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Abstract

Visual object detection is a critical task for a variety
of industrial applications, such as robot navigation, qual-
ity control and product assembling. Modern industrial en-
vironments require AI-based object detection methods that
can achieve high accuracy, robustness and generalization.
To this end, we propose a novel object detection approach
that can process and fuse information from RGB-D images
for the accurate detection of industrial objects. The pro-
posed approach utilizes a novel Variational Faster R-CNN
algorithm that aims to improve the robustness and gener-
alization ability of the original Faster R-CNN algorithm by
employing a VAE encoder-decoder network and a very pow-
erful attention layer. Experimental results on two object de-
tection datasets, namely the well-known RGB-D Washing-
ton dataset and the QCONPASS dataset of industrial ob-
jects that is first presented in this paper, verify the signifi-
cant performance improvement achieved when the proposed
approach is employed.

1. Introduction
With the advent of Industry 4.0 and the technological

breakthroughs in ICT technologies, there is a growing de-
mand for automation in industrial environments by using
robotics and relevant applications to assist workers in their
tasks and facilitate production [9]. One such automatic pro-
cedure is object detection that aims at identifying the loca-
tion and class of an industrial object from images captured

by specialized sensors and processed by machine and deep
learning algorithms. Object detection in industrial environ-
ments is crucial for a huge variety of robotic applications
involving assembling, sorting, robot navigation, fault detec-
tion, etc.

However, object detection is a very challenging task as
it involves the detection of a large number of industrial ob-
jects that may vary slightly in appearance and/or size. In
addition, object detection requires significant computational
time, adaptability to different objects of the same category,
and durability against lighting conditions, dust, and fast-
changing environments [18]. To this end, it is imperative
to develop automatic object detection algorithms that can
achieve high accuracy, robustness and generalization. Most
research works explore the processing of RGB images using
highly specialized object detection algorithms [1, 2, 4, 22],
but there is limited research on the use of additional data
modalities and/or generative models to further enhance the
accuracy and the generalization ability of object detection
algorithms. Such limitations are further enhanced by the
lack of large publicly available datasets of industrial objects.

To overcome the aforementioned challenges, this work
introduces a new dataset of RGB-D images of industrial ob-
jects and proposes a novel deep learning approach for the
detection of such objects based on the processing of RGB
and depth images. The proposed approach utilizes a novel
enhanced variant of the well-known Faster R-CNN algo-
rithm [20], called Variational Faster R-CNN for the process-
ing of RGB and depth images separately prior to the fusion
(i.e., concatenation) of the RGB and depth information and
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the further processing using another Variational Faster R-
CNN network architecture. The novel Variational Faster R-
CNN algorithm extracts image features using a ResNet net-
work, forwards these features to a Variational Auto-Encoder
(VAE) network architecture and an Efficient Channel At-
tention (ECA) layer and finally feeds them to Region Pro-
posal Networks (RPN) and classification modules for ob-
ject classification and localization. The aim of the Varia-
tional Faster R-CNN algorithm is to improve the general-
ization ability and accuracy of the original Faster R-CNN
algorithm through the projection of the image features to a
highly discriminative latent space and a powerful attention
mechanism. The main contributions of this work are sum-
marized below:

• We propose the novel Variational Faster R-CNN that
extracts features from RGB and Depth images, feeds
these features to a VAE framework with an ECA at-
tention layer and then processes these features using a
RPN and a classification module for robust object de-
tection results.

• We introduce a new dataset of industrial objects,
named QCONPASS, captured using a RGB-D sensor.

2. Related Work
Two-stage detectors, such as Faster R-CNN [20] and

Mask R-CNN [12], are very popular algorithms for object
detection and localization due to their high accuracy and
speed. In the first stage, such detectors employ deep convo-
lutional networks and region proposal networks to propose
candidate image regions, where objects of interest may ex-
ist, while in the second stage they classify these regions to
object classes. Especially, in industrial settings, where an
autonomous robot is required to navigate and assist work-
ers in their tasks, the lightweight Faster R-CNN algorithm
is highly employed. Several works employed Faster-RCNN
to train robotic arms in an industrial environment to iden-
tify and manipulate objects using RGB images [1, 2], while
Saeed et al. [22] used the Faster R-CNN algorithm for fault
detection in industrial images. In a different scenario, Sun
et al. [23] employed Faster R-CNN to safely navigate an
autonomous robot in a warehouse by identify shelf-legs and
tags in an image.

With the high availability and the low cost of RGB-D
sensors and to further improve the accuracy and robustness
of object detection (RGB-based methods are usually sensi-
tive to illumination changes), several works employed depth
information as an additional modality, with complemen-
tary information to the RGB data [10]. Depth information
can be really useful in industrial environments, in which
the objects that needs to be detected vary significantly in
size. Multi-modal information has been successfully incor-
porated in a Faster R-CNN network as well. Mocanu et al.

in [17] proposed the processing of RGB and depth modal-
ities using VGG networks in two streams and the early fu-
sion of these streams prior to their introduction in the RPN
network of a Faster R-CNN architecture. On the other hand,
Zhu et al. in [25] proposed custom CNNs as backbone net-
works for the Faster R-CNN algorithm in order to process
RGB and depth images. The authors then used the depth
information to predict object boundaries, while they per-
formed late fusion of the RGB and depth modalities to ac-
curately classify the detected objects.

The huge variety of objects and/or industrial parts that
need to be detected in a typical industrial environment, as
well as the lack of large industrial object datasets makes
the need for generalized object detection algorithms im-
perative. Generative models, such as Variational Autoen-
coders (VAEs) [5, 14] and Generative Adversarial Networks
(GANs) [11], demonstrate tremendous learning capacity
and generalization capabilities and are widely employed in
several computer vision tasks. In object detection and clas-
sification, Eslami et al. [8] proposed a recurrent neural net-
work and a VAE framework to identify several objects in a
scene by attending to a single object at a time. Crawford
et al [3] improved the previous approach by replacing the
recurrent with a convolutional neural network and proposed
a novel algorithm that can achieve higher accuracy and gen-
eralize better in scenes containing several objects.

Although advances in CNNs and VAEs have led to im-
proved accuracy and generalization in several computer vi-
sion tasks, robustness problems still pertain. To remedy
these problems, attention layers have been proposed in the
literature, empowering deep networks to attend to certain
aspects of the input data, reducing their overall sensitivity to
noise. Vaswani et al. [24] proposed the modelling of the in-
terdependencies between spatial or temporal features using
a Transformer network. On the other hand, Hu et al. [13]
proposed a network architecture that performs channel-wise
attention and explicitly models interdependencies between
channel features. In a similar fashion, Wang et al. [19]
designed a layer called Efficient Channel Attention (ECA),
aiming to be lightweight and model cross-channel interac-
tions, and they demonstrated its ability to significantly boost
the performance of deep networks.

Leveraging the aforementioned advances in deep learn-
ing, this work proposes a novel object detection approach
that can be applied in industrial environments. The pro-
posed approach is based on the processing of RGB-D im-
ages using the novel Variational Faster R-CNN and the sub-
sequent fusion of the RGB and depth information for the ac-
curate localization of industrial objects. The incorporation
of a VAE encoder-decoder network and an ECA attention
layer to the proposed Variational Faster R-CNN algorithm
leads to improved accuracy and robustness as verified by the
experimental results.
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Figure 1: Network architecture of the proposed method.

3. Proposed Method

3.1. Motivation

The motivation behind the proposed object detection
method lies in the effort to overcome limitations of single
data modalities, as well as design networks with high dis-
crimination and generalization abilities for accurate and ro-
bust industrial object localization results. The network ar-
chitecture of the proposed method consists of three distinct
branches that are trained separately. Initially, Branches 1
and 2 employ the novel Variational Faster R-CNN algorithm
in order to create meaningful feature representations of the
RGB and depth information, respectively, through the en-
coding of the RGB and depth images as points in descriptive
latent spaces. Subsequently, points from the latent spaces
are concatenated and fed to the RPN network and the classi-
fier of the Variational Faster R-CNN in Branch 3 in order to
derive the final positions (i.e., bounding boxes) and classes
of the objects depicted in the images. The proposed method
is illustrated in Fig. 1, while the novel Variational Faster
R-CNN algorithm is described in detail below.

3.2. Variational Faster R-CNN

The proposed Variational Faster R-CNN comprises an
enhanced variant of the original Faster R-CNN, aiming to
improve its accuracy, robustness and generalization ability
through the use of a VAE framework and an attention mech-
anism. More specifically, the proposed Variational Faster R-
CNN algorithm initially extracts descriptive features from
input images using a backbone CNN network. Lee et al.
in [16] performed a comparison of various CNN networks
that can be employed as backbone networks for the Faster
R-CNN algorithm and showed that ResNet-50 outperforms
the other networks in terms of accuracy. The high accuracy

Figure 2: The architecture of the proposed VAE decoder.

and computational speed, as well as the low memory foot-
print of the ResNet-50 network are the main reasons behind
the adoption of the specific network for the proposed Varia-
tional Faster R-CNN since an algorithm that is employed in
industrial robotic applications should meet such criteria.

Next, the extracted image features are fed to a VAE
framework that is responsible for creating a mapping be-
tween the feature space and a new highly discriminative
latent space. The purpose of this step is to improve the
generalization ability of the proposed Variational Faster R-
CNN algorithm by projecting the input data to a new space
that can better model their underlying attributes and correla-
tions, allowing the algorithm to generalize better on unseen
data. Firstly, the encoder Ei gets as input the 3D feature
maps Fi, reshapes them to vectors and processes them to
generate two fixed-size vectors µi and σi that describe the
mean and standard deviation of the distribution of the fea-
tures in the latent space lsi, respectively. These vectors are
then used to sample a new vector z from the Gaussian dis-
tribution N(µi,Σi), where Σi = diag(σ2

1 , σ
2
2 , ..., σ

2
d) and

d is the dimensionality of the latent space. The loss func-
tion that is used to optimize the weights of the encoder is
Kullback-Leibler [14]:

LKL =
1

2

d∑
j=1

(σ2(j) + µ2(j)− ln(σ2(j))− 1)

Afterwards, the latent space vector z is reshaped to a 3D
tensor and fed to the VAE decoder. The decoder, illustrated
in Fig. 2, consists of an ECA attention layer and a transpose
convolution layer. The ECA layer (consisting of a global
average pooling (GAP) and a convolution layer) is respon-
sible for performing cross-channel attention by weighing
feature maps accordingly based on their relevance for the
task and diminishing the effect of noisy features, while the
transpose convolution layer processes the feature maps to
become more meaningful. The output of the decoder is the
generated feature maps GFi.

The feature maps GFi generated by the VAE decoder are
then fed to two specialized networks that are utilized by the
original Faster R-CNN algorithm as well. The first network
is called Region Proposal Network (RPN) and it consists
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of three convolutional layers that act as spatial sliding win-
dow, box-regression (reg) and box-classification (cls), re-
spectively. For each sliding window, the RPN network pro-
vides object proposals (Regions of Interest (ROIs)), in the
form of bounding boxes specified by their 2D coordinates
and probabilities that the detected boxes depict an object or
the background. A critical parameter in the RPN network
is the designation of the anchors. The anchors represent a
set of sizing and scaling parameters that may vary based on
the size of input images and are used by the reg layer to de-
fine its object proposals per sliding window. Consequently,
the improper setup of the anchors may lead to slow conver-
gence of the RPN network or even to its failure. The loss
that optimizes the RPN network is described by the follow-
ing equation:

LRPN =
1

Ncls

n∑
i=1

Lcls(pi, p
∗
i )+λ

1

Nreg

n∑
i=1

piLreg(ti, t
∗
i ),

where Lcls is the box-classification layer loss and Lreg

is the box-regression layer loss defined as binary cross-
entropy and L1 loss, respectively. Moreover, p∗i represents
the ground-truth of the ROI class (0 or 1 depending on
background or object), t∗i represents the ground-truth of the
bounding box, pi is the predicted probability of the anchor
class and ti is the coordinates of the selected anchor. Fi-
nally, Ncls, Nreg , and λ are normalization and balancing
parameters.

The second and final specialized network is the classifier
that receives as input the generated feature maps GFi and
the ROIs generated by the RPN network and performs ROI
pooling to refine the predicted bounding boxes prior to the
prediction of the class for each final bounding box. The loss
function utilized for the classifier network is defined as:

Lclassifier =

n∑
i=1

Lcls(pi, p
∗
i ) + λ

n∑
i=1

Lreg(ti, t
∗
i ),

where Lcls denotes the cross-entropy loss and all other
variables denote the same quantities as those presented in
the equation of the LRPN loss.

4. QCONPASS dataset
Motivated by the scarcity of publicly available datasets

to effectively train object detection algorithms for industrial
applications, we introduce in this work the QCONPASS
dataset that consists of RGB-D images depicting industrial
objects.

4.1. Data Collection

The QCONPASS dataset consists of synchronised and
registered RGB and Depth images captured using an Intel

RealSense D435 sensor placed on an autonomous Kobuki
robot [21]. The robot navigates in an elevator manufac-
turing and assembly factory collecting images of elevator
components that need to be recognised during assembly and
packaging processes. The elevator components are placed
firmly on a platform and moved around by workers so that
the sensor can capture images of the components from dif-
ferent distances and viewing angles, thus increasing the
variability of depicted objects and improving the robustness
of an object detection algorithm trained on the QCONPASS
dataset. The objects are placed at a distance of around 1.5-
2m and the sensor could capture a maximum distance of
4m. Due to the aforementioned capturing procedure, each
image of the QCONPASS dataset depicts a single elevator
component. In addition, there are images, in which the de-
picted objects are slightly occluded due to the presence of
workers that manipulate the platform.

4.2. Data Processing

During the preprocessing stage, the images of the dataset
are initially filtered using two criteria: i) The object is
viewed at an angle lower than 60 degrees and ii) At least
50% of the size of the object is visible on the image. After-
wards, a manual annotation procedure is performed using
the VIA software [6], during which a human annotator view
the object and annotate it with a class name and a bounding
box. In total, 2051 RGB and depth images of size 848x400
pixels depicting 13 different elevator components (classes)
are obtained, meaning that there are around 150 images per
class. These images are randomly split in a training and test
set consisting of 1661 and 390 images, respectively. All
different elevator components present in the QCONPASS
dataset are shown in Fig. 3, in which we can observe that
most classes have similar shapes and sizes but they differ in
texture.

5. Experimental Results
5.1. Datasets and Metrics

For the experimental evaluation of the proposed method,
we employ the RGB-D Washington dataset [15], as well
as the new QCONPASS dataset. The RGB-D Washington
dataset contains around 210k RGB-D images, taken from
different viewpoints. The images are subsampled every 5th
video frame, resulting in around 42k RGB-D images of 300
everyday objects that are organized into 51 categories. For
our experiments, we randomly sample one object per cat-
egory to be employed for testing (i.e., 51 objects), while
the remaining objects are used for training (i.e., 249 ob-
jects). The RGB-D dataset is chosen due to its large size
that makes it suitable for training a deep network and the
fact that it provices RGB-D images of objects. The RGB-D
Washington dataset is very challenging as there is large vari-
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Figure 3: Different elevator components present in the QCONPASS dataset.

ance in the lighting conditions that affect the quality of the
images. Additionally, the dataset contains several texture-
less objects, such as fruits and bowls, that can significantly
deteriorate the accuracy of an object detection methodol-
ogy.

To evaluate the performance of the proposed method
and compare it with other techniques, we employ the well-
known metrics of mean average precision (mAP), F1-score
and Area Under Curve (AUC). To calculate AUC, we use
the 11-point interpolated recall and precision curves. An
object is considered detected if the ratio of the overlap be-
tween the predicted and the ground truth bounding box (i.e.,
Intersection-over-Union (IOU )) is above a threshold tIOU .
IOU is calculated using the formula below:

IoU =
Area of Overlap

Area of Union

5.2. Implementation details

In all Faster R-CNN implementations, we rescale the
RGB-D images to the size of 320×240 and employ ResNet-
50 as the backbone CNN network for fair comparison. More
specifically, we get the output from the fourth convolutional
layer of the ResNet-50 network, since the RPN network ac-
cepts 3D feature maps. The ResNet-50 network is already
pretrained on ImageNet. We also encode the depth images
from a single channel to 3 channels in colorjet format using
the method proposed in [7], as it showed improved perfor-
mance on the tested datasets. An example of the result-
ing depth images is illustrated in Fig. 4. Moreover, we set
the dimensionality of the latent space for all branches to
d = 2240. Finally, we set the number of object proposals
generated by the RPN network to 16, we employed 5 scales
with sizes of 8, 16, 32, 64 and 128, and 3 aspect ratios of
1:1, 1:2 and 2:1 for the anchors. The result is 15 anchors per
sliding window (5 scales × 3 aspect ratios). We choose this
configuration setup because the RGB-D Washington dataset

(a) (b)

Figure 4: (a) Normalized depth image, (b) Colorjet depth
image.

contains objects with significant variations in size and im-
age area coverage.

As far as the training is concerned, we initially train
Branches 1 and 2 and then freeze their weights while train-
ing Branch 3. We also set the learning rate to the value
of 10−5 and the threshold to decide whether a predicted
bounding box is true positive or false alarm to tIOU = 0.5.

5.3. Results

We evaluate our proposed method with different modal-
ities in order to assess the importance of combining infor-
mation from different modalities to achieve more accurate
object detection results. Initially, we compare our proposed
method against the original Faster R-CNN method on the
RGB-D Washington dataset and the results are presented in
Table 1.

From the results of Table 1, we can draw a few inter-
esting conclusions. The RGB images carry slightly more
important information than the depth images, which can be
verified by the improved performance of both the original
and the proposed Variational Faster R-CNN when RGB im-
ages are employed. In addition, utilizing multi-modal infor-
mation is beneficial both to the original and the Variational
Faster R-CNN, which verifies the importance of fusing dif-
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Method mAP F1 Score AUC
Faster R-CNN (RGB) [20] 50.93 59.23 0.51
Faster R-CNN (Depth) [20] 50.71 57.77 0.50

Multi-modal Faster R-CNN (VGG-16) [17] 55.9 62.24 0.55
Multi-modal Faster R-CNN (ResNet-50) [17] 59.8 66.51 0.59

Variational Faster R-CNN (RGB) 56.46 63.6 0.56
Variational Faster R-CNN (Depth) 52.6 61.72 0.52

Proposed approach 64.3 70.67 0.63

Table 1: Experimental results in the RGB-D Washington
dataset.

ferent modalities to overcome limitations of single modal-
ities. It should be noted here that the implementation of
the multi-modal Faster R-CNN follows the one presented in
[17] (i.e., concatenation of the RGB and depth features prior
to introducing them to the RPN network and the classifier
of the Faster R-CNN) with the use of VGG-16 (originally
presented in [17]) and ResNet-50 as backbone networks for
fair comparison with the other tested Faster R-CNN imple-
mentations. From the comparison of the results in Table 1,
it can be seen that our proposed approach outperforms both
multi-modal Faster R-CNN implementations of [17], irre-
spective of the backbone network used, thus verifying the
importance of employing a VAE framework and the ECA
attention layer for improved object detection results.

In addition, a comparison between the original and the
Variational Faster R-CNN algorithm shows that the pro-
posed approach achieves more accurate and robust predic-
tions when utilizing either a single modality or multi-modal
information. More specifically, the proposed approach im-
proves the object detection results by 5.53%, 1.89% and
4.5%, in terms of mAP, with respect to the original Faster R-
CNN, when RGB, depth or RGB-D images are employed,
respectively. Similar performance gains are observed for
the other metrics as well. These results verify that using
the proposed VAE network architecture and the ECA layer
can significantly improve the generalization ability, robust-
ness and accuracy of an object detection algorithm. To
further illustrate the performance improvement of our pro-
posed method, we present the Precision-Recall curves in
Fig. 5.

Finally, we evaluate our proposed method in the new
QCONPASS dataset in order to assess the ability of the
method to accurately identify objects in an industrial set-
ting. The results are presented in Table 2 and show that the
proposed approach can achieve really accurate results, de-
spite the fact that the QCONPASS dataset is smaller com-
pared to the RGB-D Washington dataset and it does not al-
low a deep network to optimally tune its weights. Object
detection results from the proposed method for different in-
put modalities (i.e., RGB, Depth and RGB-D) are shown in
Table 2 and are illustrated in Fig. 6 to verify the impor-
tance of fusing information from different modalities rather

Figure 5: Precision-Recall curves for the compared meth-
ods.

Method mAP F1 Score AUC
Variational Faster R-CNN RGB 89.92 87.6 0.85
Variational Faster R-CNN Depth 87.67 85.52 0.86

Proposed approach 93.16 93.44 0.88

Table 2: Experimental results in the QCONPASS dataset.

Figure 6: Object detection results from the proposed
method in the QCONPASS dataset using RGB (left), Depth
(middle) and RGB-D (right) information. Green and red
boxes denote the ground truth and predicted results, respec-
tively.

than employing a single modality (i.e., at least 3.24% im-
provement in mAP when RGB-D images are employed).
More specifically, using multi-modal information can re-
move inaccuracies (e.g., false positive predictions and no
predictions at all, as well as inaccurate object delineation)
produced when employing a single modality.
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6. Conclusions
This work proposes a novel method for the identifica-

tion of industrial objects based on the processing of RGB-D
images. Inspired by the accuracy and low memory foot-
print of Faster R-CNN, we propose the Variational Faster
R-CNN that utilizes a VAE framework to map the initial
feature space into a new latent space, as well as the ECA
attention layer to empower the network to diminish the in-
fluence of irrelevant features and enhance the impact of rele-
vant ones. The goal is to develop an enhanced variant of the
original Faster R-CNN algorithm that can achieve improved
accuracy, robustness and generalization. Experimental re-
sults in a large publicly available object detection dataset
verify the effectiveness of the proposed method. Moreover,
motivated by the lack of RGB-D datasets for the identifica-
tion of industrial objects, this study introduces the QCON-
PASS dataset that contains RGB-D images of elevator com-
ponents and evaluates the proposed method on it.

As far as future work is concerned, we aim to investigate
additional and more sophisticated ways to fuse multi-modal
information using variational encoder-decoder network ar-
chitectures. In addition, the proposed method could also be
extended to integrate more than two modalities in order to
deliver even higher accuracy and robustness in the object
detection task, especially for industrial applications, where
speed and accuracy are of utmost importance. Finally, we
aim to enrich our QCONPASS dataset with more object in-
stances and classes and make it publicly available in order
to assist future industrial object detection methodologies.
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