of 1 × 1 × 1 mm. Manual

segmentations of both hippocampi were carried out by



4 Dimitrios Ataloglou et al.

Table 1 Distribution of demographic characteristics per
medical diagnosis in the HarP dataset.

Diagnosis N
Gender Age Scanner
M F 60-70 70-80 80-90 1.5T 3.0T

Normal 29 16 13 4 17 8 17 12
MCI 21 13 8 7 6 8 13 8
LMCI 13 7 6 4 7 2 8 5
AD 37 20 17 13 14 10 20 17
Total 100 56 44 28 44 28 58 42

specially trained tracers using the Harmonized Proto-

col (HarP). Segmentation masks are freely available at

http://www.hippocampal-protocol.net.

2.2 MICCAI dataset

The MICCAI dataset consists of 35 atlases and was first

used at the MICCAI 2012 Grand Challenge on Multi-

atlas Labeling (Landman and Warfield 2012). During

the challenge, 15 of the atlases were available for train-

ing purposes, while the remaining 20 were used only for

testing. The mean participant age is 23 years (ranging

from 19 to 34) for the training set and 45 years (rang-

ing from 18 to 90) for the test set. All participants were

considered to be healthy.

All MRIs were obtained from the Open Access Se-

ries of Imaging Studies repository (Marcus et al 2007).

The original 3D MP-RAGE T1-weighted MRIs were ac-

quired using a Siemens Vision MR scanner (1.5 Tesla).

The MRIs used in the challenge have a voxel size of

1 × 1 × 1 mm and dimensions up to 256 × 334 × 256

voxels. Manual segmentations of 143 brain structures

were carried out according to the brainCOLOR label-

ing protocol. The MICCAI dataset is publicly available

at https://my.vanderbilt.edu/masi/workshops/.

2.3 Preprocessing

Unlike multi-atlas segmentation methods, the proposed

method does not require any additional registration of

the MRIs, thus making it significantly lighter in terms

of required computational time. The preprocessing pro-

cedure consists of three separate steps, which are com-

mon for both datasets.

First, brain extraction was performed using the

Brain Extraction Tool (Smith 2002), which is avail-

able as a part of the FMRIB Software Library. Be-

sides the fact that non-brain information is not essential

for the segmentation of internal structures, such as the

hippocampus, this step was also necessary as specific

non-brain regions contained voxels with arbitrary high

brightness values, which negatively effected the normal-

ization process in the final preprocessing step.

Then, brain regions were corrected for intensity in-

homogeneity with the N3 package of the MINC toolkit

(Sled et al 1998). Although inhomogeneity correction is

carried out internally by software in most modern MR

scanners, we include this step to account for older scan-

ners and to further improve the preprocessing outcome.

Finally, we normalized the intensity of each voxel

by subtracting the mean and dividing with the stan-

dard deviation. The mean and standard deviation val-

ues were calculated separately for each MRI, taking into

account only the brain region. Voxels outside the brain

region were assigned a zero value.

3 Method

A top level diagram of the proposed architecture is pre-

sented in Fig. 2. The proposed method is composed of

three separate modules. In the segmentation module,

the input, which is a pre-processed 3D MRI, passes

through a group of CNNs and a segmentation mask

of the hippocampus is obtained. Subsequently, a wider

region around the hippocampus is cropped, both in the

mask produced by the segmentation module and the

input MRI. Finally, both the cropped MRI volume and

segmentation mask are given as inputs to the error cor-

rection module, which corrects the erroneous labels and

produces the final, error corrected mask.

3.1 Segmentation

A schematic diagram of the segmentation module is pre-

sented in Fig. 3. We opted for an ensemble of three in-

dependent segmentation CNNs, operating with orthog-

onal slices of the input MRI volume, followed by a late

fusion of their outputs. Both the input and output of

the segmentation module are 3D images. However, all

three segmentation CNNs used inside this module re-

ceive 2D slices as input and produce the corresponding

2D segmentations. In particular, the 3D MRI is decom-

posed in sagittal, coronal and axial slices. Each type

of slices is then fed into an independent segmentation

CNN, which was trained using only slices of the same

type. The 2D outputs of each segmentation CNN are

stacked along the third dimension to form a 3D segmen-

tation mask. The output of the segmentation module is

obtained by performing a voxel-wise average fusion of

the individual 3D segmentation masks.

Orthogonal patches were used in combination with

3D patches in de Brébisson and Montana (2015). Au-

thors claimed that using three 2D orthogonal patches

http://www.hippocampal-protocol.net
https://my.vanderbilt.edu/masi/workshops/
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Fig. 2 Top level architecture of the proposed method. The processing pipeline consists of three main modules: segmentation,
hippocampal region cropping and error correction.

MRI
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CNN

(sagittal)

segmentation
CNN
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segmentation
CNN
(axial)

segmentation
mask
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Fig. 3 Segmentation module architecture. The 3D MRI is decomposed in orthogonal slices. Each type of slices is processed
by an independent segmentation CNN. Average fusion combines all single slice outputs to a final 3D segmentation mask.

is preferable over a single 3D patch. In their architec-

ture, different input types were provided to separate

branches within a single CNN and the intermediate re-

sults were concatenated inside the CNN, before the fi-

nal fully-connected layers. In contrast, we use full or-

thogonal slices to train three independent segmentation

CNNs and form an ensemble of models, each receiving

a different input. Model ensembles have shown consis-

tent performance benefits in other visual tasks (He et al

2016; Szegedy et al 2017), which we found to be also

true for hippocampus segmentation.

Forming such a model ensemble would not be pos-

sible if the 3D MRI volumes were used as input to the

CNNs, which is the main reason for preferring 2D CNN

inputs. Other reasons supporting the preference of 2D

inputs concern the training process. In particular, 3D

inputs would significantly limit the number of indepen-

dent training examples, while GPU memory require-

ments would impose a constraint on the maximum CNN

depth, especially when working with complete images

instead of patches (refer to section 4.1 for more details).

Also, the combination of multiple complete 3D volumes

into training batches, which ensure smoother training,

would only have been possible for very shallow CNN

models with inferior performance.

3.1.1 Segmentation CNNs

Sagittal, coronal and axial segmentation CNNs share a

common internal structure, which is presented in Fig.

4. The input of each segmentation CNN is a 2D image

(MRI slice), with spatial dimensions of d1 × d2 pixels

Input (d d 1)1 2×    ×

BatchNorm

Conv 3 3, 128 filters×

ReLU

Output (d d 1)1 2× ×

MulConstant (0.5)

Tanh

AddConstant (1)

Conv 3 3, 1 filter×

ReLU

BatchNorm

Conv 3 3, 64 filters×

BatchNorm

Conv 3 3, 128 filters×

ReLU

BatchNorm

Conv 3 3, 128 filters×

+
6×

Fig. 4 Internal structure of sagittal, coronal and axial seg-
mentation CNNs. Each CNN is 15 convolutional layers deep
and contains six consecutive residual blocks at its core.

and one channel (grayscale image). The output is an

image of equal dimensions with values in the range of

[0, 1], which correspond to the probability of each pixel

belonging to the hippocampus.

The core network consists of six consecutive Resid-

ual Blocks, depicted with a dashed bounding box in

Fig. 4. Each block is composed of two parallel branches.

The first branch includes two convolution layers. The

second is a simple identity shortcut, forwarding the in-

put of the block and adding it to the output of the first

branch. Residual networks have been proven to be eas-
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ier to train, as shortcut connections help to deal with

the problem of vanishing gradients.

Each segmentation CNN has a total of 15 spatial

convolutional layers, with 3 × 3 filters and additional

bias parameters. Convolutions are always performed

with single stride and zero-padding to maintain the

spatial dimensions of the layer’s input. Since no fully

connected layers are used, segmentation CNNs are fully

convolutional, which makes their evaluation with differ-

ent input sizes much more efficient (Long et al 2015).

In contrast to the U-Net architecture, which is

commonly used in medical segmentation tasks (Ron-

neberger et al 2015; Çiçek et al 2016), our segmentation

CNNs do not include any pooling layers. As a result,

the spatial dimensions of the input image remain un-

altered throughout the CNN. U-Net like models with

equal depth have been evaluated at the initial stage of

our research, but they produced consistently inferior re-

sults (−3% in terms of Dice for individual segmentation

CNNs when using two downsampling and upsampling

operation, even when learned upsampling was used),

compared to the selected CNN structure. We attribute

this behavior to the nature of pooling operations, which

suppress the input information into a more coarse repre-

sentation, combined with the morphology of the struc-

ture of interest, which contains a high level of detail.

While the U-Net has shown good performance on seg-

menting more arbitrarily shaped structures like tumors,

the proposed CNN structure appears to be better suited

for hippocampus segmentation.

With the exception of the last one, every convolu-

tional layer is followed by a spatial batch normalization

layer (BatchNorm). These layers improve the gradient
flow, allow the usage of higher learning rates, minimize

the effect of parameter initialization and act as a form

of regularization. Batch normalization is skipped only

after the last convolutional layer, since we do not want

to alter the output’s distribution.

A ReLU activation (Nair and Hinton 2010) is added

after most BatchNorm layers, which is defined as

f(x) = max(0, x). In comparison with the sigmoid

function, ReLU activations do not limit the output’s

range, are computationally cheaper and lead to faster

convergence rates during training. The last convolu-

tional layer is followed by a Tanh activation layer and

subsequent addition and multiplication with constants

to transfer the output’s range to [0, 1].

Each segmentation CNN has a total of 1.86 million

trainable parameters. The Field of View (FoV) at the

output layer is 31 × 31 pixels, meaning that the value

of each output pixel depends on a 31× 31 region of the

input, centered at that specific location (Fig. 5). Adding

more residual blocks and therefore increasing the FoV

Fig. 5 Field of View (FoV) size at the output layer of each
segmentation CNN (blue square) in relation to a medium
sized hippocampus (shown in red). Best viewed in color.

size did not increase the performance, leading to the

conclusion that the selected FoV is sufficiently large to

capture all useful anatomical information around the

hippocampus.

3.2 Hippocampal region cropping

While significantly reducing the training and testing

times of subsequent modules, the introduction of the

hippocampal region cropping module to the processing

pipeline leaves the overall segmentation accuracy un-

affected, due to the carefully selected cropped region

size. In order for the performance of subsequent CNNs

to remain constant, the whole FoV must be covered,

even at the endpoints of the hippocampus. As error

correction CNNs have a similar structure to segmenta-

tion CNNs, with the same FoV size of 31×31 pixels, we

adjust the cropped region to include at least 15 more

voxels at every direction from the boundary of the hip-

pocampus. Also, we crop a single region including both

hippocampi, as separate regions usually overlapped, un-

necessarily increasing the overall processing time.

During training, the calculation of the cropped re-

gion coordinates is based on the ground truth. Since the

ground truth masks are available, the optimal crop po-

sition and size for each training atlas can be calculated.

However, we crop all training atlases to a common size,

accounting for the largest hippocampus size in each di-

mension, in order to be able to combine slices from dif-

ferent MRIs to the same mini-batch during training.

In contrast, during testing the cropping procedure is

based on the segmentation masks produced by the seg-

mentation module of the proposed method. First, we

calculate the weight center of the segmentation mask.

Then, we crop a region of 120×100×100 voxels (along

the sagittal, coronal and axial axes) around that center

point, which is both sufficiently large to contain both

hippocampi and the required area around them and

small enough to lead to substantial performance bene-

fits in terms of total processing time.
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3.3 Error correction

Errors in automatic segmentation methods can be cate-

gorized to random and systematic. While random errors

can be caused by noise or anatomical differences, sys-

tematic errors originate from the segmentation method

itself and are repeated under specific conditions. Thus,

systematic errors can be reduced using machine learn-

ing techniques. For example, a classifier may be built

to identify the conditions under which systematic er-

rors occur, estimate the probability of error for seg-

mentations produced by a host method and correct the

erroneous labels. Wang et al (2011) proposed an error

correction method for hippocampus segmentation, us-

ing a multi-atlas registration and fusion host method.

Combined with joint label fusion, this error correction

method won the MICCAI 2012 Grand Challenge on

Multi-Atlas Segmentation.

CNNs have been successfully utilized for error cor-

rection purposes in the fields of human pose estimation

(Carreira et al 2016), saliency detection (Wang et al

2016) and semantic image segmentation (Li et al 2016).

There are two different alternatives regarding the out-

put of error correction CNNs. Replace CNNs calculate

new labels, which substitute the labels computed by the

host method. On the contrary, Refine CNNs calculate

residual correction values and their output is added to

the host method’s output. According to Gidaris and

Komodakis (2017), each variant has its own shortcom-

ings. Replace CNNs must learn to operate as unitary

functions in case the initial labels are correct, which

is challenging for deeper networks. Refine CNNs can

more easily learn to output a zero value for correct ini-

tial labels, but face greater difficulties in calculating big

residual correction in the case of hard mistakes.

The proposed method incorporates an error correc-

tion module targeted to systematic errors originating

from the base segmentation algorithm. The detailed

architecture is presented in Fig. 6. Orthogonal slices

are extracted from the cropped MRIs and segmenta-

tion masks and are fed to independent CNNs, followed

by a late average fusion of their outputs. A combina-

tion of Replace and Refine CNNs is used at each of

the three branches. A Replace CNN is placed first, fol-

lowed by the corresponding Refine CNN. The extended

use of residual blocks in Replace CNNs minimizes the

aforementioned problem of them having difficulties op-

erating as unitary function when needed and lets them

focus on correcting hard mistakes. With hard mistakes

already corrected, Refine CNNs are used to only make

fine adjustments to the final labels. Thus, in the pro-

posed architecture, we keep only the advantages of each

error correction CNN variant and efficiently correct

both hard and soft segmentation mistakes.

3.3.1 Error Correction CNNs

Every Replace and Refine CNN in Fig. 6 has the CNN

structure presented in Fig. 4, with two minor differ-

ences. The first is the number of channels in the input

layer of error correction CNNs, which is equal to the

number of inputs in each case (2 for Replace and 3 for

Refine CNNs). Filter depth at the first convolutional

layer is modified accordingly. The second difference only

applies to the Refine CNNs. Layers after the last con-

volutional layer are omitted, since we do not need to

explicitly restrict the output to a specific range in the

case of residual corrections calculation.

The Replace and Refine CNNs in each branch, along

with the addition that follows were implemented as a

single, deeper network and were trained in an end-to-

end way, allowing their parameters to be co-adapted.

On a technical level, this module consists of only three

deeper error correction CNNs, denoted with dotted

bounding boxes in Fig. 6.

4 Implementation

We used Torch7 (Collobert et al 2011) for the imple-

mentation and training of the proposed method. We

also utilized the cuDNN Library (Chetlur et al 2014)

to further speed up the training and inference pro-

cesses. All experiments were performed on a computer

equipped with a NVIDIA GeForce GTX 1080, Ubuntu

16.04 LTS, CUDA v9.0.176 and cuDNN v7.0.3. The

code and trained models will be available upon the ac-

ceptance of this paper.

4.1 Training with the HarP dataset

To facilitate the training and evaluation processes, the

dataset must be first split into training and test sets.

Aiming to obtain meaningful results during evaluation,

we ensured that these sets were mutually exclusive in all

of our experiments. Only the training set was utilized

to train the proposed method, while the separate test

set was subsequently used to measure the performance.

After pre-processing, only a small amount of MRI

voxels corresponded to the region of the brain. This

imbalance created significant problems, such as loss os-

cillations, that disrupted the training process. To limit

the training data to the brain region, we used only slices

that contained part of the brain and cropped them to

smaller dimensions, maintaining the whole area of even
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+
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(axial)

Refine
CNN
(axial)

+

Fig. 6 Error correction module architecture. The cropped MRI and segmentation mask are decomposed in orthogonal slices.
Each type of slices is processed by an separate chain of error correction CNNs. Average fusion combines all single slice outputs
to a final 3D and error corrected segmentation mask.

the largest sized brain. Cropping dimensions were com-

mon for each slicing operation, to facilitate the com-

bination of slices in mini-batches. These steps where

applied only to the inputs of segmentation CNNs and

only during training. At test time, the whole MRI vol-

ume was provided as input to the segmentation module.

Inputs provided to error correction CNNs were already

cropped, as was described in section 3.2.

Training the proposed method consists in training

six different CNNs, three for the segmentation and three

for the error correction of sagittal, coronal and axial
slices, respectively. We preferred full slices over patches

as input to all CNNs. This led to better efficiency and

lower processing times, as each output could be calcu-

lated with a single forward pass and unnecessary cal-

culations for overlapping patch regions were avoided

(Long et al 2015). Slices from all MRIs belonging to

the training set were fed to the networks in random or-

der, which also changed after the completion of every

epoch. The mini-batch size was set to eight slices, due

to memory constraints.

Initializing the trainable parameters of each CNN

was based on the Xavier method (Glorot and Bengio

2010), but with random values obtained from a uniform

distribution in the [−1, 1] range. Trainable parameters

were updated using the Adam optimizer (Kingma and

Ba 2014), with beta1 = 0.9 and beta2 = 0.999. The

loss function used during training was the mean square

error between the output and the ground truth segmen-

tation masks. Training of each CNN always lasted for

40 complete epochs and the model saved at the end of

the training process was used later to evaluate the per-

formance. Initial learning rate was set to 5× 10−5 and

was exponentially decayed after every iteration accord-

ing the formula:

learning rate = 5× 10−5e−0.175epoch (1)

where epoch is the exact number of completed epochs.

Learning rate was decreased by a factor of 1000 until

the end of training.

Training of each segmentation and error correction

CNN required on average 7.5 and 4.2 hours respectively.

Although error correction CNNs are twice as deep, as

they include both the Replace and the Refine networks,

their training time was lower, due to the smaller input

dimensions after cropping.

4.2 Transfer learning to the MICCAI dataset

Multi-atlas based segmentation methods can provide

accurate segmentations using a small number of very

similar atlases. When large datasets are available, a se-

lection method is necessary to extract the most similar

atlases, as using the whole dataset deteriorates the seg-

mentation quality (Aljabar et al 2009). On the contrary,

CNNs inherently require sufficiently large training sets.

In segmentation tasks, CNN performance increases log-

arithmically with the size of the training dataset (Sun

et al 2017). The required dataset size is in general pro-

portional to the capacity of the used model. Deeper

CNNs can generalize better to unseen cases, but at the



Fast and precise hippocampus segmentation through deep CNN ensembles and transfer learning 9

fine-tuned
models

HarP atlases
(100)

MICCAI training
atlases (15)

MICCAI test
MRIs (20)

randomly
initialized

models

pre-trained
models

pre-training
(40 epochs)

fine-tuning
(10 epochs)

output
masks

Training phase

Test phase

Fig. 7 Transfer learning from HarP to the MICCAI dateset.

same time require more data to train properly. The

MICCAI dataset, which contains only 15 training at-

lases, is not directly applicable to the proposed method.

To overcome this inefficiency, we exploited the unique

properties of CNNs, which allow efficient transfer learn-

ing from larger datasets.

In practice, CNNs are rarely trained from scratch,

either due to insufficiently large training sets or to re-

duce the required training time. Instead, it is common

practice to use a pre-trained network, which was usu-

ally trained with a much larger dataset and to fine-

tune it to the new, smaller dataset, to account for
this dataset’s specific characteristics. Features already

learned by a convolutional neural network can be reused

to address a new problem, using a different dataset.

Transfer learning is more efficient when data from dif-

ferent datasets are of similar nature. In this way, fea-

tures already learned are more appropriate for the new

task and less fine-tuning is required.

The conditions for applying transfer learning be-

tween the datasets used in this study are favorable, as

they both contain T1-weighted MRIs of the brain. The

transfer learning procedure is presented in Fig 7. First,

all CNNs were pre-trained from scratch using the HarP

dataset. Then, the pre-trained CNNs were fine-tuned

utilizing only the 15 atlases from the MICCAI training

set. Finally, the fine-tuned models were evaluated with

the MICCAI test set. The same procedure was followed

for both segmentation and error correction CNNs.

Compared to the training procedure of the respec-

tive CNNs with the HarP dataset, two hyperparame-

ters were altered during fine-tuning. The initial learn-

ing rate was set to 2 × 10−5, as bigger values led to

zero outputs after the first fine-tuning epoch, indicat-

ing that useful features for the detection of hippocam-

pal regions were quickly forgotten, due to the dominant

background class. Combined with the initial learning

rate, which was selected to be as high as possible, a

fine-tuning duration of 10 epochs was enough to reach

maximum performance.

Due to the decreased number of epochs and training

atlases in the MICCAI dataset, the fine-tuning proce-

dure was completed much faster. On average, 23 and

7.5 minutes were required for the fine-tuning of each

segmentation and error correction CNN respectively.

4.3 Thresholding

To obtain a binary segmentation mask during evalu-

ation, we applied a threshold to the values of each

voxel of the error corrected mask. Since they express

the probability of a single voxel belonging to the hip-

pocampus, the default threshold value was set to 0.5.

Segmentation masks were normally forwarded to the

error correction module in continuous form, without

any thresholding applied. However, to study the ef-

fect of different components in the overall performance,

thresholds were also applied to the segmentation masks

produced by the segmentation module (without error

correction) and to the outputs of each individual CNN.

5 Results

5.1 Evaluation metrics

The level of agreement between the outputs and the cor-

responding manual segmentations was quantified using

the following metrics:

Dice =
2 · |A ∩B|
|A|+ |B|

(2)

Jaccard =
|A ∩B|
|A ∪B|

(3)

precision =
|A ∩B|
|B|

(4)

recall =
|A ∩B|
|A|

(5)

where A is the set of voxels classified as part of the

hippocampus by the proposed method and B the cor-

responding set of the ground truth mask. The Wilcoxon

signed-rank test was utilized to assess the statistical sig-

nificance between the different outcomes.
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Table 2 Mean Dice and standard deviation of the outputs
of individual CNNs and after average fusion using the HarP
dataset. ”EC fusion” refers to the output of the error correc-
tion module.

sagittal coronal axial fusion EC fusion

Dice 0.8834 0.8898 0.8665 0.8965 0.9010
std 0.0278 0.0266 0.0348 0.0224 0.0182

5.2 Results in the HarP dataset

The performance of the proposed method in the HarP

dataset was evaluated through a 5-fold cross-validation

process. The 100 atlases of the HarP dataset were

equally and proportionally divided into five folds, ac-

cording to gender, age, medical diagnosis, MR scanner

field strength and bilateral hippocampal volume. Train-

ing and testing of the entire method were repeated five

times in the HarP dataset. In each round, the method

was trained from scratch with a different set of 80 at-

lases (4 training folds) and subsequently tested with

the remaining 20 atlases (test fold). First, segmentation

CNNs were trained and tested for all cross-validation

rounds, in order to provide intermediate segmentation

masks for the entire dataset. Then, error correction

CNNs were trained and tested in a similar manner. It

is important to point out that no data utilized during

training were also used to test the performance in any

case.

Table 2 shows the mean Dice and standard devi-

ation in the HarP dataset, averaged over all five test

folds. Results are reported for the outputs of each seg-

mentation CNN and after average fusion for both the

segmentation and error correction steps.

We notice that individual segmentation CNNs ex-

hibit different levels of accuracy, with coronal slices ap-

pearing to be best suited for hippocampus segmenta-

tion. This is clearly visible in the boxplot of Fig. 8,

where red bars corresponds to the median value, blue

boxes to the 25th-75th percentile range and red crosses

to outlier values (more than 1.5× the interquartile

range away from the box). Also, individual segmenta-

tion CNNs produce segmentations with various types

of errors. For example, they may not recognize parts

of the hippocampus in some slices or classify as fore-

ground voxels far away from the actual position of the

structure, resulting in spatial incoherence. These prob-

lems are eliminated after fusion (Fig. 9), while both the

mean Dice value and standard deviation improve over

the best performing coronal segmentation CNN. The

improvements of fusion over each individual CNN are

statistically significant (p < 8.5× 10−12).

The error correction step improves the quality of

the received segmentation mask, both in terms of mean

sagittal coronal axial fusion

D
ic

e

0.7

0.75

0.8

0.85
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0.95

Fig. 8 Dice distribution for the segmentation step using the
HarP dataset.

Fig. 9 Effect of average fusion during segmentation. The out-
put of the coronal segmentation CNN and the segmentation
mask after average fusion are depicted in cyan and yellow re-
spectively. The outline of the ground truth is depicted in red.
Best viewed in color.

Dice and standard deviation. After fusion, the mean

Dice value increases to 0.9010, which is 0.0045 higher

than the best result obtained without error correction.

The improvement offered by error correction is also sta-

tistically significant (p < 1.4×10−12). A qualitative ex-

ample comparing the outputs before and after the error

correction module on a difficult case of the HarP dataset

is presented in Fig. 10. Iterative refinement using multi-

ple stacked error correction modules was also explored,

using either the same or different CNNs in successive

modules and additional error correction modules con-

sisting only of Refine CNNs. In terms of mean Dice,

using CNN duplicates and two successive error correc-

tion modules led to a small performance improvement.

Aiming to achieve the best trade-off between segmen-

tation accuracy and total processing time, we chose to

include a single error correction module for hippocam-

pus segmentation.

The performance of the proposed method in dif-

ferent medical diagnoses is presented in Table 3. We

notice that error correction offers consistent improve-

ment regardless of the diagnosis, which highlights the

robustness of the proposed method to different medi-

cal cases. As expected, Dice is lower for patients with

AD, due to the deformation of the hippocampus struc-
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Fig. 10 Effect of error correction on a difficult case of the
HarP dataset (case #254893, diagnosed with AD). The out-
puts before and after the error correction are depicted in cyan
and yellow respectively. The outline of the ground truth is de-
picted in red. Best viewed in color.

Table 3 Mean Dice and standard deviation per diagnosis in
the HarP dataset. Results were obtained after average fusion
for both the segmentation and error correction steps.

Diagnosis segmentation error correction

Normal (29) 0.9071 (± 0.0201) 0.9115 (± 0.0145)
MCI (21) 0.8970 (± 0.0227) 0.9020 (± 0.0176)
LMCI (13) 0.9053 (± 0.0117) 0.9075 (± 0.0115)
AD (37) 0.8849 (± 0.0220) 0.8898 (± 0.0173)
All (100) 0.8965 (± 0.0224) 0.9010 (± 0.0182)

ground truth volume [mm3]
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Fig. 11 Dice values for error corrected segmentation masks
against bilateral ground truth hippocampal volumes in the
HarP dataset. Best viewed in color.

ture, but also due to the reduced average hippocampal

volume. Smaller structures have higher percentage of

voxels near their surface. This affects the segmentation

quality (Fig. 11), as it is more challenging for the auto-

matic method to segment areas near the outer surface,

than internal ones.

Table 4 compares the proposed method with other

published methods that use the same dataset. Values

are shown as they appear in the respective publica-

tions, for each hippocampus separately or combined.

The proposed method is also compared with two widely

used segmentation tools, namely FreeSurfer (Fischl et al

2002) and FIRST (Patenaude et al 2011). Segmen-

tation masks were obtained by executing the default

test scripts (recon-all -all and run first all) provided

with the respective packages. The performance of the

tools was assessed for the structure of the hippocampus,

treating all other output labels as background.

We observe that the proposed method compares fa-

vorably to previous methods in every evaluation metric.

It is also the only one based on CNNs, which demon-

strates their potential in brain MRI segmentation. The

next two methods, exhibiting a mean Dice value over

0.88, are based on multi-atlas registration and fusion

techniques. Trained and validated using a different set

of ADNI MRIs, a patch-based label fusion method with

structured discriminant embedding (Wang et al 2018)

acheived a mean Dice value of 0.879 and 0.889 for the

left and right hippocampus respectively. A CNN-based

method, also validated using MRIs from the ADNI

database, was suggested by Chen et al (2017). De-

spite the fact that only normal cases were included and

the hippocampal region was manually cropped before

segmentation, their final results (mean Dice value of

0.8929) are inferior to those of the proposed method.

Furthermore, we compared each of the estimated

hippocampal volumes with the corresponding ground

truth volumes. The proposed method produces segmen-

tations that are on average 70mm3 smaller, taking into

account both hippocampi. Although relatively small

(−1.3% compared to the ground truth), the volume

difference can be attributed to the many fine details

in the manual tracings, which are more difficult to by

captured. The correlation coefficient between the two

volumes is 0.97. Based on these results, we conclude

that there is high level of agreement, which is also evi-

dent in Fig. 12.

Qualitative results are presented in Fig. 13, where

an indicative sagittal, coronal and axial slice is shown

for the best, median and worst case. The ADNI im-

age ID, medical diagnosis, bilateral ground truth hip-

pocampal volume and Dice value are listed for each

case. We observe that most details of the manual trac-

ings are well preserved by the proposed method, while

the outline from the automatic segmentation method is

smoother. Output volumes are spatially consistent and

close to the corresponding manual tracings, even when

the boundary of the hippocampus is not visible, as in

the sagittal slice of the best and worst case and the axial

slice of the median case. Automatic segmentation qual-

ity seems satisfactory even in the worst case, where the

inferior Dice value can be attributed to the very small

bilateral hippocampal volume.

5.3 Results in the MICCAI dataset

The MICCAI dataset was already divided into two

groups. In our study, we used the same training and test

sets. Since a single split of the dataset was used, a total
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Table 4 Performance comparison between the proposed method and other published methods and tools using the HarP
dataset. Metrics were calculated separately for each hippocampus and jointly for both hippocampi. Results for other methods
are displayed as reported in the respective publications. Results for Freesurfer and FIRST were obtained by executing the
default test scripts provided with the respective packages. Best performing values appear in bold.

Giraud
et al

(2016)

Zhu
et al

(2017)

Ahdidan
et al

(2016)

Maglietta
et al

(2016)

Inglese
et al

(2015)

Platero
and Tobar

(2017)

Chincarini
et al

(2016)

FreeSurfer
(v6.0)

FIRST
(FSL v6.0)

proposed
method

L 0.881 0.8739 0.8670 0.86 0.7039 0.8051 0.9000
Dice R 0.885 0.8749 0.8594 0.86 0.6918 0.8033 0.9015

both 0.898 0.850 0.85 0.6980 0.8044 0.9010
L 0.788 0.7664 0.5450 0.6748 0.8187

Jaccard R 0.795 0.7591 0.5306 0.6728 0.8213
both 0.5377 0.6738 0.8203

L 0.880 0.8872 0.89 0.6199 0.7440 0.9051
precision R 0.884 0.8772 0.88 0.6115 0.7406 0.9091

both 0.6156 0.7418 0.9073
L 0.884 0.8598 0.85 0.8196 0.8819 0.8960

recall R 0.889 0.8501 0.84 0.7993 0.8850 0.8952
both 0.8094 0.8833 0.8958
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Fig. 12 Bland-Altman plots showing the hippocampal vol-
ume agreement between the error corrected and ground truth
masks for the left (top plot) and right (bottom plot) hip-
pocampus in the HarP dataset. Dashed lines indicate the 95%
confidence level interval.

of six CNNs needed to be trained. Fine-tuning of the

error correction CNNs required segmentation masks for

the 15 atlases of the MICCAI training set, which were

not directly available, as testing of the segmentation

module was conducted using the separate test set. To

that end, a 5-fold inner cross-validation was performed

median case: #11821, MCI, vol = 4734mm , Dice = 0.9035
3

worst case: #28391, AD, vol = 2482mm , Dice = 0.8457
3

Fig. 13 Qualitative results for the error corrected masks in
the HarP dataset. The outlines of the automatic segmenta-
tions and the ground truth masks are depicted in yellow and
red respectively. Best viewed in color.

with the MICCAI training set, using a different set of

12 atlases to fine-tune the segmentation CNNs at each

round and the remaining 3 atlases to produce segmen-

tation masks for later usage, during the fine-tuning of

the error correction module.

Table 5 summarizes the results for the segmentation

step using different training approaches. When training

from scratch, with random parameter initialization, the

mean Dice value in the MICCAI test set was 0.8182 af-

ter fusion. Evaluating the pre-trained with the HarP

dataset CNNs without any additional fine-tuning re-
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Table 5 Mean segmentation Dice using different training ap-
proaches in the MICCAI test set.

sagittal coronal axial fusion

train from scratch 0.8143 0.8074 0.7351 0.8182
pre-trained HarP CNNs 0.7723 0.7737 0.6712 0.7690

transfer learning 0.8577 0.8655 0.8265 0.8711

Table 6 Mean Dice and standard deviation of the outputs of
individual CNNs and after average fusion in the MICCAI test
set. ”EC fusion” refers to the output of the error correction
module.

sagittal coronal axial fusion EC fusion

Dice 0.8577 0.8655 0.8265 0.8711 0.8816
std 0.0338 0.0256 0.0429 0.0247 0.0150

sulted in inferior performance. Transfer learning led to

far superior segmentation quality. Mean Dice value was

significantly higher for all three individual segmenta-

tion CNNs and reached the value of 0.8711 after fusion

(p = 4.8 × 10−5 compared to training from scratch).

Furthermore, Dice improved for all 20 test atlases in

relation to both training from scratch and evaluating

the pre-trained CNNs. These results suggest that while

CNN-based methods can benefit from larger datasets,

a transfer learning procedure is essential to surpass the

performance of training from scratch, especially when

different segmentation protocols and MR scanners are

involved. In the remainder of this section, all results

refer to the transfer learning training approach.

Table 6 presents the mean Dice and standard de-

viation values in the MICCAI test set for the outputs

of each segmentation CNN and after average fusion for

both the segmentation and error correction steps. Dice

distributions for the segmentation step are presented in
Fig. 14. Compared to the HarP dataset, the improve-

ment of fusion over the individual CNNs is less obvious,

but still statistically significant (p < 0.0024). However,

one notable difference is the larger effect of error cor-

rection in the overall performance, which improves the

mean Dice value by 0.0105 (p = 2.4×10−4), more than

twice the amount compared to the improvement in the

HarP dataset.

For our final results, which were obtained with er-

ror correction and after average fusion, we searched for

the optimal threshold value, in order to further im-

prove the adaptation of the proposed method to the

new dataset, after the process of transfer learning. To

that end, we utilized only the 15 atlases of the MICCAI

training set and performed another 5-fold inner cross-

validation, this time with respect to the error correction

CNNs. Maximum Dice in the training set was achieved

with T = 0.42. This value was then used when evalu-

ating the proposed method with the MICCAI test set,

further increasing the mean Dice by 0.0019 to the value

sagittal coronal axial fusion
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Fig. 14 Dice distribution for the segmentation step using
the MICCAI test set.
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Fig. 15 Effect of threshold value in the overall performance
after transfer learning to the MICCAI dataset.

of 0.8835 (p = 0.0478). In order to obtain the best pos-

sible result, the threshold search should be repeated

when transfer learning to a new domain. However, it

should be noted that this is not necessary, as the pro-

posed method performs almost equally well and still

surpasses the competition (refer to Table 7) using a

wide range of threshold values, including the default

value of 0.5, as presented in Fig. 15.

Table 7 compares the proposed method with the

three top performing entries of the MICCAI challenge

(PICSL BC, NonLocalSTAPLE and PICSL Joint),

other published methods that use the same test set, as

well as the FreeSurfer and FIRST segmentation tools.

Segmentation masks for all entries of the MICCAI chal-

lenge are publicly available, which enabled us to calcu-

late all evaluation metrics. Results for de Brébisson and

Montana (2015) were produced using the provided of-

ficial code. For the rest of the methods, we report only

values included in the respective publications. As can

be seen, the proposed method compares favorably to all

other methods. Kushibar et al (2017) and de Brébisson



14 Dimitrios Ataloglou et al.

(vol
output

 + vol
mask

) / 2 [mm3]

3000 3500 4000

(v
ol

ou
tp

ut
 -

 v
ol

m
as

k) 
[m

m
3
]

-600

-400

-200

0

200

400

600

(vol
output

 + vol
mask

) / 2 [mm3]

3500 4000 4500

(v
ol

ou
tp

ut
 -

 v
ol

m
as

k) 
[m

m
3
]

-600

-400

-200

0

200

400

600

Fig. 16 Bland-Altman plots showing the hippocampal vol-
ume agreement between the error corrected and ground truth
masks for the left (top plot) and right (bottom plot) hip-
pocampus in the MICCAI test set. Dashed lines indicate the
95% confidence level interval.

and Montana (2015) are both CNN based methods that

utilize orthogonal slices as inputs and combine them

within a single CNN. The proposed method achieves

superior performance, which strengthens our choice to

form model ensembles, comprised of independent CNNs

for every slicing operation and combine their outputs

with late fusion.

Taking into account both hippocampi, the proposed

method produces segmentations that are on average

126mm3 larger than the respective ground truth vol-

umes. The larger output volume (1.7% compared to

the ground truth) can be attributed to the selection

of a lower threshold value (T = 0.42), which was op-

timized for maximum Dice. The correlation coefficient

between them is 0.90. Volume agreement is graphically

presented in Fig. 16.

Figure 17 shows qualitative results for the best, me-

dian and worst case. A representative sagittal, coronal

and axial slice is presented, along with the MRI ID,

bilateral hippocampal volume and Dice value.

median case: #1003, vol = 9130mm , Dice = 0.8839
3

worst case: #1025, vol = 5749mm , Dice = 0.8437
3

Fig. 17 Qualitative results for the error corrected masks in
the MICCAI test set. The outline of the automatic segmen-
tation and the ground truth are depicted in yellow and red
respectively. Best viewed in color.

5.4 Processing time

Processing time was measured with the whole MRI vol-

ume as input to the proposed method. The input di-

mensions were 197×233×189 and up to 256×334×256

voxels for the HarP and the MICCAI datasets respec-

tively. For computational efficiency, when a mini-batch

consists only of non-brain slices (the sum of all pixels

is zero), we explicitly set the output to zero, without

passing these slices through the CNNs.

Using a single NVIDIA GTX 1080, segmenting one

MRI of the HarP dataset requires 14.8 seconds. In the

MICCAI dataset, where the dimensions of the input

MRI volume are larger, the equivalent required time is

21.8 seconds. In more detail, every segmentation CNN

requires on average about 3.7 or 6.0 seconds when seg-

menting a MRI from the Harp or the MICCAI dataset

respectively. After cropping, error correction CNNs al-

ways receive fixed sized volumes in evaluation mode and

require on average 1.2 seconds each, including both the

Replace and Refine parts. Time is almost entirely con-

sumed by the CNNs, as all other processes, such as av-

erage fusion or thresholding, add a negligible amount.

Thus, the total required time can be reduced by a factor

of 3 through the parallel execution of sagittal, coronal

and axial CNNs in different graphics cards.

To make fair comparison, we must also consider the

preprocessing time required for a new MRI. In the liter-

ature, additional registrations that must be performed
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Table 7 Performance comparison between the proposed method and other published methods and tools using the MICCAI
test set. Metrics were calculated separately for each hippocampus and jointly for both hippocampi. Results for the MICCAI
Challenge entries were calculated form the output segmentation masks, which were made available after the challenge. Results
for de Brébisson and Montana (2015) were produced using the provided official code. Results for Freesurfer and FIRST were
obtained by executing the default test scripts provided with the respective packages. Other results are displayed as reported
in the respective publications. Best performing values appear in bold.

MICCAI Challenge
(Landman and Warfield 2012)

Wang and
Yushkevich

(2013)

Zarpalas
et al

(2014b)

Ledig
et al

(2015)

de Brébisson
and Montana

(2015)

Kushibar
et al

(2017)

FreeSurfer
(v6.0)

FIRST
(FSL v6.0)

proposed
method

1st 2nd 3rd

L 0.8705 0.8648 0.8629 0.871 0.869 0.8213 0.876 0.7897 0.8085 0.8825
Dice R 0.8692 0.8672 0.8617 0.872 0.868 0.8197 0.879 0.8013 0.8094 0.8843

both 0.8698 0.8660 0.8622 0.870 0.8205 0.7956 0.8090 0.8835
L 0.7715 0.7627 0.7600 0.6981 0.6541 0.6787 0.7901

Jaccard R 0.7693 0.7665 0.7578 0.6959 0.6693 0.6803 0.7930
both 0.7702 0.7645 0.7587 0.6969 0.6617 0.6794 0.7915

L 0.8611 0.8492 0.8503 0.8029 0.7343 0.7721 0.8681
precision R 0.8764 0.8673 0.8631 0.8454 0.7656 0.8067 0.8828

both 0.8688 0.8584 0.8568 0.8236 0.7499 0.7892 0.8755
L 0.8819 0.8829 0.8779 0.8447 0.8574 0.8516 0.8995

recall R 0.8640 0.8692 0.8621 0.7982 0.8426 0.8154 0.8877
both 0.8725 0.8756 0.8696 0.8205 0.8496 0.8326 0.8932

for each new MRI are often considered to be part of the

preprocessing procedure and time spent is not counted

or reported separately. For example, in Giraud et al

(2016), which has a competing performance in terms

of Dice, authors report 5 minutes for preprocessing and

only a few seconds for segmentation. In comparison, the

preprocessing pipeline of the proposed method is com-

pleted within 30 seconds, with single-core CPU execu-

tion. In the MICCAI dataset, the second best perform-

ing method (Kushibar et al 2017), which is CNN-based

and utilizes the GPU, also requires a total of 5 minutes

for every test MRI. Thus, the proposed method is over-

all more than 5× faster compared to those methods.

Compared to other methods of Table 4, where Platero

and Tobar (2017) is reported to require 17 minutes per

MRI and Zhu et al (2017) requires 20 minutes just for

the label fusion step, the proposed method can be con-

sidered at least 23× faster, which is a dramatic improve-

ment, given that it also offers superior segmentation

accuracy.

6 Discussion

In this work, we developed an automatic segmentation

method of the hippocampus from magnetic resonance

imaging, incorporating a number of different convolu-

tional neural networks and exploiting their distinctive

capabilities. The proposed architecture is composed of

three steps. In the first one, we calculate a segmenta-

tion mask for the whole MRI volume. Then, based on

that segmentation mask, we crop a wider area around

both hippocampi. Finally, the error correction module,

which uses a combination of Replace and Refine CNNs,

corrects erroneous labels within the cropped region and

further improves the performance of the entire method.

The proposed architecture can be easily extended to

consider multiple structures or even perform full brain

segmentation by adjusting or totally removing the re-

gion cropping module, should sufficient and annotated

datasets become available for all structures of interest.

Inside the segmentation and error correction mod-

ules, 3D inputs are decomposed into 2D orthogonal

slices. We trained separate CNNs for each slicing op-

eration and performed a late voxel-wise average fusion

of their outputs. In practice, we designed an ensemble of

three models, with common internal structure, but dif-

ferent training data. All CNNs are fully convolutional

and operate with full slices, allowing efficient inference

regardless of the input size.

We followed two different approaches while train-

ing the proposed method. Starting with random ini-

tialization, we managed to obtain state-of-the-art re-

sults in the HarP dataset, which included a sufficiently

large number of atlases. This was not possible for the

MICCAI dataset, due to the much smaller training set,

contradicting the philosophy of CNN training. To over-

come this inefficiency, we used the already trained net-

works with the HarP dataset as an initialization point

and consequently fine-tuned them with the MICCAI

training set. Overall, transfer learning showed spec-

tacular relative improvement, proving that in CNN-

based segmentation methods the combination of multi-

ple datasets is beneficiary, even with different manual

segmentation protocols. This is a unique advantage of

CNNs compared to other segmentation methods, which

can be exploited for applications in the medical domain,

where the creation of large and manually annotated

datasets is costly and time consuming.
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The proposed method was validated using two dif-

ferent public datasets, which included cases with var-

ious demographic and clinical characteristics, demon-

strating high robustness and surpassing in performance

previously published methods. As shown by the results,

the addition of the error correction mechanism led to

a systematic improvement of the segmentation masks

and helped our implementation take precedence over

other competing methods. Overall, for a test MRI, the

proposed method is dramatically faster when compared

to multi-atlas registration and fusion methods.
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