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A B S T R A C T   

Spherical cameras capture scenes in a holistic manner and have been used for room layout estimation. Recently, 
with the availability of appropriate datasets, there has also been progress in depth estimation from a single 
omnidirectional image. While these two tasks are complementary, few works have been able to explore them in 
parallel to advance indoor geometric perception, and those that have done so either relied on synthetic data, or 
used small scale datasets, as few options are available that include both layout annotations and dense depth maps 
in real scenes. This is partly due to the necessity of manual annotations for room layouts. In this work, we move 
beyond this limitation and generate a 360◦ geometric vision (360V) dataset that includes multiple modalities, 
multi-view stereo data and automatically generated weak layout cues. We also explore an explicit coupling 
between the two tasks to integrate them into a single-shot trained model. We rely on depth-based layout 
reconstruction and layout-based depth attention, demonstrating increased performance across both tasks. By 
using single 360◦ cameras to scan rooms, the opportunity for facile and quick building-scale 3D scanning arises. 
The project page is available at https://vcl3d.github.io/ExplicitLayoutDepth/.   

1. Introduction 

Geometry perception is a fundamental computer vision task, and a 
core technology for applications like Augmented Reality (AR), robotic 
navigation and 3D reconstruction. It can be achieved using direct 
sensing (i.e. time-of-flight or LiDaR technology) or vision-based tech
niques (i.e. multi-ocular stereo). Recently, the increased performance of 
data-driven methods has enabled monocular geometry perception. The 
applicability of monocular approaches is far superior to approaches that 
require specific sensors or multiple cameras, and despite the recent 
progress that modern machine (deep) learning has brought, depth esti
mation from monocular input remains a challenging problem (Bhoi, 
2019). This stems from the inherent ill-posedness of the task, the 
complexity of image formation, as well as the lack of large, high quality 
datasets. 

Specifically for indoor scenes, a large body of work has focused on 
simple representations instead of dense pixel-wise geometry estimates 

(Pintore et al., 2020). A coarse planar 3D reconstruction can be achieved 
by inferring the scene’s structural layout which comprises walls, ceiling 
and floor, and is estimated by localising the T-junctions where the two 
walls and a horizontal plane intersect. Still, this representation is quasi- 
counterfactual, as it ignores the scene’s inner geometry and structure (i. 
e. the objects). An important shortcoming though, is that since the 
corner (T-junction) localisation results are estimated on the projected 
images, the results are up-to-scale. On the other hand, finer-grained 
depth estimation seeks to provide metric-scale measurements, show
casing the complementarity of these two tasks. 

In this work, we focus on exploiting this complementarity in larger- 
scale than prior works, focusing on indoor scene depth estimation with a 
single omnidirectional1 camera. Recent advances in sensor miniaturi
zation and consumer hardware open up the opportunity for facile 360◦

image captures. Compared to traditional cameras, their 360◦ nature 
provides them a couple of advantages. They require a sparser set of 
captures to cover a scene/room/building due to their holistic Field-of- 
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View (FoV). This is also very important for the downstream tasks as 
shown in (Zhang et al., 2014). Indeed, tasks like layout estimation are 
more suited to 360◦ images. When using perspective images, the models 
need to extrapolate beyond their limited FoV to reason about the global 
scene structure, compared to 360◦ models that receive the entire scene 
as input. 

A key problem that needs to be addressed in order to facilitate 
progress towards transforming low-cost 360◦ cameras to depth sensors is 
the availability of data. For 360◦ depth, a number of datasets have been 
introduced recently, some synthetic, like Structured3D (Zheng et al., 
2020) and Kujiale (Lei et al., 2020), others from real-world scans, like 
Stanford2D3D (Armeni et al., 2017) and Matterport3D (Chang et al., 
2018), and others generated via synthesis from both types of 3D data
sets. For 360◦ layout, the aforementioned synthetic datasets also provide 
layout annotations, but for their real counterparts, there exists a sig
nificant size discrepancy between the layout and depth annotated 
samples. For synthetic datasets it is straightforward to provide multiple 
annotated modalities, therefore offering joint layout and depth ground- 
truth data, but the same does not apply to real datasets. Up to now, only 
small subsets of 360◦ datasets have been annotated with scene layouts. 
PanoContext (Zhang et al., 2014) annotated samples from the Sun360 
(Xiao et al., 2012) dataset, LayoutNet (Zou et al., 2018) used the Stan
ford2D3D dataset, and a panorama-based layout estimation study (Zou 
et al., 2019) which annotated a sample of the Matterport3D dataset, 
offering the LayoutMP3D dataset (Wang et al., 2020). In addition, the 
Realtor360 dataset (Yang et al., 2019) was eventually not made public 
due to licensing issues. This is reasonable given the effort required to 
manually annotate numerous samples in high quality. 

Our approach seeks to exploit the complementarity of layout and 
depth estimation, a direction that only a small body of work (Lei et al., 
2020; Zeng et al., 2020) has explored up to now for panoramic inputs. 
However, the unavailability of datasets with simultaneous depth and 
layout ground-truth has limited them to smaller scale data pools. Here, 
we take a diverging direction and rely on weak layout labels by gener
ating the corresponding dataset and design a dual task model that can 
exploit this weak layout information to improve depth estimation per
formance from a single panorama. Our data, models and rendering code 
are made publicly available in the project page: vcl3d.github.io/E 
xplicitLayoutDepth/. 

In summary, our contributions are the following:  

• We build on prior work and deliver a new benchmark for indoor 360◦

scene understanding. Our 360V dataset contains color, depth, sur
face orientation, structural semantics and weak layout cues in 360◦

multi-ocular stereo.  
• We overcome some of the issues associated to automatic layout 

labelling via semantic segmentation masks, and improve the quality 
of the inferior bottom labels using the scene’s geometry.  

• We design our dual task model in a principled manner, integrating 
best practices for layout and depth estimation, and properly adapting 
for single-shot training using the weak layout cue annotations.  

• We integrate explicit constraints between the layout and depth 
estimation tasks, using the metric scale depth measurements to 
reconstruct the floor part of the layout, and using the higher quality 
top layout to attend to the depth estimation task. Apart from the 
increased performance the layout cues offer, this coupling allows the 
model to reach a higher performance consensus in both tasks and 
outperforms models that only implicitly couple the two tasks. 

The remainder of this document is structured as follows. In Section 2, 
we initially review the state of the art for 360◦ datasets in Section 2.1, 
followed by the recent developments in depth and layout estimation 
from monocular panoramas in Sections 2.2 and 2.3, respectively. This 
section concludes with a brief outlook of works focusing on depth esti
mation combined with layout estimation, either jointly or as a sup
porting task, to set the grounds for positioning our work. In Section 3 we 

describe the process for generating our dataset, following with our 
model’s design in Section 4. Our results are presented and analysed in 
Section 5, and finally we conclude with a short discussion in Section 6 
about the potential of the 360V dataset and geometry estimating 360◦

cameras for indoor 3D modelling. 

2. Related Work 

2.1. Spherical Geometric Datasets 

Datasets and thus, benchmarks, are the drivers of progress in our 
field, as even before the advent of modern data-driven methods, they 
facilitated the assessment of different techniques that incrementally 
advance the development of new technologies. Compared to the avail
ability of data for traditional cameras, 360◦ datasets are lacking mainly 
due to the relatively recent advances made in 360◦ imaging. 

On the real end of the spectrum, one of the first largest scale 360◦

datasets was SUN360 (Xiao et al., 2012), offering 67,583 color pano
ramas spanning 80 categories. While it is no longer available, a small 
subset of indoor scenes (∼ 500) was annotated by PanoContext (Zhang 
et al., 2014) with layout corners. Similarly, LayoutNet (Zou et al., 2018) 
annotated 571 color panoramas with layouts originating from the 
Stanford2D3D dataset (Armeni et al., 2017). The latter is a building- 
scale 3D dataset that offers structural semantic annotations, in the 
form of 1413 color, depth and semantically annotated panoramas from 6 
different large-scale indoor environments. The panoramas are generated 
after stitching the Matterport2 camera’s perspective views, or, for the 
depth and semantics, after rendering the 3D model from pre-defined 
viewpoints and then stitching them. Yet this approach comes with ar
tifacts, the camera’s perspective views leave the zenith and nadir empty, 
which remains empty (i.e. filled with black). For the renderings, in order 
to provide sufficient quality when stitching them into equirectangular 
images, high resolutions are required as bilinear interpolation cannot 
apply to depth or semantics without adding noise to the results. How
ever, when used during training, the images are downsampled, resulting 
in aliasing. 

Similarly, the Matterport3D dataset (Chang et al., 2018) was scanned 
with Matterport cameras and provides 90 3D buildings annotated with 
semantics, as well as the original camera’s perspective views. Gener
ating the panoramas requires stitching them, as with Stanford2D3D, 
resulting in similar artifacts with blurry inpainted zeniths and nadirs. To 
this date though, no 360◦ semantics are available. Still, Matterport3D 
offers more fine-grained labels compared to Stanford2D3D, which are 
not always compatible. A subset was annotated by a recent layout esti
mation survey (Zou et al., 2019), which resulted in LayoutMP3D, a 
panorama dataset with 2295 panoramas annotated with depth and 
layouts. 

On the other end of the spectrum, there exist synthetic datasets. 
Recently, high quality, professional made 3D indoor scenes were ray- 
traced into 360◦ panoramas, resulting in the Kujiale (Lei et al., 2020) 
and Structured3D (Zheng et al., 2020) datasets. These offer multi-modal 
data (color, depth, normals), in a variety of lighting (raw, warm, cold) 
and furniture (empty, simple, full) settings. Due to their synthetic na
ture, they are easily supplemented with layout annotations and even 
albedo maps, totalling 3550 and 21835 unique samples for each one 
respectively. 

In the middle, there exist hybrid approaches that generate data by re- 
using 3D datasets. OmniDepth (Zioulis et al., 2018) leveraged the two 
aforementioned real-world scanned 3D datasets, Matterport3D and 
Stanford2D3D, as well as two synthetic 3D datasets, SunCG (Song et al., 
2017) and SceneNet (Handa et al., 2015), to synthesize 360◦ color and 
depth pairs via ray-traced rendering, totalling 23524 unique samples. It 
was later extended in (Zioulis et al., 2019; Karakottas et al., 2019) with 

2 https://matterport.com/ 
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vertical and horizontal stereo, as well as normal maps, offering 8680 real 
and 9311 synthetic samples3. Our approach is an extension of these 
works that offers additional stereo viewpoints, fixes lighting issues, and 
additionally generates consistent structure-based semantics and weak 
layout cues. 

2.2. Spherical Depth Estimation 

Geometry estimation from 360◦ images with traditional (i.e. non 
data-driven) methods was achieved via stereo (Kim and Hilton, 2013) or 
structure-from-motion (Huang et al., 2017). Following the first data- 
driven monocular depth estimation work (Eigen et al., 2014), Omni
Depth (Zioulis et al., 2018) was the first data-driven method for 
monocular 360◦ depth estimation, trained with a generated 360◦ color 

and depth dataset to overcome the distinct lack of data. It employed 
supervised regression, showing that training directly using equi
rectangular images is beneficial. In parallel, distortion-aware filters 
(Tateno et al., 2018) were used to apply perspective trained models to 
equirectangular images with reduced performance deviation. 

Following the advances in self-supervised depth estimation (Zhou 
et al., 2017), the concept was applied to 360◦ videos in (Wang et al., 
2018), where a small video dataset was generated using SunCG. A cube- 
map representation was used with a pose consistency loss applied to 
restrict the poses estimates when applying the perspective self- 
supervised mode to each face. Similarly, stereo-based principles have 
also been applied to 360◦ depth estimation in (Zioulis et al., 2019), with 
a trinocular dataset rendered to demonstrate the feasibility of horizontal 
stereo for 360◦ inputs, apart from the more frequently used vertical 
stereo (Wang et al., 2020). Recently, Bi-Fuse (Wang et al., 2020) 
exploited both representations – equirectangular and cube-map – 
showcasing the increased performance arising from their fusion. Our 

Fig. 1. Random samples from the 360V dataset. For each sample, the automatically annotated weak layout cues are depicted on the color image in rows (a) and (e), 
which is accompanied by a high quality depth map in rows (b) and (f) with, a surface orientation map in rows (c) and (g) with, and a semantic label in rows (d) and 
(h) with map that contains the main scene structural elements as illustrated in row (i) depicting the colored labels legend, at the bottom of the figure. 

3 The synthetic samples are from the discontinued SunCG dataset. 
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work focuses on monocular depth estimation from a single panorama, in 
a dual task setting, integrating layout cues in a way beneficial to both 
tasks, and using an adapted coarse-to-fine architecture. 

2.3. Spherical Layout Estimation 

Lately, layout estimation from 360◦ panoramas has received 
considerable attention. The reader is referred to a survey about 3D 
reconstruction of structured indoor environments (Pintore et al., 2020) 
for an extended review. Some of these focus on using multiple pano
ramas to reconstruct planar approximations of interior spaces (Pintore 
et al., 2016; Pintore et al., 2018; Pintore et al., 2018a; Pintore et al., 
2019). This further highlights the interplay between the coarse layout 
estimation task, that can be used to align captures between themselves, 
and the finer grained depth estimation task, which can additionally offer 
more structural details for these reconstructions. Still, when seeking to 
apply data-driven methods for layout estimation, manual annotations 
are required, hindering progress. 

With the pioneering work of PanoContext (Zhang et al., 2014), the 
advantages of using 360◦ inputs were demonstrated for indoor geometry 
inference tasks. Different variants of this traditional optimization 
approach focused on reformulating its optimization (Fukano et al., 
2016; Yang and Zhang, 2016). Follow up works exploited the increased 
performance offered by early data-driven methods to replace traditional 
components of these approaches (Fernandez-Labrador et al., 2018b; Xu 
et al., 2017; Yang et al., 2018). Naturally, end-to-end models also 
emerged, like PanoRoom (Fernandez-Labrador et al., 2018a) and 
LayoutNet (Zou et al., 2018) that densely approximate the layout cor
ners as spatial probabilities, and then extract their location via maximal 
activation detection. This way, a post-processing step is required to 
ensure the Manhattan alignment of the estimations. 

Lately, more elaborate deep models like DuLa-Net (Yang et al., 2019) 
and HorizonNet (Sun et al., 2019) presented superior results by 
exploiting the nature of 360◦ images when projected in various ways, or 
via new parameterizations of the estimated layout, respectively. 
Nevertheless, all these works, used the SUN360 and Stanford2D3D 
subsets, totalling about ∼ 1000 annotated samples. A single exception is 
DuLa-Net that introduced the – now unavailable – Realtor360 dataset. 

Out of these samples only the Stanford2D3D ones also had finer- 
grained geometry (i.e. depth) ground-truth data. The LayoutMP3D 
dataset (Zou et al., 2019) offers a higher percentage of non-cuboid 
rooms compared to previous datasets that are limited in this aspect. 
All these approaches require high quality annotations, which translates 
to larger-scale but synthetic datasets, or smaller scale, manually anno
tated real-world acquired datasets. In this work, we automatically 
generate weak layout cues, offering a dataset a magnitude larger than 
prior work that also offers multi-modal geometric annotations. 

2.4. Joint Layout & Depth 

A drawback of current layout estimation approaches is that their 
estimates are up-to-scale. Typically, a single measurement (i.e.camera- 
to-floor) is required to lift them to metric-scale 3D when relying on the 
Manhattan assumption. An exception is DuLa-Net which also regresses 
the room’s height to ensure metric-scale measurements. Nonetheless, 
the interplay between layout and depth estimation is apparent and has 
recently been considered in (Lei et al., 2020 and Zeng et al., 2020). In the 
former work, the correlation between these two tasks is considered, and 
layout estimation is indirectly used as an attention mechanism to 
separate the foreground from the background, and as a cycle consis
tency, considering that it should be possible to infer the room’s layout 
from the predicted depth image. In the latter work, a virtual layout only 
depth map is integrated in a coarse-to-fine learning framework, to 
simultaneously predict the layout and depth of a scene. 

For both of these works though, layout information is implicitly 
handled within the network, and in complex training regimes involving 

multiple sub-models that are trained progressively. Another issue is the 
availability of datasets, (Lei et al., 2020) uses the synthetic Kujiale 
dataset, also offering results on the layout subset of Stanford2D3D, while 
(Zeng et al., 2020) only presents results for depth and layout estimation 
in the latter. This is because no other datasets with co-present layout and 
depth annotations were available. Even more so, for real-world acquired 
data, only a subset of Matterport3D and Stanford2D3D are currently 
available. In this work, we generate a larger dataset that offers depth and 
layout annotations from Matterport3D and Stanford2D3D. To do so, we 
move beyond manual annotations and instead automatically annotate 
weak layout cues, and use them to improve a depth estimation model by 
integrating them explicitly into the model, which is designed to over
come the disadvantages of the weakly annotated data. 

3. 360V Indoors Dataset 

In this section we describe our introduced dataset for 360◦ vision in 
indoor scenes, the 360V Indoors Dataset. We build on prior work, spe
cifically the generated dataset of [(Zioulis et al., 2018), (Zioulis et al., 
2019)] but improve and expand it with additional samples and modal
ities. In particular, we improve the color samples by correcting the 
shortcoming of the previous versions [(Zioulis et al., 2018), (Zioulis 
et al., 2019)], which was the addition of extra lighting in the rendered 
scenes. Additionally, we complement it with an additional stereo 
viewpoint as well as semantic and weak layout annotations. The 
following sections describe our methodology in detail, while Fig. 1 de
picts a set of random samples and the provided annotations. 

3.1. Preliminaries & Notation 

In this section we briefly introduce the notation and conventions that 
are used throughout the paper. Eq. (1) presents the spherical coordinate 
system that we use, with ϕ ∈ [0,2π], θ ∈ [0, π], and y being the vertical 
axis. 
⎡
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Panorama images are projected into an equirectangular grid, where two 
domains are defined, the pixel domain Ω : [0,W] × [0,H], with W and H 
being the image’s width and height, respectively, where each pixel p =

(u, v) ∈ Ω is defined with its discrete horizontal and vertical coordinates 
u,v. The second domain A : [0,2π] × [0,π], is the angular domain where 
each angular coordinate ρ = (ϕ, θ) ∈ A is defined with its continuous 
longitude/azimuth and latitude/elevation coordinates ϕ,θ, respectively. 
Given that the mapping between pixel and angular coordinates is linear, 
we flexibly transition between the two domains. 

We consider a set of scalar or vector valued signals defined on the 
aforementioned domains: i) color images C ∈ R3 that contain trichro
matic color values c ∈ [0, 255], ii) depth maps D ∈ R where each pixel 
value corresponds to the distance/radius r ∈ R as defined Eq. (1), iii) 
normal maps N ∈ R3 where each pixel corresponds to a normalized 
surface orientation n = (nx, ny, nz), ni ∈ [ − 1, 1], and iv) semantic label 
maps L ∈ N where each pixel contains a class assignment label l ∈ [1,L], 
with L being the total number of semantic classes. All these panorama 
signals are functions of pixel or angular coordinates, but this notation 
has been omitted for brevity. 

3.2. Generation via Ray-tracing 3D scenes 

Since the manual acquisition of panoramas is tedious, and the 
annotation of dense geometric information, largely impossible, we 
generate our 360◦ dataset via synthesis. We re-use the results of large- 
scale 3D building datasets like Matterport3D and Stanford2D3D to 
render multi-modal 360◦ data. These datasets were acquired using the 
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Matterport camera and software, which stitches a set of captures 
together to generate a 3D model of interior spaces. The scan positions of 
the Matterport camera within these 3D building-scale reconstructions 
are available, which allows us to position virtual viewpoints in appro
priate predetermined physical viewpoints to generate our panoramas 
via synthesis (i.e. rendering). We rely on high performance and quality 
ray-tracing as our synthesis process, using Blender4 and the Cycles5 ray- 
tracer to directly output 360◦ panoramas. 

The ray-tracing approach can exploit the advantages of computa
tional synthesis procedures to generate multimodal outputs, and to also 
emplace extra virtual viewpoints in the scene. Capitalizing on this, we 
perform one data generation pass for each scan position t ∈ R3, adding 
extra virtual viewpoints in two stereo configurations. We place virtual 
viewpoints at positions tc,td,tu,tr, with c, d, u, r being center, down, up and 
right respectively. This offers a trinocular vertical stereo configuration 
(c-d-u), which is the most typical one in the literature (Li, 2008; Wang 
et al., 2020; Kim and Hilton, 2013), as well as a horizontal stereo 
configuration (c-r), which is a more complex case (Zioulis et al., 2019). 
We keep a consistent baseline of b = 0.26m between all placements with 
respect to the central virtual viewpoint that is placed at the scan posi
tion. This corresponds to a ray convergence distance of 8m, and addi
tionally offers a variation of camera-to-floor/ceiling distance, as most 
datasets are captured at an approximate 1.6m distance from the floor 
using standard tripods (Xiao et al., 2012; Chang et al., 2018; Armeni 
et al., 2017), or, for the synthetic case, rendered from the center of the 
room (Zioulis et al., 2018; Lei et al., 2020). A visualization of the virtual 
camera setup and the data generation process can be found in Fig. 2. 

For each rendering pass we use a 512 × 256 resolution and 512 
samples per ray and output a color image C, a depth map D, a world 
aligned normal map N (our viewpoints are not rotated, so this surface 
orientation aligns with the local coordinate system as well), and se
mantic labels L (to be described in Section 3.3). This results in a total of 
12,213 unique viewpoints (only counting the central viewpoints) with 
high quality depth, surface, semantic and weak layout cue annotations 
(see Section 3.4). While OmniDepth (Zioulis et al., 2018) offered hori
zontally rotated viewpoints as well, this only adds redundant data as 
circular shift augmentations can easily create the necessary rotational 
variety. Contrary to the OmniDepth renderings that added a light source 

at the camera position, we use a custom shader and output raw texture 
sampled values, preserving the photo-realism of the data. We addi
tionally perform gamma correction on the texture samples as again, 
random gamma augmentations (and other global color augmentations) 
can adjust the color space on demand. This allows for an expanded range 
of simultaneous color augmentations without reaching saturation levels, 
as the images are stored in low dynamic range to comply with most 
cameras’ capabilities. More importantly though, the aforementioned 
light source removal improves the quality of the dataset as, besides 
highly saturated images, this also added an important bias to the dataset. 

Indeed, light strength attenuation resulted in distant geometry to be 
lowly lit, while close geometry to be more saturated. This was an 
important cue for the data-driven methods to exploit, which unfortu
nately departed from photo-realism and was improbable in real-world 
scenarios. To demonstrate this point, we extract the Pearson Correla
tion Coefficient (PCC) between the lightness of the color images, after 
converting them to the Lab color space, and the inverse depth of the 
depth images. Table 1 presents the color bias PCC of the OmniDepth 
dataset and our 360V dataset, which shows a strong positive correlation 
of lighting and inverse depth for OmniDepth, and a low positive corre
lation for 360V. It also demonstrates that data-driven models will exploit 
this bias to improve performance, but at the cost of generalization, as we 
also provide results for two 360◦ depth models trained on our dataset 
and the biased OmniDepth. The large performance boost that both 
methods exhibit, shows how data-driven methods can, and will, exploit 
this bias. Further, Fig. 3 illustrates this important difference 

Fig. 2. Our synthesis-based data generation approach. We place a virtual 360◦ camera rig (left) that comprises a trinocular vertical stereo setup (down, center, and 
up), and simultaneously, a binocular horizontal stereo pair (left-center and right), within pre-defined positions (right) inside a 3D scanned building (Section 3.2). A 
consistent baseline b is used for all camera displacements. We render multi-modal data from each viewpoint (right), to generate annotations for each color image, 
either geometric (depth and surface orientation), or semantic (Section 3.3), and additionally post-process the data to extract weak layout cues (Section 3.4). 

Table 1 
Artificial lighting bias for generated renders from pre-scanned buildings. The 
OmniDepth dataset exhibits significant correlation between the luminance and 
the inverse depth, which is detrimental for models trained on that dataset. 
Instead, 360V is lowly correlated, offering more photorealistic scenes. The 
performance deviation between two depth estimation models trained on each 
dataset showcases the fact that data-driven models can and will exploit this bias.   

Luminance & 
Inv. Depth PCC 

RectNet (Zioulis 
et al., 2018) 

BiFuse (Wang et al., 
2020)   

RMSE 
↓  

δ1↑  RMSE 
↓  

δ1↑  

OmniDepth ( 
Zioulis et al., 
2018) 

0.6374 0.3588 91.21% 0.3465 93.56% 

360V (Ours) 0.1429 0.4408 82.54% 0.4220 87.55%  

4 https://www.blender.org/  
5 https://www.cycles-renderer.org/ 
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qualitatively with a set of corresponding samples from the two datasets. 
Realistic lighting is a very important factor for synthetically generated 
datasets (Zhang et al., 2020), and despite the fact that 360V is not 
synthetic 6, it is generated via synthesis, and thus, the necessary atten
tion to this detail ensures the quality of the data and its suitability for 
data-driven methods. 

3.3. Material Mattes for Semantic Labelling 

Both Matterport3D and Stanford2D3D offer semantic annotations on 
the 3D building meshes which are acquired via scanning. To generate 
high quality semantic labels at the lower resolutions that data-driven 
models are applied to, we integrate a modern material matte tech
nique (Friedman and Jones, 2015) into our ray-casting pipeline. This is a 
high quality matte technique that separates different materials into 
rendered mask layers. As a result, to use it we first convert the per face 
labels into specific material indices that correspond to dummy materials 
that we generate for each label, and use another rendering pass to output 
our semantic labels. Even though labels cannot be anti-aliased, using a 
high sampling ray-tracing rendering technique, we partly address arti
facts that arise from the coarse scans. The reconstructed meshes, albeit 
high-resolution (millions of vertices), span entire buildings. This comes 
at a loss of fidelity, resulting in mesh artifacts that do not necessarily 

align with the original color images. This is not the case for our gener
ated samples as they are rendered from the same meshes, instead of 
labelled on the meshes and associated with the camera-acquired sam
ples, a problem that is also evident in the counterfactual nature of stereo 
depth maps as presented at the bottom of Fig. 4. 

Fig. 3. Adding light sources during ray-traced generation from pre-scanned 
buildings introduces a significant depth bias into the dataset. On the left, the 
samples from OmniDepth (Zioulis et al., 2018) where this bias is clearly 
depicted as close up surfaces are bright, while farther away surfaces are dark. 
On the right, the corresponding 360V samples where the original texture with 
pre-baked lighting was sampled and gamma corrected. The scenes are realis
tically lit allowing models to focus on capturing the context instead of relating 
pixel intensities to depth measurements. 

Fig. 4. Top: Qualitative differences between the rasterization and stitching- 
based semantic labels, and the 360V ray-casted ones at the corresponding 512 ×

256 resolution. Aliasing and z-fighting artifacts manifest on the original Stan
ford2D3D samples (right), which are mitigated using our rendering approach 
(left), as depicted on the original colored semantic maps, as well as their an
notated edge maps. The images are misaligned due to the horizontal shift 
induced by 360V’s rendering of world-aligned viewpoints. Bottom: Different 
type of artifacts when stitching perspective camera views. The upper 2 row 
shows the color cases (black pole regions and blurry inpaints), where the im
ages are corrupted in unnatural ways, with important content being distorted (i. 
e. ceiling beams on the bottom left and stitching artifacts manifesting on the 
bottom right). The following 2 rows showcase counterfactual depth artifacts 
arising from stereo-based ground truth estimation. 

6 (The scanned 3D models that are rendered were “measured” using cameras 
via the 3D reconstruction of real-world scenes.) 
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While an approach similar to that used in (Armeni et al., 2017) 
would generally produce good enough labels, it would also suffer from 
higher frequencies of these artifacts. The semantic labels offered by 
Stanford2D3D are generated by stitching multiple perspective label 
renders. There are a number of issues with this approach. First, warping 
the perspective images into the equirectangular panorama necessitates 
sub-pixel sampling, which cannot be applied to semantic labels. Instead, 
nearest neighbor sampling is used, which introduces noise, and to 
address that, high resolution renders are stitched into very high reso
lution (i.e. 4096× 2048) panoramas. But using these in a data-driven 
model typically requires downscaling, which again introduces nearest 
neighbor sampling artifacts. Finally, traditional rasterization ap
proaches suffer from z-fighting when aggregating multiple contributions 
into a single pixel. Instead, ray-tracing aggregates all samples, which in 
our case corresponds to majority voting, a technique that reduces noise. 
We qualitatively demonstrate the differences of our ray-traced semantic 
labels compared to those offered by Stanford2D3D at the top part of 
Fig. 4. At the same time, its bottom part showcases the problems 
incurred when relying on stitching perspective color images and using 
coupled stereo-based depth images for training data-driven models. (See 
Fig. 5). 

Since our focus lies on structured, indoor geometric understanding, 
we map their labels to the coarser set used by the NYUDepth dataset 
(Silberman et al., 2012), and then select the semantic labels that 
correspond to important structural elements of indoor scenes, instead of 
finer-grained furniture or object labels. In total we offer 15 labels 
focusing on the main structural elements and larger objects within in
door scenes, clustering finer grained ones into a couple of labels. 

3.4. Weak Layout Cues 

Given the semantic labels of each panorama, a subset of these in
cludes the wall, ceiling, floor labels which correspond to the scene’s 
layout information. Layout annotations usually involve the junctions/ 
corners as these can reconstruct the layout in its entirety, assuming a 
Manhattan scene alignment. However, annotating each single corner is a 
tedious task, and sometimes the scenes are far more complex, including 
extruding or interior spaces, making annotations ambiguous. The se
mantic labels though correspond to the actual, complex layout, where 
complexity refers to non-Manhattan alignment or the scene’s structure 
(interior spaces, multiple floors, scenes with stairs, unusual layouts, 
etc.). But automatically extracting the layout from semantic labels needs 

to overcome a number of challenges, namely, the low quality annota
tions and foreground labels. 

Our key observation here is that while the floor-to-wall boundaries 
are very frequently occluded with foreground objects, making the un
derlying layout edge invisible, it is the opposite of that for the ceiling-to- 
wall boundaries. Even though occluding doors, structural beams, 

Fig. 5. The bottom layout reconstruction approach. Considering the known 
actual boundary at a specific meridian θa

t , and the world position of the cor
responding point (xt , yt , zt) (left), we can reconstruct the bottom layout 
boundary position θa

b in the panorama. Assuming a Manhattan aligned scene we 
need to estimate the vertical translation yd that will translate the current origin 
to the original vertical mid-point of the scene (middle). In that position, the 
distance of the bottom and top boundary, and by extension their latitudes θo

t , θo
b 

with respect to the horizon are equal. As their latitudinal displacement is equal 
to, we only need to estimate γ = θo

t − θa
t , meaning only θo

b to reconstruct the 
bottom latitude at the current position θa

b = θo
b + γ = γ − θo

t . To estimate yd we 
need to sample the panorama depth at the zenith and nadir to find the true 
centroid and calculate its difference from the current ceiling position (zenith 
sampling). This process is differentiable to both the top layout latitude, the 
depth values at these latitudes, and the depth values at the poles (right). 

Fig. 6. Final and intermediate results from the weak layout cue calculation 
process for 4 scenes in a top to bottom presentation. Initially, the input layout 
segmentation map is presented, with gold, orange, cyan, and black the colors 
for the ceiling, walls, floor, and the foreground classes respectively. Following 
vertically, the processed CRF result that fills the foreground using the normal 
map guidance. In this representation we apply greedy vertical edge detection, 
median filtering and MAD outlier rejection. Finally, the last two rows for each 
example present the original detected boundaries with orange, as well as the 
filtered top and reconstructed bottom boundaries in green, with the overlap on 
the top resulting in yellow, for the two above layout segmentation maps 
respectively. The qualitative difference between the original top and bottom 
boundaries is clearly depicted, as well as the CRF optimization gains. 
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curtains, and ceiling mounted lights still manifest, they do at a much 
lower rate. Another important issue is the lack of, or the low quality of 
the 3D annotations. In the remainder of this section, we present a 
principled approach to largely handle all these issues and generate weak 
layout cues. 

3.4.1. Layout Boundary Detection 
The rendered semantic labels can be partitioned into 4 classes, with 

the 3 being the layout classes, and the remainder class being the “not 
layout” class. More specifically, doors, columns and beams are mapped 
to walls, and all other classes are marked as “not layout”. The resulting 
layout segmentation maps contain artifacts manifesting as holes due to 
objects placed on the floor, ceiling and walls. Our goal is to seamlessly 
remove the invalid class to be able to apply a straightforward edge 
detection algorithm to identify the layout boundary. To that end, we 
employ a standard segmentation post-processing technique, namely the 
conditional random fields (CRF) (Krähenbühl and Koltun, 2011). We 
assign a confident (corresponding to 75% probability) unary potential to 
the known layout classes and an uncertain (evenly distributed proba
bility across all 4 classes) unary potential to the “not layout” class. We 
then formulate the following dense fully-connected CRF over the unary 
label distribution potential, and a bilateral pairwise potential defined 
over the surface orientation (normal) map: 
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The bilateral pairwise potential includes a spatial term defined over the 
pixel domain, and a feature distance using each pixel’s normal. The 
rationale behind this choice is that we are labelling planar surfaces and 
the surface’s direction at each location is highly correlated to the label 
type. Minimizing Eq. (2) fills the holes and provides a cleaner layout 
segmentation map that can be used to extract edges corresponding to the 
layout boundary. Exploiting the filled layout map, we follow a greedy 
approach and extract the first vertical edge in both directions, i.e. top-to- 
bottom, and bottom-to-top. 

The predicted edges can be noisy which is a result of the coarse mesh- 
based segmentation annotation, and thus, we apply median filtering and 
a median absolute deviation (Leys et al., 2013) outlier rejection strategy. 
The more important issue that needs to be resolved though, is the 
inferior quality of the bottom (floor-wall) layout boundary, compared to 
that of the top (ceiling-wall) boundary. To address this, we discard the 
extracted bottom boundary and instead reconstruct it from the top one. 
The intermediate results from this step are depicted in Fig. 6. 

3.4.2. Layout Boundary Completion 
Under the Manhattan world assumption, the ceiling/floor are par

allel and horizontally aligned, and the walls are perpendicular to them 
(y axis aligned, i.e. vertically oriented). As a result, the walls’ top and 
bottom boundaries, when viewed from a world aligned 360◦ camera, 
positioned at the centroid of the scene, project to mirrored latitude 

coordinates with respect to the equator. As presented in (Zioulis et al., 
2019) the spherical coordinate partial derivatives are: 
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From these, the latitudinal partial derivative for purely vertical Carte
sian displacement is 

∂θ =
− sinθ

r
∂y (4)  

Therefore, according to Eq. (4), for purely vertical displacements along 
the y axis, the latitude displacement of the wall top and bottom edges are 
equal, as they share the same radius when the camera resides at the 
vertical centroid, and because of sine’s trigonometric reflection at π/2. 
Consequently, calculating the top latitude angular displacement γ be
tween the current top wall latitude and that of a viewpoint at the vertical 
center of the room, allows for the calculation of the true latitude of the 
bottom wall edge as: 

γ = θo
t − θa

t = θa
b − θo

b. (5)  

To reconstruct the bottom boundary, we need to estimate θo
t which is the 

top wall’s latitude at the ceiling and floor mid-point viewpoint. Each 
rendered ground-truth depth map D can be transformed to a structured 
point cloud V(p) ∈ R3,p ∈ Ω, defined in the image domain using Eq. (1). 
By sampling the scene’s zenith and nadir, we estimate yb and yt, which is 
the average vertical position of the ceiling and floor, from which we 
calculate the scene’s height h = yt − yb. The vertical displacement can be 
found by yd = yt − ym, after estimating the vertical mid-point ym = 0.5h. 
Using that we extract the distance at the mid-point, and subsequently 
the latitude at the origin: 

ro
t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
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√

(6)  

θo
t = cos− 1yt + yd

ro
t

. (7)  

This way we can reconstruct the bottom wall edge from the top wall 
edge, its distance, and the distances of the zenith and nadir. This pro
vides a more robust estimation of the bottom wall edge, as it overcomes 
the aforementioned issues related to the segmentation map extracted 
bottom boundary, completing the layout boundary information, as 
presented in Fig. 6. 

We refer to our automatically calculated layout annotations as weak, 
as they still rely on the quality of the semantic annotations, and the 
availability of depth measurements, which both contain holes, and, also, 
despite the CRF optimization and filtering, noise is not fully eliminated. 
In addition, compared to traditional layout annotations that start from 
the layout junctions/corners, we only provide the (sometimes noisy) 
boundaries, offering only cues about the true layout. An important 

Table 2 
Comparison with other panorama datasets. The 360V dataset is the only real world domain dataset to offer ≥ 10.000 samples with layout information, albeit at the 
form of weak cues and not corners. In addition, apart from not suffering from stitching artifacts, it is the only dataset offering stereo viewpoints.   

Domain Panorama Color Depth Normal Semantic Layout Stereo Samples 

SUN360 (Xiao et al., 2012) Real Equirect. (511) 67583  
Stanford2D3D (Armeni et al., 2017) Real Stitched (550) 1413  
Matterport3D (Chang et al., 2018) Real Stitched (2295) 10800  

Kujiale (Lei et al., 2020) Synthetic Equirect. 3550  
Structured3D (Zheng et al., 2020) Synthetic Equirect. 21835  

360V (Ours) Scanned Equirect. (cues)   (4)   12213   
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differentiation from traditional layout annotations, is that due to the 
availability of the down and up generated virtual viewpoints, our dataset 
is not biased towards central viewpoints, and instead offers viewpoints 
skewed towards the floor or the ceiling too. Finally, not all scenes pro
vide the necessary information for extracting the top layout (missing 
semantic annotations), or reconstructing the bottom one (depth holes). 
These cases are identified, resulting in a layout validity mask which is 
used to disregard the ground-truth during training. 

Concluding, our dataset contains 4 stereo color viewpoints, with 
matching depth, semantic and normal maps, as well as weak layout cues. 
As Table 2 shows, it is the only real-world domain (i.e. scanned) dataset 
to offer such a large number of multi-modal annotations combined with 
layout information. 

4. Explicitly Connected Layout & Depth 

Our goal is to exploit the larger-scale availability of layout and depth 
annotated data to improve the performance of panorama-based 
monocular depth estimation. The key intuition is that both tasks are 
complementary indoor geometric understanding tasks. While prior 
works (Lei et al., 2020; Zeng et al., 2020) have only implicitly associated 
the two tasks, they also used high quality layout annotations. Instead, 
we rely on weak layout annotations, and additionally explicitly couple 
the two tasks. In this section we will describe the details of our approach, 
and more specifically, the dual task architecture (Section 4.1), the 
explicit integration of the two tasks (Section 4.2), and our supervision 
scheme (Section 4.3). 

4.1. Network Architecture 

Our network uses a shared encoder and two different decoding 
branches, one for each task, with Fig. 7 presenting its network 

architectural overview in a schematic manner and will be used as a 
reference in the following detailed description.. We use efficient 
spherically padded convolutions (Zioulis et al., 2021) to address the 
boundary discontinuity, with ReLU activations (Nair and Hinton, 2010) 
and batch normalization (Ioffe and Szegedy, 2015) throughout the 
model. On the left of Fig. 7, we present the shared encoder which is a a 
ResNet (He et al., 2016a) with pre-activated residual blocks (He et al., 
2016b) that encodes a shared latent representation b for both tasks. The 
residual blocks are preceded by a two convolutional block stem module 
for early feature extraction that generates features e which get fed into 
the residual units. 

From the middle to the right, four decoder branches follow, with the 
top being the layout decoder, which is inspired by HorizonNet (Sun 
et al., 2019). We represent the boundary using the normalized height 
from the horizon, which is the panorama equator, and leverage recur
rent layers to efficiently capture the global structure, as demonstrated by 
HorizonNet. After a single convolution block feature extraction, we 
perform height pooling, squeezing the resulting features into a vector 
capturing the boundary’s features, in contrast to HorizonNet which uses 
multi-scale features from its encoder. This gets fed into a 2 layer bidi
rectional LSTM (Hochreiter and Schmidhuber, 1997), followed by a 
linear prediction layer with a sigmoid activation function (Han and 
Moraga, 1995). The LSTM and linear layer cascade ensures the effective 
capturing of the global context when estimating the scene’s encoded top 
layout boundary. Notably, compared to HorizonNet which predicts both 
the top and bottom layout boundaries, we only predict the top one, 
which results in a single vector prediction. 

The vertically following three branches jointly represent a multi- 
headed depth decoder which is designed to process information at 
different scales in different branches, with each lower scale prediction 
used in the subsequent scale branch. The rationale behind this design 
decision is that each scale requires different features, and should 

Fig. 7. An illustration of our model’s network architecture as described in Section 4.1. The legend on the top left presents the different components used in the figure. 
A shared encoder on the left encodes a latent representation b. This gets fed into 4 different branches, namely, layout decoder prediction branch that predicts the top 

layout boundary ̂lt , and the coarse and finer depth decoder branches, that predict the depth at two different scales, D̂
0 

and D̂
1 

respectively. Depth predictions and 
layout attention maps As propagate from one scale s to the next. The attention maps are used in a residual attention mechanism to boost the necessary depth features 

in the coarse (c) and finer (f) branches, with the complement attention applied to the latter. The finest depth scale D̂
2 

is predicted by a learnable guided upsampling 
filter, and is used to reconstruct the bottom layout boundary bḟ l̂b. 
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improve upon the results of the former by adding more detail. The first 
depth branch focuses on the coarsest resolution, and first projects the 
encoded bottleneck features, applies bilinear upsampling and uses two 
convolution blocks followed by a prediction layer. Prior to the upsam
pling, the layout-based attention map (see Section 4.2) is applied on 
these low spatial resolution features that are used to predict the coarse 
depth map. 

The second depth branch captures a finer resolution by again pro
jecting the encoded bottleneck features, followed by a cascade of 
upsampling and convolution blocks, before predicting the refined depth 
map from the incoming features concatenation with the coarse scale 
prediction and the early stem features. Prior to the second upsampling, a 
complement attention is applied using the layout attention map to the 
features predicting the medium scale depth map. These first two depth 
branches follow a project-upsample-convolve processing cascade, sepa
rating learning across different scales. While the first depth branch only 
uses spatially squeezed information, the second branch spatially up
scales one octave7 up from the coarse branch, and re-uses the coarse 
prediction, as well as the early encoded features capturing higher fre
quency information. Finally, the last – fine resolution – depth branch 
contains minimal learnable parameters and instead applies a learnable 
guided depth map upsampling layer (Wu et al., 2018) using the input 
color image and the middle resolution predicted depth map from the 
second branch. 

4.2. Layout-based Attention & Depth-based Layout Reconstruction 

While Section 4.1 outlines the model’s architecture, in this section 
we present the building blocks connecting the two tasks in a comple
mentary manner. Prior works that jointly consider the layout and depth 
estimation tasks in parallel, only implicitly capture their the inter-task 
dependencies using exclusively learnable parameters. 

Layout-based Attention. Even though layout estimation is partly 
counterfactual with respect to the observed scene, it offers important 
information regarding the scene’s scale. As explained in Section 3.4 the 
ceiling typically provides cleaner information compared to the floor, 
whose nature is more counterfactual due to the heavier presence of 
objects. Consequently, we use the top layout estimations in an attentive 
manner in our model. As each layout prediction lt(ϕ) ∈ RW represents 
the normalized height, it is converted to angular coordinates lat =

π
2(1 − lt

)
. Using this vectorized top boundary representation that spans 

the entire image width W, or otherwise, the complete azimuth range on 
the sphere, we create a layout-based attention map by differentiably 
reconstructing a latitude Gaussian for each meridian: 

A
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ϕ, θ
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σ
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√ exp
(
− h(θ, lt(ϕ))

2σ2
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, (8)  

where h(θ1, θ2) is the haversine (or otherwise great circle) distance, 
adapted for angular coordinates of equal longitude and a unit radius: 

h
(
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= 2sin− 1sin
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)

. (9)  

This way, we reconstruct an attention map around the predicted top 
layout boundary and use it to attend to the first two (coarse and medium 
scale) depth decoder branches. Initially, as the layout offers an impor
tant hint about the scene’s global scale and coarse relative depth, we use 
the attention map A in the depth decoder’s coarse prediction branch. 

After projecting the bottleneck features b to the coarse branch’s entry 
features c, similar to (Lei et al., 2020), we use a residual attention 
mechanism c′ = c + (c⋅D (A)), where D is a spatial downsampling 

operation to align the resolution of the feature map and the attention 
map. This boosts the features spatially associated to the top layout 
boundary region, allowing the model to better reason about the global 
spatial context. Inspired by (Tao et al., 2020), we additionally use the 
layout reconstructed attention map in the subsequent branch used to 
predict the next octave depth map. However, re-using the same attention 
map would only boost the features around the same spatial area, which, 
given our hierarchical multi-scale prediction architecture, are already 
provided in the concatenated coarse scale depth map. Instead, we use 
the complement attention in this medium scale prediction f ′ = f +

(f⋅(1 − D (A))), which also additionally receives the skip connection 
features coming from the encoder, boosting the features that were pre
viously diminished in the coarse scale’s residual attention. 

Under this scheme, the medium scale prediction layer receives the 
coarse scale predicted depth map, the early encoder detail preserving 
features e, and the boosted, non-coarse representation encoded by the 
network, to improve upon the coarse scale estimation. The finest scale 
prediction, uses learnable guided filter upsampling, that contains min
imal learnable parameters. Therefore, this medium scale prediction – 
between the coarse and finest – is the branch mostly responsible for 
separating the foreground from the background. This generally provides 
the overview of our architecture and inter-twined attention mechanism, 
with the coarse branch being attended to the scene’s scale and relative 
depth, and the finer – medium scale – branch receiving higher frequency 
information and being attended to it, in order to focus on predicting the 
foreground depth. Since our layout cues are weak, the attention map 
may suffer from similar artifacts. To reduce their effect, we perform a 
two-pass spherically padded Gaussian blur on the reconstructed atten
tion maps. 

Depth-based Layout Reconstruction. As presented in Section 
3.4.2, reconstructing the bottom layout boundary is a function of the 
predicted top layout boundary latitude lt(ϕ), the ceiling and floor 
heights yt and yb respectively, which are also a function of the predicted 
depth, and the depth values at the top boundary rt(ϕ) = S (D, lt) ∈ RW, 
where S is a sampling operation across the panoramas meridians, 
sampling the depth map D at the latitudes given by lt . As a result, the 
reconstruction of the bottom boundary is differentiable with respect to 
both the predicted top boundary, as well as certain specific areas of the 
predicted depth map. For these, similar to when reconstructing the an
notations from the ground-truth depth map, we sample a number of 
panorama rows k from the estimated Cartesian coordinate V at the top 
(zenith) and bottom (nadir) to extract the average heights. In addition, 
when training, we extract the mean depth value across each meridian 
within a window w around the predicted layout latitude. Therefore, 
supervising the bottom boundary under this reconstruction process, 
backpropagates to both the layout task (predicted top boundary loca
tions), as well as the depth estimation task (predicted depth values at the 
zenith, nadir, and top layout regions). 

4.3. Multi-scale Supervision 

We supervise both tasks, with the estimated depth maps being su
pervised in three scales s ∈ {0,1,2} from coarse to fine, resulting in the 
following combined loss function: 

L =
∑

s
WsM

(

Ds

)

L
s
D + λLL L. (10)  

In this and following loss functions, we omit the pixel-based indexing 
and averaging over the image or boundary domain for brevity. The mask 
M is a combined validity and depth range mask that ignores invalid 
pixels, and those lying out of the trained depth range, while the weights 
Ws are the spherical weights used in (Zioulis et al., 2019) for each 
corresponding scale. 

Layout Supervision. For the layout loss we use the haversine dis
tance as given in Eq. (9): 

7 Defined as a scaling of the spatial dimensions by a power of 2. (Lindeberg, 
2013; Chen et al., 2019) 
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L L = lm
t ⋅h
(

l̂t, lt
)
+ lm

b ⋅h
(

l̂b, lb
)
, (11)  

with lm denoting the layout validity mask, preventing backpropagation 
from invalid layout boundaries. The haversine distance implicitly clips 
the gradient due to its periodicity. This is important as compared to 
other regression losses, it prevents the model from destabilizing during 
the early phases of training, where the depth predictions can greatly 
vary and saturate the layout branch which uses a sigmoid activation. 
Compared to other works that jointly train layout and depth models, this 
allows the single-shot training of our model. In contrast, both (Lei et al., 
2020 and Zeng et al., 2020) progressively train their models, necessi
tating multiple incremental disjoint trains as each stage is added. 

Depth Supervision. The depth loss is a combination of different 
objectives that aim to address the complexity of the task: 

L
s
D = λs

L1L log
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s
,Ds)+ λs

V L V
(
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s
,Ds)+ λs

SL S
(

D̂
s
,Ds). (12)  

The first term, L log, is the logarithm of the L1 depth error as presented in 
(Hu et al., 2019) that balances the loss with respect to both nearby and 
far away depths. The second term, L V, is the virtual normal error as 
presented in (Yin et al., 2019) that captures longer distance de
pendencies between the predicted depth maps, it is thus, oriented to
wards preserving the global relative depth within the scene. The third 
term, L S, is the surface loss, which corresponds to the cosine distance 
between the ground-truth and predicted surface orientation. The normal 
maps are calculated from the depth maps after lifting them to their 
Cartesian coordinates V and extracting local surface information via the 
cross product of the vertical and horizontal central finite differences. 
This loss preserves local smoothness, which is a reasonable prior to 
enforce as depth maps generally follow a strong piece-wise smooth prior 
(Huang et al., 2000), which is even more pronounced in our indoor 
scene specific context. 

5. Results 

5.1. Implementation Details 

The input to our model is a 360◦ panorama of a 512 × 256 resolution, 
which is also the resolution of the output depth map. We initialize our 
model’s convolution and linear layer parameters using (He et al., 2015), 
and our 2-layer LSTM using (Glorot and Bengio, 2010). For the LSTM we 
also use a 50% dropout. We use the default parameterized Adam 
(Kingma and Ba, 2014) optimizer with no weight decay, a learning rate 

of 0.0002 and a batch size of 8. Since Blender’s coordinate system is 
different than the one introduced in Section 3.1, we adapt all equations 
using the appropriate trigonometric reflections. For the CRF we use a 
spatial standard deviation of σ2D = 7.0 for the unary term, a σ2D = 35.0 
for the spatial standard deviation, and a σ3D = 0.2 for the surface 
orientation bilateral term of the global normal bilateral term. We opti
mize for 5 iterations using the Potts compatibility model. 

We use a fixed seed across all experiments for all random number 
generators. Our models are implemented using PyTorch (Paszke et al., 
2017), and PyTorch-Lightning (Falcon, 2019) Our loss weights are λL1 =

[0.15,0.1, 0.05] for coarse-to-fine scales respectively, λV = [0.1,0.1,0.05]
, λS = [0.1, 0.1, 0.05], and λL = 0.05. Both the loss weights and CRF 
parameters were selected via a heuristic search with an empirically 
defined parameter space. For the former we used a low epoch count (i.e. 
5) training scheme on M3D, while for the latter we relied on the manual 
inspection of selected samples. For the virtual normal loss, we use the 
default parameters as presented in (Yin et al., 2019) and a 15% sampling 
ratio. The angular standard deviation used in Eq. (8) when recon
structing the layout-derived attention map corresponds to 9.5◦, and the 
subsequent low-pass filtering uses a kernel size of 5 and a spatial stan
dard deviation of 1.0 pixel. For the boundary reconstruction we set the 
number of sampled rows for the heights and boundary at k = w = 3. 
When training we use random circular shift and flip augmentations with 
a 75% and 50% probability respectively for the color and depth pano
ramas and the layout boundaries, as well as random gamma, brightness 
and contrast augmentations for the color images, with a 80% probability 
of applying them both simultaneously. We additionally employ random 
erasure augmentations (Fernandez-Labrador et al., 2020) with a 50% 
probability. 

5.2. Metrics 

For the quantitative assessment of our approach, we use the standard 
metrics in the literature for depth estimation (Eigen et al., 2014) 
(without median scaling), and the RMSE for the layout boundaries. We 
additionally define two performance indicators for the two tasks that 
aggregate metrics into a single quantity: 

ID = (1 − δ1/100) × RMSE, (13)  

IL = RMSEtop × RMSEbottom × 1000. (14)  

We split the top and bottom layout RMSEs as one is directly inferred, 

Table 3 
Results on the Matterport3D dataset. Bold red, orange and yellow denote the best, second-best and third-best performances, while the arrows next to each metric show 
the direction of better performance.  

Table 4 
Results on the Stanford2D3D and Kujiale datasets. Bold red, orange and yellow denote the best, second-best and third-best performance respectively, while the arrows 
next to each metric show the direction of better performance.  
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Fig. 8. Qualitative results on the Matterport3D test set. From left to right: color image with ground truth (red) and predicted (green) layout cues, ground truth depth 
map, predicted depth map, ground truth normal map, predicted normal map. 
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while the other is also reconstructed from the predicted depth. We use 
these to select the best performing models as well as comparing the 
inter-task performance. 

5.3. Performance Analysis 

We split our dataset in two, taking into account the fact that it 
consists of both Matterport3D and Stanford2D3D. We use the official 
splits from each dataset (for Stanford2D3D we use fold#1). For the 
Matterport3D part, we train for 40 epochs, while for the smaller Stan
ford2D3D part we train for 100 epochs. In addition, we also use the 
Kujiale dataset introduced in (Lei et al., 2020) which, contrary to our 
dataset, offers high quality layout annotations in the form of the scene’s 
junctions locations. To integrate them into our learning framework, we 
reconstruct the boundary from the corners, with the major difference 
being the quality of the boundaries compared to our automatically 
generated weak boundaries. We train for 60 epochs on Kujiale. 

Table 3 presents the results of our explicitly connected layout and 
depth (ELD) approach when trained and evaluated on our dataset’s 
Matterpor3D part, and a comparison with the two models presented in 
the pioneering 360◦ depth estimation work of (Zioulis et al., 2018), as 
well as the BiFuse (Wang et al., 2020) model, all trained on our dataset. 
As also presented in (Zioulis et al., 2018) the RectNet model outperforms 
the UResNet one, but our approach provides better quantitative results 
across all metrics, with BiFuse being closer in performance to our model. 

Table 4 presents results on the Stanford2D3D and Kujiale datasets and a 
comparison to BiFuse, and (Lei et al., 2020) which also leverages layout 
estimation, but as a regularizer and prior, when learning to estimate 
depth from a single color panorama. Further, for Stanford2D3D we also 
provide a comparison against (Zeng et al., 2020), which is another work 
using implicit layout integration into a depth estimation model. Given 
the missing hyperparameter information, we use λ = μ = 0.5, a batch 
size of 2, and the same learning rate as our model, all of which were 
heuristically searched for using an empirical search space. It should be 
noted that for BiFuse and (Zeng et al., 2020), we train for the same 

Fig. 9. Qualitative results on the Matterport3D test set showcasing Screened 
Poisson 3D surface reconstructions (Kazhdan and Hoppe, 2013) of the resulti.ng 
point clouds. 

Table 5 
Layout ablation results on the Stanford2D3D, Kujiale and Matterport3D datasets.  

Table 6 
Loss ablation results on the Stanford2D3D and Kujiale datasets. Bold red and orange denote the best and second-best performance respectively, while the arrows next to 
each metric show the direction of better performance.  

Table 7 
Layout performance indicators for the ablated models across the different 
datasets.  
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number of epochs as our models, scaling their training regimes appro
priately. Specifically for (Zeng et al., 2020), whose training schedule is 
unreported, we resort to the following heuristically searched epoch 
milestones: [15, 30, 50], each one corresponding to a training stage 
transition. It should be noted that we do not evaluate on our entire test 
set, but instead only on the same subset (Lei et al., 2020 and Zeng et al., 
2020) used (the splits used in LayoutNet (Zou et al., 2018)) for a fair 
comparison. We observe that performance on Stanford2D3D is split 
between our approach, BiFuse and (Lei et al., 2020). While our ELD 
model performs better in the RMSE and relative metrics, as well as the 
stricter accuracy (δ1), the implicitly connected layout and depth model 
offers better performance at near depths as indicated by the RMSLE 
metric and is less frequently very erroneous as shown by its increased 
performance in the δ2 and δ3 accuracies. At the same time, BiFuse offers 
the better performance in farther depths as indicated by the squared 
metrics, whereas our model offers the better performance for the stricter 
relative metrics, but is also the most balanced one. But this is mostly the 
case for Stanford2D3D, as the performance gap in these metrics closes 
considerably when using the high quality layout boundaries available in 
the Kujiale dataset, indicating that this relative performance deviation 
may be associated with the quality of the layout information. It should 
also be noted that the Kujiale dataset is a synthetic one and only contains 
cuboid rooms. The same applies to the Stanford2D3D real-world dataset, 
whose layout annotations are cuboid too, sometimes violating the 
observed scene, a fact that introduces as a contradiction between the 
estimated geometry and layout. 

Fig. 8 presents a set of qualitative results on Matterport3D’s test set, 
which comprise unseen buildings. Apart from the predicted depth and 
normal maps, which showcase how the model captures each scene’s 
main structures adequately, the predicted and annotated weak layout 
cues are also illustrated on the color images. Moreover, Fig. 9 shows the 
3D reconstructions of a set of Matterport3D test scenes derived from the 
estimated depth, after converted into a point cloud. The resulting 
meshes capture the structural planes efficiently and can reconstruct 
complex room topologies and dominant structural elements like beds, 
sofas and kitchen bars from a single monocular panorama image. 

5.4. Ablation Study 

We additionally perform an ablation study of the explicit layout and 
depth connections as presented in Section 4.2, comparing it to an im
plicit connection and a baseline pure depth estimation model. For the 
former, we adapt the model to also predict the bottom layout, instead of 
reconstructing it using the predicted depth, and we remove the layout- 
based attention mechanism, while for the latter we only keep the 
depth estimating decoder. 

Table 5 presents the results on the Matterport3D and Stanford2D3D 
parts of our dataset with weak layout annotations, and on the Kujiale 
dataset with high quality layout annotations. Overall, we find that ELD 
boosts performance compared to the simpler baselines. Interestingly, the 
disconnected dual task model does not always result in performance 
improvements over the baseline depth. While there are no high level 
implicit interactions like those used in (Lei et al., 2020), it would be 
expected that due to the task complementarity, the two tasks would 
benefit each other when jointly learned with a shared encoder. To 
investigate this further, in Table 7 we present results for the layout 

boundary indicator of Eq. (14) compared to a baseline model with only 
the layout decoder (adapted to predict both boundaries) and our model 
trained without any connection between the two decoding branches 
(neither attention, nor reconstruction). The best performing models are 
selected based on the depth performance indicator of Eq. (13). The 
explicit connection model (ELD) not only offers better performance for 
depth estimation, but also better approximates the layout boundary. 
Furthermore, simple two branch joint training does not necessarily help 
both tasks as indicated by both these results, and those presented for the 
depth estimation performance. Our findings hint that such explicit 
connections help the model reach a consensus in both tasks simulta
neously, compared to disjoint training that leads to a changing task bias 
during training. 

Finally, we also ablate our loss functions by removing the surface and 
virtual normal losses and training the corresponding models on both 
Stanford2D3D and Kujiale. The results are presented in Table 6, which 
shows that both terms contribute to increased performance, with the 
surface term offering a higher boost to the relative metrics. 

5.5. Data Study 

Our dataset is generated via synthesis from scanned 3D models, and 
while it is not purely synthetic as its measurements are acquired via 
capturing real-world scenes, its effectiveness remains to be proven. To 
that end, we train our depth only model and BiFuse (Wang et al., 2020) 
using our 360V dataset and the traditional Matterport3D panorama 
dataset, which is created by stitching the perspective color and depth 
views of the Matterport camera. All trains are conducted on the same 
resolution, and when testing the models we mask out the invalid areas of 
the stitched dataset in ours as well. The results are presented in Table 8 
and we observe that there are no significant differences in performance, 
albeit the stitched dataset presents with worse metrics. This indicates 
that performance on the train set does not transfer well on the test set 
when using the stitched panoramas, even though the same scenes are 
used. It should be noted that the color camera domain is slightly 
different, as our scenes are the result of reconstructed data (i.e. pro
cessed when constructing the texture maps), while for the original raw 
camera data, only the stereo depth estimations are the result of a 
computational process that introduces noise. To further investigate, we 
present a set of qualitative results for in-the-wild panoramas in Fig. 10 
for our ELD model trained using 360V, the depth only model trained on 
the stitched Matterport3D panoramas, and the publicly available8 pre
trained BiFuse model trained on a higher resolution Matterport3D 
stitched panorama dataset. Interestingly, neither model trained on the 
stitched data offers the robustness to in-the-wild data that our scanned 
domain dataset offers. While the BiFuse meshes seemingly capture de
tails, which is reasonable given their higher resolution inputs, in some 
cases the results are of low quality. What is more interesting, is that our 
model integrating layout information during training, produces higher 
quality scene structures in all cases, especially compared to our depth 
only model. The results also demonstrate our dataset’s capacity to 
generalize to real-world scenes, and also indicate that the stereo artifacts 
presented at the bottom of Fig. 4 (e.g. mirrors, counterfactual depths in 

Table 8 
Results on the Matterport3D dataset using our rendered 360V data and the original Matterport3D perspective data stitched into panoramas, evaluated only on the valid 
stitched regions.    

AbsRel ↓  SqRel ↓  RMSE ↓  RMSLE ↓  δ1↑  δ2↑  δ3↑  

Matterport3D (360V) ELD (Depth Only) 0.1274 0.0905 0.4629 0.0826 85.99% 96.44% 98.67% 
BiFuse (Wang et al., 2020) 0.1289 0.1031 0.4744 0.0787 85.93% 96.53% 98.66% 

Matterport3D (stitched) ELD (Depth Only) 0.1290 0.1084 0.5176 0.0841 84.90% 95.17% 97.98% 
BiFuse (Wang et al., 2020) 0.1320 0.1061 0.5154 0.0836 83.89% 95.05% 98.04%  

8 https://github.com/Yeh-yu-hsuan/BiFuse 
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Fig. 10. Qualitative results on the unseen, in-the-wild data. Top 3 rows are a mobile stitched panorama of a room, followed by two panoramas of an interview room 
acquired by a commercial 360◦ camera. The bottom 6 rows are samples from the SUN360 dataset. The columns present the input color image with the weak layout 
cue predictions of our ELD model, the corresponding depth map prediction, and the resulting mesh, followed by the mesh obtained from our ELD depth only model 
trained on the stitched Matterport3D data, and the publicly available BiFuse (Wang et al., 2020) pretrained model, again trained on the stitched Matterport3D data at 
double the resolution (1024× 512). 
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relation to the color inputs) hurt learning performance. 

6. Conclusion 

This work has introduced a holistic dataset for geometric scene un
derstanding using 360◦ panoramas. It can be used for stereo-vision tasks 
(Laga et al., 2020), multi-task learning (Vandenhende et al., 2021), or 
pure geometric or semantic labelling tasks. Apart from the high quality 
dense pixel-level annotations, it also provides weakly annotated layout 
cues which were automatically annotated using the semantic label, 
normal and depth maps. To overcome the challenges associated with 
them, the bottom layout was reconstructed in a geometrically derived 
formulation following the Manhattan assumption. Under this formula
tion, our work shows that the two complementary tasks of layout and 
depth estimation can be explicitly coupled, offering increased depth 
estimation performance compared to implicit or nonexistent coupling. 
In addition, we also derive a layout-based attention scheme and design a 
depth estimation model around this dual task concept. Our experiments 
demonstrate increased depth estimation performance, even when using 
weakly annotated layout data. 

We believe that our work can open up new research directions for 
joint layout and depth, with larger scale datasets without relying on 
manual annotation, or exploiting simpler and quicker to collect anno
tations (e.g. scribbles). This has the potential to transform traditional 
monocular 360◦ cameras into indoor 3D scanners, with works that focus 
on stitching disjoint scans like (Pintore et al., 2019; Pintore et al., 2018) 
enabling the building-scale 3D reconstruction and modelling of interior 
scenes. Closing, one limitation of our approach is that the guidance of 
the layout cues can sometimes mislead the model and infer walls instead 
of cavities, as the annotations only greedily extract the first structural 
semantic edge, while more could follow when considering extruding or 
interior scene structures. 
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Krähenbühl, P., Koltun, V., 2011. Efficient inference in fully connected crfs with gaussian 
edge potentials. Advances in neural information processing systems 24, 109–117. 

Laga, H., Jospin, L.V., Boussaid, F., Bennamoun, M., 2020. A survey on deep learning 
techniques for stereo-based depth estimation. IEEE Transactions on Pattern Analysis 
and Machine Intelligence. 

Lei, J., Yanyu, X., Jia, Z., Junfei, Z., Rui, T., Shugong, X., Jingyi, Y., Shenghua, G., 2020. 
Geometric structure based and regularized depth estimation from 360◦ indoor 
imagery, in: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). 

Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L., 2013. Detecting outliers: Do not use 
standard deviation around the mean, use absolute deviation around the median. 
Journal of experimental social psychology 49, 764–766. 

Li, S., 2008. Binocular spherical stereo. IEEE Transactions on intelligent transportation 
systems 9, 589–600. 

Lindeberg, T., 2013. Scale-space theory in computer vision, volume 256. Springer 
Science & Business Media. 

Nair, V., Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann 
machines, in: Proceedings of the 27th international conference on machine learning 
(ICML-10), pp. 807–814. 

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., 
Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch. 

Pintore, G., Ganovelli, F., Pintus, R., Scopigno, R., Gobbetti, E., 2018a. 3d floor plan 
recovery from overlapping spherical images. Computational Visual Media 4, 
367–383. 

Pintore, G., Ganovelli, F., Villanueva, A.J., Gobbetti, E., 2019. Automatic modeling of 
cluttered multi-room floor plans from panoramic images. In: Computer Graphics 
Forum. Wiley Online Library, pp. 347–358. 

Pintore, G., Garro, V., Ganovelli, F., Gobbetti, E., Agus, M., 2016. Omnidirectional image 
capture on mobile devices for fast automatic generation of 2.5 d indoor maps, in: 
2016 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE. 
pp. 1–9. 

Pintore, G., Mura, C., Ganovelli, F., Fuentes-Perez, L., Pajarola, R., Gobbetti, E., 2020. 
State-of-the-art in automatic 3d reconstruction of structured indoor environments. 
Computer Graphics Forum 39, 667–699. doi: 10.1111/cgf.14021, URL: https:// 
onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14021. arXiv:https://onlinelibrary. 
wiley.com/doi/pdf/10.1111/cgf.14021. 

Pintore, G., Pintus, R., Ganovelli, F., Scopigno, R., Gobbetti, E., 2018. Recovering 3d 
existing-conditions of indoor structures from spherical images. Computers & 
Graphics 77, 16–29. 

Silberman, N., Hoiem, D., Kohli, P., Fergus, R., 2012. Indoor segmentation and support 
inference from rgbd images. In: European Conference on Computer Vision. Springer, 
pp. 746–760. 

N. Zioulis et al.                                                                                                                                                                                                                                  

http://atlantis-ar.eu/
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0025
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0025
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0025
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0040
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0040
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0040
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0045
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0045
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0045
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0065
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0065
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0065
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0085
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0085
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0090
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0090
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0120
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0120
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0125
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0125
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0135
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0135
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0150
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0150
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0150
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0155
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0155
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0160
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0160
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0175
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0175
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0175
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0180
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0180
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0180
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0195
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0195
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0195
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0200
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0200
http://refhub.elsevier.com/S0924-2716(21)00284-7/h0200


ISPRS Journal of Photogrammetry and Remote Sensing 183 (2022) 269–285

285

Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T., 2017. Semantic scene 
completion from a single depth image, in: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 1746–1754. 

Sun, C., Hsiao, C.W., Sun, M., Chen, H.T., 2019. Horizonnet: Learning room layout with 
1d representation and pano stretch data augmentation, in: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pp. 1047–1056. 

Tao, A., Sapra, K., Catanzaro, B., 2020. Hierarchical multi-scale attention for semantic 
segmentation. arXiv preprint arXiv:2005.10821. 

Tateno, K., Navab, N., Tombari, F., 2018. Distortion-aware convolutional filters for dense 
prediction in panoramic images, in: Proceedings of the European Conference on 
Computer Vision (ECCV), pp. 707–722. 

Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L., 
2021. Multi-task learning for dense prediction tasks: A survey. IEEE Trans. Pattern 
Anal. Mach. Intell. 1–1 https://doi.org/10.1109/TPAMI.2021.3054719. 

Wang, F.E., Hu, H.N., Cheng, H.T., Lin, J.T., Yang, S.T., Shih, M.L., Chu, H.K., Sun, M., 
2018. Self-supervised learning of depth and camera motion from 360◦ videos. In: 
Asian Conference on Computer Vision. Springer, pp. 53–68. 

Wang, F.E., Yeh, Y.H., Sun, M., Chiu, W.C., Tsai, Y.H., 2020a. Bifuse: Monocular 360 
depth estimation via bi-projection fusion, in: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp. 462–471. 

Wang, F.E., Yeh, Y.H., Sun, M., Chiu, W.C., Tsai, Y.H., 2020b. Layoutmp3d: Layout 
annotation of matterport3d. arXiv preprint arXiv:2003.13516. 

Wang, N.H., Solarte, B., Tsai, Y.H., Chiu, W.C., Sun, M., 2020c. 360sd-net: 360 stereo 
depth estimation with learnable cost volume, in: 2020 IEEE International Conference 
on Robotics and Automation (ICRA), IEEE. pp. 582–588. 

Wu, H., Zheng, S., Zhang, J., Huang, K., 2018. Fast end-to-end trainable guided filter, in: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 1838–1847. 

Xiao, J., Ehinger, K.A., Oliva, A., Torralba, A., 2012. Recognizing scene viewpoint using 
panoramic place representation, in: 2012 IEEE Conference on Computer Vision and 
Pattern Recognition, IEEE. pp. 2695–2702. 

Xu, J., Stenger, B., Kerola, T., Tung, T., 2017. Pano2cad: Room layout from a single 
panorama image, in: 2017 IEEE Winter Conference on Applications of Computer 
Vision (WACV), IEEE. pp. 354–362. 

Yang, H., Zhang, H., 2016. Efficient 3d room shape recovery from a single panorama, in: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 5422–5430. 

Yang, S.T., Wang, F.E., Peng, C.H., Wonka, P., Sun, M., Chu, H.K., 2019. Dula-net: A 
dual-projection network for estimating room layouts from a single rgb panorama, in: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 3363–3372. 

Yang, Y., Jin, S., Liu, R., Bing Kang, S., Yu, J., 2018. Automatic 3d indoor scene modeling 
from single panorama, in: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 3926–3934. 

Yin, W., Liu, Y., Shen, C., Yan, Y., 2019. Enforcing geometric constraints of virtual 
normal for depth prediction, in: Proceedings of the IEEE/CVF International 
Conference on Computer Vision, pp. 5684–5693. 

Zeng, W., Karaoglu, S., Gevers, T., 2020. Joint 3d layout and depth prediction from a 
single indoor panorama image. In: European Conference on Computer Vision. 
Springer, pp. 666–682. 

Zhang, X., Jia, N., Ivrissimtzis, I., 2020. A study of the effect of the illumination model on 
the generation of synthetic training datasets. arXiv preprint arXiv:2006.08819. 

Zhang, Y., Song, S., Tan, P., Xiao, J., 2014. Panocontext: A whole-room 3d context model 
for panoramic scene understanding. In: European conference on computer vision. 
Springer, pp. 668–686. 

Zheng, J., Zhang, J., Li, J., Tang, R., Gao, S., Zhou, Z., 2020. Structured3d: A large photo- 
realistic dataset for structured 3d modeling, in: Proceedings of The European 
Conference on Computer Vision (ECCV). 

Zhou, T., Brown, M., Snavely, N., Lowe, D.G., 2017. Unsupervised learning of depth and 
ego-motion from video, in: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 1851–1858. 

Zioulis, N., Alvarez, F., Zarpalas, D., Daras, P., 2021. Single-shot cuboids: Geodesics- 
based end-to-end manhattan aligned layout estimation from spherical panoramas. 
Image Vis. Comput. 110, 104160. 

Zioulis, N., Karakottas, A., Zarpalas, D., Alvarez, F., Daras, P., 2019. Spherical view 
synthesis for self-supervised 360 depth estimation, in: 2019 International Conference 
on 3D Vision (3DV), IEEE. pp. 690–699. 

Zioulis, N., Karakottas, A., Zarpalas, D., Daras, P., 2018. Omnidepth: Dense depth 
estimation for indoors spherical panoramas, in: Proceedings of the European 
Conference on Computer Vision (ECCV), pp. 448–465. 

Zou, C., Colburn, A., Shan, Q., Hoiem, D., 2018. Layoutnet: Reconstructing the 3d room 
layout from a single rgb image, in: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 2051–2059. 

Zou, C., Su, J.W., Peng, C.H., Colburn, A., Shan, Q., Wonka, P., Chu, H.K., Hoiem, D., 
2019. 3d manhattan room layout reconstruction from a single 360 image. arXiv 
preprint arXiv:1910.04099.  

Nikolaos Zioulis is an Electrical and Computer Engineer (Aris
totle University of Thessaloniki, 2012) working in the Infor
mation Technologies Institute (ITI) of the Centre for Research 
and Technology Hellas (CERTH) since October 2013. His 
research interests lie in the intersection of computer vision and 
graphics technologies and, more specifically, in volumetric 3D 
capturing and rendering, 3D scene understanding and tele- 
immersive applications.  
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