
1

LDS-Inspired Residual Networks
Anastasios Dimou, Dimitrios Ataloglou, Kosmas Dimitropoulos, Member, IEEE,

Federico Alvarez, Member, IEEE, and Petros Daras, Senior Member, IEEE

Abstract—Residual Networks (ResNets) have introduced a
milestone for the Deep Learning community due to their
outstanding performance in diverse applications. They enable
efficient training of increasingly deep networks, reducing the
training difficulty and error. The main intuition behind them is
that instead of mapping the input information, they are mapping
a residual part of it. Since the original work, a lot of extensions
have been proposed to improve information mapping. In this
paper, a novel extension of the residual block is proposed inspired
by Linear Dynamical Systems, called LDS-ResNet. Specifically,
a new module is presented that improves mapping of residual
information by transforming it in a hidden state and then
mapping it back to the desired feature space using convolutional
layers. The proposed module is utilized to construct multi-branch
Residual blocks for Convolutional Neural Networks (CNNs).
An exploration of possible architectural choices is presented
and evaluated. Experimental results show that LDS-ResNet
outperforms the original ResNet in image classification and
object detection tasks on public datasets such as CIFAR-10/100,
ImageNet, VOC and MOT2017. Moreover, its performance boost
is complementary to other extensions of the original network such
as pre-activation and bottleneck, as well as stochastic training and
Squeeze-Excitation.

Index Terms—ResNet, linear dynamical systems, convolutional
neural networks, image classification, object detection.

I. INTRODUCTION

WHILE increasingly deeper networks are proposed in the
literature, their performance gets saturated and even

degrades rapidly after a certain depth [1]. Despite the intuition
that a deeper model should perform better than its shallower
counterpart, adding more layers may lead to a higher training
error. The difficulty to train such a deeper network stems from
the increasing complexity and the diminishing returns. Deep
Residual Networks (ResNets) [1] introduced a new approach
for Image Recognition with Deep Residual Learning. ResNets
led to winning entries in the 2015 ImageNet [2] and MS
COCO [3] competitions, in important tracks such as image
classification, object detection, and semantic segmentation.
The robustness of ResNets has since been proven in diverse
visual recognition tasks and non-visual tasks including speech
recognition systems [4].

D. Ataloglou, K. Dimitropoulos and P.Daras are with the Information
Technologies Institute, Centre for Research and Technology Hellas, Thessa-
loniki, Greece (e-mail: {ataloglou,dimitrop,daras}@iti.gr).

F. Alvarez is with the Universidad Politécnica de Madrid, Madrid, Spain
(e-mail: fag@gatv.ssr.upm.es).

A. Dimou is both with the Universidad Politécnica de Madrid, Madrid,
Spain and the Information Technologies Institute, Centre for Research and
Technology Hellas, Thessaloniki, Greece (e-mail: dimou@iti.gr).

Manuscript received June 6, 2018; revised August 24, 2018; accepted 3
September, 2018.

Copyright c© 2018 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

ResNets consist of many stacked “Residual Blocks”. Each
block can be expressed in a general form:

yl = h(xl) + F (xl,Wl), (1)

xl+1 = f(yl), (2)

where xl and xl+1 are input and output, respectively, of the lth
block, and F is a residual function. The central idea of ResNets
is to learn the additive residual function F with respect to
h(xl). The key choice in [1] is to use an identity mapping as
h and a ReLU function [5] as f . The former is realized by
attaching an identity skip connection, h(xl) = xl.

Instead of trying to fit each stack of layers directly to a
desired underlying mapping, ResNet layers are trained to fit
a residual mapping. The original mapping Forig(xl) is recast
into F (xl) + xl. It is argued that it is easier to optimize the
residual mapping than to optimize the original, unreferenced
mapping. Hypothesizing that an identity mapping is the opti-
mal one, it would be easier to push the residual to zero than
to fit an identity mapping by a stack of non-linear layers [1].
ResNets that are over 100-layer deep have shown state-of-the-
art accuracy for several challenging recognition tasks.

In this paper, Residual Networks are re-visited focusing
on the residual block as it proves to be the key for their
success, while the depth of the network seems to have a
supplementary effect. ResNets proved that residual mapping
is easier to model than the original one [6]. Building on this
insight, it is argued that methodologies for better modelling
the residual information are expected to further improve the
performance of the network.

An effective strategy to improve the modelling of the
residual information is presented by Inception-like multi-
branch architectures [7]. Inception models are based on a
split-transform-merge strategy, where the input is tunnelled
into specialized branches that can model a different aspect of
the residual information and are then merged again. These
lower-dimensional embeddings create a strict subspace of
the solution space of a single large layer operating on a
high-dimensional embedding. However, Inception modules are
approaching the representational power of a high-dimensional
embedding with a considerably lower computational complex-
ity, allowing the exploration of deeper networks.

The proposed method shares its principles between the two
most important families of neural networks, namely ResNets
and Inception networks. From ResNets, the research commu-
nity has gained the insight that it is easier to try to model
a residual of the initial information content rather than its
whole. On the other hand, Inception networks have proved
that modelling different aspects of the information content,
using dedicated branches with different spatial support, can

pubs-permissions@ieee.org.


2

lead to improved performance. Starting from Inception v4
[8], skip connections were integrated to Inception-like models,
confirming the compatibility of the two approaches.

A new approach to break down the information content
is proposed here, aiming to improve data modelling by a
residual block. It is argued that exploiting data statistics, a
new representation of the residual data can be constructed to
improve residual information modelling. This representation
can offer a more generic description of the underlying texture
that is easier to model. Towards this end, in this paper we
consider a sequence of convolutional layers as a Markov
process, in which the statistical representation of the process
in the future, i.e., in the next layer, is completely determined
by the present state, i.e. the output of the previous layer.
Inspired by Linear Dynamical Systems (LDS) and their ability
to estimate the output of such systems through two stochastic
processes, we initially design a novel module that simulates an
LDS process and then propose various LDS block architectures
aiming to better estimate the output of the residual block. A
3-path block is proposed, featuring: (1) a skip connection, (2)
standard convolutional layers and (3) LDS modules, aiming at
better modelling the residual information and ease the training
process.

In order to understand the role of LDS-like modelling in a
ResNet block, an exploration of the architecture design phase
is presented. It is shown that such ResNet blocks achieve
significantly better accuracy compared to the original ResNet
block in the image classification problem. Experiments suggest
that LDS-ResNet performs better than ResNets with a similar
number of parameters. Moreover, it is shown that the perfor-
mance boost is additive to other extensions of the original
network such as pre-activation and bottleneck architectures,
as well as stochastic training and Squeeze-Excitation. The
new residual unit design presents improvements in the image
classification and object detection tasks in public datasets such
as CIFAR-10/100, ImageNet, VOC and MOT2017.

The contributions of this work can be summarized in the
following aspects:

• A new module inspired by Linear Dynamical Systems
(LDS) is introduced and the addition of a separate pro-
cessing branch, consisting of stacked LDS modules, is
proposed to better model the residual information.

• An extensive exploration of different architectures includ-
ing the proposed module is performed. Different network
topologies are developed and tested to compare perfor-
mance with the original ResNet for multiple network
depths. Moreover, the complementarity of the proposed
methodology with other ResNet extensions is assessed.

• The proposed network design has been benchmarked on
image classification and object detection tasks in popular
publicly available datasets with favorable results.

II. RELATED WORK

Since ResNet appearance, the concept of residual learning
has been extensively utilized and extended in various ways.
In [6], authors proposed Wide Residual Networks (WRNs)
to address the training difficulties and saturated performance

of increasingly deeper models. WRNs were constructed by
simultaneously decreasing the depth and increasing the width
of residual networks, using a higher number of convolutional
kernels and feature maps. These modifications resulted in
much swallower networks that could generally achieve better
performance than their deeper counterparts, while being easier
to train.

In another attempt to alleviate training related inefficiencies
in deep neural networks, such as vanishing gradients, dimin-
ishing feature reuse and long training times, the authors in [9]
followed a different approach. Starting with very deep neural
networks, they proposed to stochastically drop a percentage
of residual units in each training iteration and replace them
with identity connections. This method, which extended the
functionality of Dropout [10] to residual blocks, was able to
reduce training time and continue improving the test error in
residual networks with more than 1000 layers.

In ResNets, the input of each residual unit is forwarded
to the next one through the identity shortcut and an addition
operation with that unit’s output. Thus, identity connections
exist only between successive units and input information is
merged and altered before it can be utilized by subsequent
units. In DenseNets [11], the feature-maps of all preceding
units are concatenated and used as inputs, while a unit’s
output is used as input by all subsequent units. Concatenating
feature maps learned by multiple different layers increases
feature reuse throughout the network, which leads to improved
training efficiency and lower classification error.

In [12], a deep dual-stream architecture was proposed,
named ResNet in ResNet (RiR), composed of generalized
residual units that combine intersecting residual and transient
paths. The generalized residual units retained the benefits of
residual learning, while improving expressivity and the ease
to remove unnecessary information.

In order to boost the representational power of the network,
[13] focused on interdependencies between the different chan-
nels of convolutional outputs and proposed the Squeeze-and-
Excitation (SE) block, which adaptively re-calibrates channel-
wise feature responses. Through feature recalibration, the
network uses global information and learns to selectively
emphasize informative features and suppress less useful ones.
Combined with residual connections, SE-ResNet units have
set a new record in the ImageNet classification challenge.

The current literature includes papers that improve per-
formance by easing the learning procedure [6], [9], adding
complexity to the network architecture [11], [12] or modifying
each filters contribution [13]. In the proposed approach, it
is argued that by transforming the residual data to a hidden
state and then mapping it back to desired feature space with
convolutional layers, mimicking Linear Dynamical Systems,
significantly improves the network performance.

III. PROPOSED METHOD

A. Background

In the literature, Linear Dynamical Systems (LDS) have
been widely used for the analysis of multi-dimensional data,
such as time series and dynamic textures [14], [15], [16],



3

[17]. An LDS is associated with a first order Auto-Regressive
Moving Average (ARMA) process with white zero mean
independent and identically distributed (IID) Gaussian input
and for this reason LDS are also known as linear Gaussian
state-space models. The stochastic modelling of both signal’s
dynamics and appearance is encoded by two stochastic pro-
cesses, in which dynamics are represented as a time-evolving
hidden state process xt ∈ Rn and the observed data yt ∈ Rd

as a linear function of the state vector:

xt = Axt−1 +Bvt (3)

yt = Cxt + wt (4)

where A ∈ Rn×n is the transition matrix of the hidden state,
while C ∈ Rd×n is the mapping matrix of the hidden state
to the output of the system. The quantities wt and Bvt are
the measurement and process noise, respectively, with wt ∼
N(0, R) and Bvt ∼ N(0, Q).

In general, LDS attempt to associate the output of the
system with a linear function of a state variable, while in
each time instant the state variable depends linearly on the
state of the previous time instant. However, many researchers
have attempted to introduce a non-linear observation function
f in (4), i.e., yt = f(xt), maintaining in (3) the linear state
transition [18], while others have used non-linear functions in
both stochastic processes [19]. Besides the modelling of time-
evolving data, LDS have been effectively applied to problems
involving the analysis of spatial information, such as still
images, where the evolution of data is performed in the spatial
domain, i.e., in consecutive pixels, instead of discrete time
instances [20].

B. LDS module

Motivated by the aforementioned, in this paper, we aim
to create a novel LDS-inspired module that simulates the
operation of an LDS system in order to improve the residual
mapping of each block in a ResNet. Towards this end, instead
of using a single identity mapping, we introduce a new branch
with stacked LDS modules in order to calculate an estimated
output for each residual block.

More specifically, when used within a CNN, the input to
the proposed LDS module corresponds to a feature volume,
which is a 3-D tensor of size h × w × din, where h, w are
the spatial dimensions and din is the number of feature maps.
The proposed LDS module operates over 3-D patches Xt−1 ∈
Rn×n×din along the spatial dimensions of the input tensor
(we used n = 3 in our experiments). More specifically, after
applying the first-mode unfolding to Xt−1 and obtaining a 2-D
matrix xt−1 ∈ Rn×n·din , the corresponding output yt ∈ Rdout

is calculated as follows:

xt = Axt−1 (5)

yt = f(W,xt) (6)

where A ∈ Rn×n is a square transition matrix, xt ∈ Rn×n·din

is a transformation of the unfolded input patch and f() is
a mapping function, which uses xt and a set of trainable
parameters W to calculate the output yt. In (5) and (6), t

refers to the current processing step within a CNN structure,
while t− 1 to the previous one. All patch-wise outputs yt are
concatenated to a single 3-D tensor at the output of the LDS
module.

The operation of the proposed LDS module is graphically
presented in Fig. 1. Calculating the LDS module’s output Ỹt

involves three distinct steps. Firstly, in order to preserve the
spatial dimensions between the input and the output tensors,
the input tensor is zero padded along the spatial dimensions.
When n is an odd scalar, the resulting tensor has a size of (h+
bn/2c)× (w+ bn/2c)× din. Then, we apply (5) individually
to each 3-D patch Xt−1 by unfolding it to a 2-D matrix and
multiplying by A. Multiplication products are folded back to
3-D subvolumes and stored successively without overlapping,
resulting in an intermediate volume of (n · h)× (n ·w)× din.
Finally, this intermediate volume is convolved with a set of
dout filters W ∈ Rn×n×din , using a standard convolutional
layer. Convolution is performed with a stride of n in each
spatial dimension, in order to align the filters W with the
regions corresponding to each of the 3-D patches Xt−1 used
in the previous step. In this way, the output of the LDS module
Ỹt is a h × w × dout tensor. The stride of the convolutional
operation within the LDS module can be adjusted to multiples
of n, which can prove useful in classification tasks, where the
spatial dimensions of the input are usually reduced multiple
times throughout the network. For example, a stride of k · n
will reduce both the width and the height of the input tensor
by k.

LDS modules can be stacked to form an LDS stack (Fig. 2).
In this case, the output of every LDS module is used as input
by the subsequent module. A residual block can be modified
by adding an LDS stack in a separate processing branch. Fig. 3
shows the resulting LDS block in an abstract form, where
the input X is processed by two parallel branches. Similarly
to the original ResNet, the first branch consists of successive
convolutional layers, while the second branch is either an LDS
module or an LDS stack. The outputs Y and Ỹ of the two
branches are then combined by a function G(), before the
addition of the input X , which is forwarded through an identity
shortcut. The function G() depends on the examined block
type and is described in section III-C.

1) Transition matrix calculation: We investigate two dif-
ferent approaches regarding the calculation of the transition
matrix A. In the first one, its values are randomly initialized
and subsequently optimized during CNN training through
backpropagation. In this case, the values of A are trainable
parameters, along with the filters of the convolutional layer.
Aiming to preserve the spatial invariance property of CNNs,
we always use the same matrix A when multiplying with
values belonging to the same feature map of the LDS module’s
input tensor. On the other hand, we explored both the usage
of a single matrix A for the whole input and din independent
matrices, each dedicated to a specific channel of the input
tensor.

In the second approach, inspired by [17], A is recalculated
every time directly for each input patch Xt−1 and is not
optimized through backpropagation. Firstly, Xt−1 is unfolded
to produce a 2-D matrix. Starting from the first feature map,



4

Fig. 1. Graphical illustration of the proposed LDS module’s operation. The 3-D volumes depicted in gray are: a) LDS module’s input, b) zero-padded input,
c) intermediate volume storing the multiplication products of each 3-D patch Xt−1 with the transition matrix A and d) LDS module’s output. The input to
the LDS module is a 3-D tensor. In (b), the green patch is shifted by one position down and to the right compared to the red patch. In (c), their multiplication
products with the transition matrix A are stored without overlapping. In (d), the outputs corresponding to each Xt−1 are vectors with dout elements.

LDS
t+1

LDS
t+2

LDS
t

Y
t-1

Y
t

Y
t+1

Y
t+2

~ ~ ~ ~

Fig. 2. An LDS stack, composed of multiple LDS modules. The output of
each LDS module can be directly used as input by the subsequent one.

conv
layers

LDS
stack

G +
G( , )Y Y G( , )+Y Y X

Y

Y

X

~

~ ~

Fig. 3. Abstact form of an LDS block, combining convolutional layers, LDS
modules and an identity shortcut.

each n × n plane is placed to the right of the previous one,
producing a 2D matrix xu ∈ Rn×n·din Then, A is calculated
as:

A = X2X
T
1 (X1X

T
1 )

−1 (7)

where

X1 = [xu(1), xu(2), ..., xu(3d1 − 1)] (8)

X2 = [xu(2), xu(3), ..., xu(3d1)] (9)

and xu(i) is the i-th column of xu.
2) LDS module implementation: The LDS module can be

easily constructed utilizing a deep learning framework. It
consists of three layers: a padding layer, a custom layer and
a 2-D convolutional layer. The padding and the convolutional
layers are included in most deep learning frameworks. For the
latter, we used the CuDNN library [21] to speed up the training
and inference processes. Calculation of the transition matrix A
(when needed) and patch level multiplication (5) are executed
by the custom layer. As this can become a computationally
heavy operation for larger input sizes, the custom layer was
implemented in CUDA to enable high level of parallelization.
The code will be available upon the acceptance of this paper.

C. LDS blocks
In this section, the exploitation of the LDS module within

residual blocks is explored in different setups. After describing
the baseline residual block, different LDS block architectures
are implemented and evaluated. An overview of tested block
alternatives can be seen in Fig. 4.

1) Baseline Residual block: The baseline residual block,
depicted in Fig. 4a, consists of two parallel branches. The
first branch includes two 2-D convolutional layers with 3× 3
filters, whereas the second one is a simple identity shortcut.
Both convolutional layers use zero padding of 1 pixel and are
followed by a batch normalization layer [22]. The outputs of
the two branches are added and the second ReLU activation
[5] is placed after the addition. When the number of feature
maps of the input is changed by the convolutional layers, either
A) the shortcut’s output is padded with zeros to match the first
branch’s output, or B) the identity shortcut is replaced by a
projection shortcut, which consists of a 1 × 1 convolutional
layer with the desired number of filters, followed by a batch
normalization layer. When a convolutional layer reduces the
spatial dimensions of the input by performing strided convo-
lution, a spatial average pooling layer with the same stride
is added in the identity shortcut branch or the same stride
is employed by the 1 × 1 convolutional layer, in case of a
projection shortcut.

2) Baseline LDS block: The baseline LDS block is pre-
sented in Fig. 4b. The first branch of the baseline residual
block is replaced by a two pathway structure. The first path
is similar to that of the baseline residual block, including
two convolutional layers, followed by batch normalization and
ReLU activation layers. In the second path, the convolutional
layers are substituted with LDS modules. Each LDS module
has the internal structure described in section III-B. The
convolutional layers inside the LDS modules always use the
same number of filters as the corresponding ones of the first
path, but their stride is multiplied by 3. The outputs of the two
pathways are concatenated along the third dimension, resulting
in a volume with the same spatial dimensions, but double the
amount of feature maps. An additional 1 × 1 convolutional
layer is placed after the concatenation, which restores the
number of feature maps to that of the input by blending
the information received from the convolutional and the LDS



5

Input

Conv, 3 3×

BN, ReLU

Conv, 3 3×

BN

ReLU

Output

+

Input

Conv, 3 3×

BN, ReLU

Conv, 3 3×

BN, ReLU

BN, ReLU

BN, ReLU

LDS module

LDS module

Concatenate

BN

Conv, 1 1×

+

Output

ReLU

Input

BN, ReLU

LDS module

Concatenate

BN

Conv, 1 1×

+

Output

ReLU

Conv, 1 1×

BN, ReLU

Conv, 3 3×

BN, ReLU

Conv, 1 1×

BN, ReLU

Input

Conv, 3 3×

BN, ReLU

Conv, 3 3×

BN, ReLU

LDS module

LDS module

BN, ReLU

Concatenate

+

Output

Conv, 1 1×

BN, ReLU

Input

LDS module

BN, ReLU

Concatenate

+

Output

Conv, 1 1×

BN, ReLU

Conv, 1 1×

BN, ReLU

Conv, 3 3×

BN, ReLU

Conv, 1 1×

(a) (b) (c) (d) (e)

Fig. 4. Block architectures: a) baseline residual, b) baseline LDS, c) LDS with full pre-activation, d) bottleneck LDS, e) bottleneck LDS with full pre-activation

paths. The identity shortcut is added after the concatenation
and dimensionality reduction, following the same rules as in
the residual case.

3) Pre-activated LDS block: In [23], authors suggested
that moving the batch normalization and activation layers of
a residual block before the convolutional layers can have a
positive impact on the performance of a CNN. This pre-
activation scheme has been employed in the LDS block to
explore the complementarity of the two methods. Fig. 4c
shows how pre-activation was applied to the LDS block. In
this case, the ReLU layer that followed the addition is moved
before the 1×1 convolutional layer. This can prove beneficial
in deeper networks, where such blocks are usually stacked,
as information can be freely propagated through the shortcuts,
without being altered by intermediate layers. Pre-activation is
also applied in the case of projection shortcuts.

4) Bottleneck LDS block: Employing 3×3 filters on all con-
volutional layers can be computationally expensive for larger
input sizes and deeper networks. The bottleneck architecture,
originally proposed in [1], modifies the baseline residual block
by stacking three convolutional layers instead of two. The first
and third convolutional layers reduce and restore the number
of features maps of the input volume, using 1× 1 filters. The
3 × 3 convolution is performed on a smaller volume, which
is usually equal to 1/4 of the input. When the number of
filters for the 3 × 3 convolutional layers is fixed, the two
alternatives have roughly the same computational complexity,
but the network consisting of bottleneck blocks will be deeper.
Fig. 4d shows the structure of the bottleneck LDS block. As
there is only one 3×3 convolutional layer in the convolutional
path, one corresponding LDS module is placed in the LDS
path. Since the LDS module operates on patches along the

spatial dimensions, placing more LDS modules to match the
1×1 convolutional layers would be unorthodox, as these would
have to operate on 1 × 1 patches (both the patch and the
transition matrix A would be a scalar value).

5) Bottleneck pre-activated LDS block: Our final block
type combines the LDS module with both the pre-activation
and the bottleneck schemes. The resulting bottleneck pre-
activated LDS block is depicted in Fig. 4e. Similar to the
simple bottleneck case (Fig. 4d), a single LDS module is used,
while batch normalization and ReLU layers are moved before
convolutional layers, as in Fig. 4c.

IV. EXPERIMENTAL RESULTS

In this section, the above described architectures are val-
idated in different datasets and applications. Initially, the
proposed networks are compared in the task of classification
in 3 different datasets, namely CIFAR-10, CIFAR-100 and Im-
ageNet. Experiments are performed to assess the performance
of each residual block in multiple network depths. The effect
of the parameter number to the network performance is also
examined. Subsequently, the proposed network is applied for
object detection purposes on 2 different datasets, namely VOC
and MOT Challenge 2017.

We utilized Torch7 [24] and TensorFlow 1.4.0 [25] for all
classification and detection experiments respectively. We also
used the the cuDNN library [21] to further reduce processing
times. Experiments were performed on a computer equipped
with an NVIDIA GTX Titan X graphics card, CUDA v8.0.44
and CuDNN v5.1.5.



6

TABLE I
CNN ARCHITECTURE FOR CIFAR EXPERIMENTS

layers # filters stride output size
input 32× 32× 1

convolution, 3× 3 16 33× 32× 16
BN, Relu

LDS block × k 16 32× 32× 16
LDS block × k 32 2 16× 16× 32
LDS block × k 64 2 8× 8× 64

average pooling, 8× 8 1× 1× 64
fully connected 10 or 100

A. CIFAR classification

The CIFAR-10 benchmark dataset [26] consists of 60,000
32×32 RGB images, classified into 10 classes. The dataset is
split in 50,000 training and 10,000 test samples. Both training
and test sets contain equal number of instances from each
class. The CIFAR-100 dataset comprises the same images as
CIFAR-10, except that they are divided into 100 finer classes.

We utilized the CIFAR datasets to study the effect of
different block architectures and LDS module variants. We
considered three different network depths for experiments
using the baseline LDS block: 20, 44 and 110 layers. Addi-
tional experiments were performed with the pre-activated and
bottleneck LDS blocks for the deeper network structures.

For all CIFAR experiments, we selected the overall CNN
architecture that was used by [1], which is also presented in
Table I. A 2-D convolutional layer with 16 3×3 filters is placed
first, followed by batch normalization and ReLU layers. The
main network consists of 3 block groups with a total of 3k
blocks. The number of filters used for convolutional operations
is 16, 32 and 64, respectively. The second and the third block
groups reduce the spatial dimensions by applying a stride of
2 in the first convolutional layers of their first blocks. Setting
the value of k to 3, 7 and 18 leads to 20, 44 and 110-layer
CNNs, respectively. For bottleneck architectures, k = 18 leads
to a 164-layer deep CNN, as each bottleneck block has three
convolutional layers instead of two. Finally, a 8 × 8 average
pooling layer reduces the output size to a vector of size 64 and
a fully connected layer produces the final class scores, which
are 10 or 100 for CIFAR-10 and CIFAR 100 respectively.

For non-bottleneck blocks, when the output of a block has
different dimensions compared to its input, the identity short-
cut is replaced by a pooling and/or padding operation (option
A). For bottleneck blocks, a projection shortcut (option B) is
used instead. When pre-activated blocks are used, additional
batch normalization and ReLU layers are placed after the third
block group. In this case, in the very first block of the CNN,
the batch normalization and ReLU layers placed before the
two paths in Fig. 4c and 4e are omitted.

To enable fair comparison, we used the same training
parameters as in [1] for all CIFAR experiments. Thus, training
lasted for a total of 164 epochs, which is approximately 64k
iterations with a batch size of 128 images. Initial learning rate
was set to 0.1 and divided by a factor of 10 twice, at the
beginning of epochs 82 and 122. CNNs were trained using
Softmax loss and Stochastic Gradient Descent (SGD), with a
momentum of 0.9 and a weight decay of 0.0001 was used

TABLE II
CIFAR-10 RESULTS (BASELINE AND PRE-ACTIVATED BLOCKS)

depth residual LDS-1a LDS-1b LDS-2
20 8.75 [1] 6.82 6.75 7.41
44 7.17 [1] 6.24 6.45 7.03
110 6.61 [1] 5.74 7.11 6.10

110-pre 6.37 [23] 5.48 5.36 5.73

TABLE III
CIFAR-100 RESULTS (BASELINE AND PRE-ACTIVATED BLOCKS)

depth residual LDS-1a LDS-1b LDS-2
20 31.92 29.46 29.30 29.99
44 29.49 27.88 27.36 28.13
110 28.62 26.18 26.15 26.66

110-pre 26.92 25.47 24.79 25.70

for all trainable parameters. All images were normalized by
subtracting the mean and dividing by the standard deviation
computed over the entire training set. For data augmentation,
training images were zero padded by 4 pixels along each
direction and a random 32 × 32 patch was selected at each
iteration. Additionally, we used random horizontal flipping
with a 0.5 probability.

The following notations are used in Tables II to VI: residual
refers to simple residual blocks, LDS-1a to LDS blocks where
a single trainable transition matrix A is used for all feature
maps, LDS-1b to LDS blocks with different trainable A
matrices for each feature map and LDS-2 to LDS blocks were
A is calculated using (7). CNNs with pre-activated blocks are
denoted with a -pre suffix after their depth.

1) Baseline LDS results: Table II presents the error rate
in the CIFAR-10 test set for non-bottleneck ResNet and
LDS-Resnet architectures. We observe that in most cases,
CNN based on LDS blocks exhibit a significantly lower error
rate compared to their residual counterparts. Table III shows
the experimental results in the CIFAR-100 test set. In these
experiments, all LDS blocks performed significantly better
than the residual ones. Error rates with residual blocks were
obtained from our experiments using the same experimental
setup, as there were no relevant results for non-bottleneck
architectures in [1] and [23].

The introduction of the additional LDS path increases the
width and doubles the number of trainable parameters in
LDS-ResNets. To investigate the possible impact on perfor-
mance, we performed two sets of ablation experiments, fol-
lowing different approaches to construct alternative non-LDS
models with the same depth and number of paramaters as
LDS-ResNets. In the first one, the original ResNets were
widened by using more filters in each convolutional layer. In
particular, to double the overall number of trainable param-
eters, the number of filters in each convolutional layer was
multiplied by

√
2. In the second approach, the LDS modules

in Fig. 4b were substituted with standard convolutional layers,
resulting in 3-branch inception-like residual blocks, composed
of two identical convolutional branches (which were concate-
nated in the same way) and the shortcut connection.

A performance comparison is presented in Table IV. It
can be seen that in deeper networks (44 and 110 layers),



7

TABLE IV
COMPARISON BETWEEN LDS-RESNET AND ALTERNATIVE RESNET

ARCHITECTURES WITH SIMILAR NUMBER OF PARAMETERS (CIFAR-10)

ResNet [1] widened ResNet 3-branch ResNet LDS-ResNet
depth params error params error params error params error

20 0.27 M 8.75 0.55 M 6.94 0.57 M 6.85 0.57 M 6.82
44 0.66 M 7.17 1.36 M 7.58 0.39 M 6.63 1.39 M 6.24

110 1.73 M 6.61 3.56 M 6.75 3.65 M 6.35 3.65 M 5.74

TABLE V
CIFAR-10 RESULTS (BOTTLENECK BLOCKS)

depth residual [23] LDS-1a LDS-1b LDS-2
164 5.93 4.57 4.27 4.40

164-pre 5.46 4.49 4.39 4.61

which are the ones that also achieve the lowest error rates,
there are no performance benefits when widening the original
ResNets. On the other hand, LDS-ResNets outperforms both
alternative architectures by an increasing margin as the depth
of the network increases. Thus, the performance benefits can
be mostly attributed to the proposed LDS module, rather than
the increase of the network’s width and parameters.

2) Pre-activated LDS results: Results with pre-activated
blocks are presented in Tables II and III for the 110-layer
CNNs. In both datasets, the pre-activated block exhibits better
performance than the baseline blocks, both for residual and
LDS blocks. Overall, using non-bottleneck blocks, the best
performing CNN in CIFAR-10 has an error rate of 5.36 (20%
lower compared to its residual equivalent) and is 110-layer
deep, composed of pre-activated LDS blocks with different
transition matrices for each feature map (LDS-1b). Similarly,
in CIFAR-100, the best performing CNN reduces the error rate
from 26.92% to 24.79% using the same type of LDS blocks.

3) Bottleneck LDS results: Tables V and VI depict the
error rates using bottleneck blocks, in CIFAR-10 and CIFAR-
100 test sets, respectively. It can be seen that all LDS block
variants outperform residual blocks in both datasets, despite
the fact that, due to GPU memory limitations, CNNs with
LDS blocks were trained with a lower batch size of 64 images.
Furthermore, the error rate is significantly lower compared to
non-bottleneck blocks for all block variants. On the other hand,
compared to non-bottleneck blocks, pre-activation has a more
limited impact on performance, especially when bottleneck
LDS blocks are used. The best performing CNNs achieved
an error rate or 4.27% in CIFAR-10, using LDS-1b bottleneck
blocks and 20.97% in CIFAR-100, using pre-activated LDS-2
bottleneck blocks.

4) Combination and comparison with other ResNet exten-
sions: A key advantage of the proposed LDS module is that,
besides improving ResNet performance, it can be used comple-
mentary to other ResNet extensions and related methodologies.

TABLE VI
CIFAR-100 RESULTS (BOTTLENECK BLOCKS)

depth residual [23] LDS-1a LDS-1b LDS-2
164 25.16 22.38 21.84 21.24

164-pre 24.33 21.96 21.53 20.97

TABLE VII
TEST ERROR COMPARISON IN CIFAR-10/100

method configuration params CIFAR-10 CIFAR-100

ResNet [1] 110-layer 1.7 M 6.61 28.62

Stochastic
Depth [9]

110-layer, drop rate = 0.5
(linear decay)

1.7 M 5.25 24.98

Squueze-
Excitation
[13]

110-layer,
compression rate = 1
(our implementation)

1.9 M 6.10 26.08

DenseNet
[11]

100-layer,
growth rate = 12

7.0 M 4.10 20.20

Wide
ResNet [6]

40-layer, 4× wide 8.9 M 4.53 21.18

ResNet In
ResNet [12]

18-layer + wide RiR 10.3 M 5.01 22.90

LDS 110-layer, baseline LDS
blocks

3.7 M 5.74 26.15

LDS +
stochastic

110-layer, drop rate = 0.5
(linear decay)

3.7 M 4.07 21.44

LDS + SE 110-layer,
compression rate = 1

3.9 M 5.56 25.13

LDS +
stochastic +
SE

110-layer, drop rate = 0.5
(linear decay),
compression rate = 1

3.9 M 3.94 20.77

LDS +
stochastic +
SE (wider)

same as the above but
starting with 21 channels

6.7 M 3.90 20.03

LDS +
stochastic +
SE (wider)

same as the above but
starting with 22 channels

7.3 M 3.87 19.56

Results reported in subsections IV-A2 and IV-A3 highlight
the complementarity of the LDS module with pre-activated
and bottleneck CNN architectures. In this subsection, we build
upon baseline LDS-ResNets and assess them in combination
with the Stochastic Depth [9] and Squeeze-Excitation (SE)
[13] methods. We also compare the performance of these
composite models with other ResNet extensions, selecting
models with similar number of parameters when possible.

Table VII presents the experimental results. For non-LDS
models, results are reported as they appear in the respective
publications, except for the SE method, where they correspond
to our implementation of the method (optimized for the
compression rate hyperparameter), as no results for the CIFAR
datasets were available in the paper. Whenever stochastic depth
was applied, we followed the training schedule used in [9].

As can be seen, the addition of stochastic depth and SE
alone significantly improves over both the respective non-LDS
methods and the baseline LDS results. Nonetheless, stochastic
depth has a greater impact than SE, achieving a test error
of 4.07 in CIFAR-10, which already compares favorably
to the rest of non-LDS ResNet extentions. Combining both
stochastic depth and SE with LDS further reduces the error in
both datasets. While not yet achieving best result in CIFAR-
100, it is important to note that the ”LDS + stochastic +
SE” model has significantly less trainable parameters (3.9
M) than DenseNet (7.0 M). Finally, we trained two wider
models with approximately the same number of parameters as
DenseNet, which reduced the CIFAR-100 test error to 19.56,
thus surpassing in performance all entries of Table VI.



8

5) Training time: Training duration depends on the depth
of the network and the usage of bottleneck blocks. For CNNs
with baseline LDS blocks, training lasted on average for 2.4,
5.6 and 14.2 hours, for the 20, 44 and 110-layer models re-
spectively. The 164-layer models with bottleneck LDS blocks,
required 33.1 hours to complete the training process. As pre-
activated blocks are composed of the same elements as regular
ones and only alter the sequence of operations within each
block, their introduction has only a negligible effect on training
time.

B. ImageNet classification
While experimentation with the CIFAR dataset provided the

means to explore different architectures and to evaluate their
performance, its very small sized images (32 × 32 pixels)
prohibited us from utilizing the trained networks in real-
world applications, such as the detection scenarios presented
in section IV-C, where higher resolution inputs are common.
To that end, we utilized the ImageNet dataset [2], both to
evaluate the classification capabilities of our method on higher
resolution images and to use the trained models as a basis for
our detection experiments.

The ImageNet 2012 classification dataset consists of 1.28
million training and 50k validation images of variable size,
classified into 1000 classes. Each class contains 732-1300
training and exactly 50 validation images. The average image
resolution is 469× 387 pixels.

Since training with such a large dataset can be time consum-
ing, we extracted a subset of the ImageNet dataset by randomly
selecting 500 classes and half of the training images for each
selected class. All validation images from the 500 selected
classes were used for testing. Thus, the selected subset has
a total of 320k training and 25k test images. We performed
experiments on the same subset using both residual and LDS
blocks, allowing for fair comparison between them.

We chose the overall structure of ResNet-50 with bottleneck
residual blocks as the baseline architecture for ImageNet
experimentation. Then, all residual blocks were replaced by
bottleneck LDS blocks (Fig. 4d) with different transition
matrices A for every feature map (variant LDS-1b), which
were the ones that achieved the best results in CIFAR-10. The
resulting architecture is presented in Table VIII. The main
network consists of four block groups, with different number
of blocks and feature maps. Strides are always applied to the
last block of the group. In these blocks, a max pooling layer
with 1 × 1 filters and stride 2 is added replacing the identity
shortcut. When the number of feature maps changes between
blocks, projection shortcuts are used.

Preprocessing of training images involved random horizon-
tal flipping with 0.5 probability, scaling with the smaller edge
to equal a random size taken from a uniform distribution in
the [256, 512] range and finally, cropping a random 224×224
patch. Test images were scaled with their smaller edge to be
exactly 256 pixels and a single 224 × 224 patch was later
cropped from the center of the scaled image. Mean RGB value
was subtracted from both training and test images.

Aiming to reduce the required training time, rather than
maximizing the classification performance of the network, we

TABLE VIII
CNN ARCHITECTURE FOR IMAGENET EXPERIMENTS

layers # filters stride output size
input 224× 224× 1

convolution, 7× 7 64 2 112× 112× 64
BN, Relu

max pooling, 3× 3 2 56× 56× 64
bottleneck LDS block ×3 256 2 28× 28× 256
bottleneck LDS block ×4 512 2 14× 14× 512
bottleneck LDS block ×6 1024 2 7× 7× 1024
bottleneck LDS block ×3 2048 7× 7× 2048

average pooling, 7× 7 1× 1× 2048
fully connected 500

TABLE IX
IMAGENET RESULTS

residual LDS-1b
top-1 error 32.29 27.38
top-5 error 11.97 9.06

epoch
0 10 20 30 40 50

tr
ai

ni
ng

  l
os

s

0

1

2

3

4

5

6
residual
LDS-1b

Fig. 5. Convergence comparison in ImageNet classification using residual
and LDS-1b bottleneck blocks.

limited the training procedure to 50 epochs, with the initial
learning rate of 0.1 divided by 10 twice at the beginning
of epochs 21 and 36. Due to the larger input size and the
increased number of intermediate feature maps, a lower batch
size of 32 was used to fit the LDS models in GPU memory. As
in CIFAR experiments, all CNNs were trained using Softmax
loss and SGD with 0.9 momentum and 0.0001 weight decay.
Training on ImageNet, which was the most computationally
expensive task of our experiments, lasted for almost 17 days,
using a dual GPU setup with an additional NVIDIA Tesla
K40c.

Table IX shows the top-1 and top-5 classification error in the
selected test set. For the top-1 error, an image is considered to
be classified correctly only when the true label matches the top
scoring output class, whereas for the top-5 error, the true label
should be among the five classes with the higher scores. LDS
blocks reduce both top-1 and top-5 errors by 15% and 24%
respectively. Fig. 5 presents the convergence of the networks
during training. It can be seen that the CNN containing LDS
blocks converges faster and achieves a lower training loss.



9

C. Object detection

LDS-ResNets can improve the performance of ResNet-
based methods methods in any domain. In this subsection, we
evaluate LDS-ResNets in object detection. We have to note
that experiments reported here aim to assess the effectiveness
of the proposed method, which corresponds to a generic
methodology, in an additional domain, rather than designing an
architecture tailored to this specific task and aiming to achieve
state-of-the-art results in a specific dataset.

Faster-RCNN [27] is a widely used architecture for object
detection, using VGG or ResNet as a base network for region
proposal generation and labelling the detected objects. First,
the base network receives the input image and outputs a set of
feature maps. Then, based on this intermediate representation,
a class agnostic Region Proposal Network (RPN) suggests
possible object locations. Finally, the region proposals with
the higher objectness scores are forwarded to the classifier,
which assigns a class label to each one of them and refines
the bounding box. Its modular architecture makes it ideal for
testing new neural network models.

Faster-RCNN was selected to evaluate the performance
improvement when the base network is replaced with LDS-
ResNet. The pre-trained LDS-ResNets with the ImageNet
dataset (as explained in section IV-B) were utilized as the base
network of Faster-RCNN, including all layers of Table VIII up
to the third block group. The Region Proposal Network (RPN)
was placed between the third and the fourth block groups,
leaving the final three blocks along with the average pooling
and fully connected layers to be part of the classifier.

We utilized the PASCAL VOC [28] and the MOT2017Det
[29] datasets. The PASCAL VOC detection dataset com-
prises variable sized RGB images with multiple ground truth
bounding boxes of objects over 20 classes. As is common
practice, we used the VOC2007 and the VOC2012 training
and validation sets for training purposes, with a total of 16551
images containing 40058 objects. For evaluation, we used the
VOC2007 test set with 4952 images and 12032 objects. The
MOT2017Det training set comprises 7 videos with a total of
5316 frames, captured by static or moving cameras in various
environmental conditions. Each frame contains on average
21.1 pedestrians, leading to over 112k ground truth bounding
boxes in total. We split this set equally into two subsets, taking
the first half of each video for training and the second half for
testing.

Training was performed in an end-to-end manner by com-
bining classification and box regression losses from the RPN
and the classifier modules. Non Maximal Suppression (NMS)
with an Intersection over Union (IoU) of 0.7 was utilized
to reduce the number of highly overlapping region proposals
at the RPN output. Training was performed using a single
image as input to Faster-RCNN and a sampled subset of 128
region proposals as input to the classifier module, containing
equal amount of objects and background cases. The 7 × 7
convolutional layer at the beginning of the network and the
first block group were kept fixed during training. Also, all
batch normalization layers were set to inference mode. Our
Faster-RCNN implementation uses TensorFlow and is based

TABLE X
FASTER-RCNN DETECTION RESULTS (MAP) USING RESNET AND

LDS-RESNET BASE NETWORKS

dataset residual LDS-1b
PASCAL VOC 67.87 73.34
MOT2017Det 68.31 69.51

on [30].
All images were resized with their shortest side to equal 600

pixels. Training datasets were augmented with horizontally
flipped images. Using a single image as input, training lasted
for 110k and 70k iterations for the PASCAL VOC and
the MOT2017Det datasets respectively. Initial learning rate
of 0.001 was reduced by a factor of 10 after 80k or 50k
iterations. Trainable parameters were optimized using SGD
with 0.9 momentum and a weigh decay of 0.0001. Training
with the PASCAL VOC dataset required 74 hours, while the
MOT2017Det dataset required 47 hours.

During testing, the top scoring 300 region proposals (after
NMS) were forwarded to the classifier. Using this configura-
tion, the proposed architecture operated at a rate of 0.8 images
per second in both datasets. Following the official PASCAL
VOC evaluation rules, an IoU higher than 0.5 between the
detection and the corresponding ground truth bounding boxes
was required for a detection to be counted as a True Positive.
Additionally, each ground truth box could be associated at
most once with a detection box, counting multiple detection
of the same object as False Positives and any remaining non-
associated ground truth boxes as False Negatives. Evaluation
metrics in the MOT2017Det dataset were obtained according
to challenge rules using the provided evaluation scripts.

Detection performance was quantified by Average Precision
(AP). For each examined class, AP was obtained from the
Precision-Recall curve by averaging the computed precision
at 0.1 recall intervals. Table X presents the mean Average
Precision (mAP) in both datasets, using Faster-RCNN with
residual and LDS-1b blocks. Fig. 6 shows the AP for each
individual class in the PASCAL VOC dataset. It can be seen
that LDS blocks outperform residual ones in every single
class, leading to an overall performance boost of 5.51% in
terms of mAP. Fig. 7 compares the Precision-Recall curves for
the pedestrian class in the MOT2017Det dataset, where LDS
blocks also lead to superior performance. Detection examples
in the PASCAL VOC and MOT2017Det datasets are presented
in Fig. 8 and 9 respectively. The results presented in this
subsection are indicative of the expected performance benefit
in other methods that employ Faster-RCNN, if the proposed
LDS-ResNet is utilized as the base network.

V. CONCLUSION

An extension of Residual Networks has been proposed
inspired by Linear Dynamical Systems modelling. The residual
information content is transformed in a hidden state mimicking
an LDS system. This transformation is learnt based on the
statistics of the training content and, therefore, it leads to a
more generic representation of the information content that
we claim and prove that it can be easier learnt. Therefore,



10

Average Precision

0.3 0.4 0.5 0.6 0.7 0.8 0.9

tv monitor

train

sofa

sheep

potted plant

person

motorbike

horse

dog

dining table

cow

chair

cat

car

bus

bottle

boat

bird

bicycle

aeroplane

residual LDS-1b

Fig. 6. Average Precission per class in the VOC2007 test set

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

residual
LDS-1b

Fig. 7. Precision-Recall curves in the MOT2017Det test set.

the proposed LDS module essentially breaks down the learn-
ing procedure in a content-based hierarchical way. The skip
connection transfers the whole image, leaving the residual
modelling to the other two branches. The LDS branch is
learning a generalized version of the residual information
and the CNN branch is learning the residual of the residual
information, which is even more sparse than the original
residual information and, thus, easier to learn.

An exploration of the network architecture space has been
presented to assess the performance of the LDS module in
multiple depths and in conjunction with other ResNet-based
methodologies and extensions. The proposed LDS blocks can
be utilized in any architecture that employs residual blocks,

simply by replacing them. Experiments on image classification
and object detection using the CIFAR-10/100, ImageNet,
PASCAL VOC and MOT2017Det datasets have demonstrated
the outstanding performance and robustness of the proposed
approach.

ACKNOWLEDGMENT

This work was supported by the European Project: SUR-
VANT http://survant-project.eu/ Grant no. 720417 within the
H2020 FTIPilot-2015.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[3] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[4] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu,
and G. Zweig, “The microsoft 2016 conversational speech recognition
system,” in Acoustics, Speech and Signal Processing (ICASSP), 2017
IEEE International Conference on. IEEE, 2017, pp. 5255–5259.

[5] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[6] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich et al., “Going deeper with convolutions.”
Cvpr, 2015.

[8] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, vol. 4, 2017, p. 12.

[9] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European Conference on Computer
Vision. Springer, 2016, pp. 646–661.

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[11] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, vol. 1, no. 2, 2017,
p. 3.

[12] S. Targ, D. Almeida, and K. Lyman, “Resnet in resnet: generalizing
residual architectures,” arXiv preprint arXiv:1603.08029, 2016.

[13] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” arXiv
preprint arXiv:1709.01507, 2017.

[14] A. Ravichandran, R. Chaudhry, and R. Vidal, “Categorizing dynamic
textures using a bag of dynamical systems,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 2, pp. 342–353,
2013.

[15] G. Luo, S. Yang, G. Tian, C. Yuan, W. Hu, and S. J. Maybank, “Learning
human actions by combining global dynamics and local appearance,”
IEEE transactions on pattern analysis and machine intelligence, vol. 36,
no. 12, pp. 2466–2482, 2014.

[16] K. Dimitropoulos, P. Barmpoutis, and N. Grammalidis, “Higher order
linear dynamical systems for smoke detection in video surveillance
applications,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 27, no. 5, pp. 1143–1154, 2017.

[17] K. Dimitropoulos, P. Barmpoutis, A. Kitsikidis, and N. Grammalidis,
“Classification of multidimensional time-evolving data using histograms
of grassmannian points,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 28, no. 4, pp. 892–905, April 2018.

[18] A. B. Chan and N. Vasconcelos, “Classifying video with kernel dynamic
textures,” in Computer Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on. IEEE, 2007, pp. 1–6.



11

residual detections LDS detectionsground truth residual detections LDS detectionsground truth

person
motorbikeperson

potted plant

sofa sofasofa

traintrain

chair

chairdinning table
chair chair

dinning table

dog dog

dog

dog

dog

bus bus busbus bus

horse
personhorse

person

boat

boat

sheep

person

person

bicycle

person

person

person

bicycle

boat

personperson

aeroplane

aeroplane
aeroplane

person
person

person

personperson

person
person

person

person

bus bus

carcarcar

bus

carcar

bicycle

person

bicycle

person

bicycle

person

bicycle

person

person

bicycle

bicycle

person

bicycle

person

bicycle

person

Fig. 8. Detection examples in the PASCAL VOC dataset. Ground truth boxes are depicted in the left images, detections using Faster-RCNN with residual
blocks in the middle and detections using LDS blocks in the right ones. Detections counted as True Positives are presented with green bounding boxes,
whereas False positives (either due to wrong class label or low IoU value with the ground truth) are presented with red. To obtain these detections, score
thresholds have been optimized independently for each ground truth class and block type by maximizing the sum of precision and recall.

[19] G. Zhou, N. Dong, and Y. Wang, “Non-linear dynamic texture analysis
and synthesis using constrained gaussian process latent variable model,”
in Circuits, Communications and Systems, 2009. PACCS’09. Pacific-Asia
Conference on. IEEE, 2009, pp. 27–30.

[20] K. Dimitropoulos, P. Barmpoutis, C. Zioga, A. Kamas, K. Patsiaoura,
and N. Grammalidis, “Grading of invasive breast carcinoma through
grassmannian vlad encoding,” PloS one, vol. 12, no. 9, p. e0185110,
2017.

[21] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning, 2015, pp. 448–456.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European Conference on Computer Vision. Springer,

2016, pp. 630–645.
[24] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like

environment for machine learning,” in BigLearn, NIPS workshop, no.
EPFL-CONF-192376, 2011.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[26] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[28] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[29] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A



12

residual detections LDS detectionsground truth

Fig. 9. Detection examples in the MOT2017Det dataset. Ground truth boxes are depicted in the left images, detections using Faster-RCNN with residual
blocks in the middle and detections using LDS blocks in the right ones. Detections counted as True Positives are presented with green bounding boxes,
whereas False positives (either due to wrong class label or low IoU value with the ground truth) are presented with red. To obtain these detections, score
thresholds have been optimized independently for each block type by maximizing the sum of precision and recall.

benchmark for multi-object tracking,” arXiv preprint arXiv:1603.00831,
2016.

[30] X. Chen and A. Gupta, “An implementation of faster rcnn with study
for region sampling,” arXiv preprint arXiv:1702.02138, 2017.

Anastasios Dimou graduated from Aristotle Uni-
versity of Thessaloniki as an Electrical and Com-
puter Engineer (Dipl.) in 2004 and was awarded a
Professional Doctorate in Engineering (PDEng) in
Information and Communication Technology at the
Technical University of Eindhoven, the Netherlands
in 2007. Since 2015, he is a PhD candidate at
Universidad Politecnica de Madrid. From February
2008 he is working as a Research Associate in the
Information Technologies Institute (ITI) of the Cen-
tre for Research and Technology Hellas (CERTH).

His research interests are covering image and video processing and analysis,
smart security applications, semantic web technology, video coding and
broadcasting quality. He has participated in numerous research projects and he
co-authored 25+ publications in refereed journals, book chapters and papers
in international conferences.



13

Dimitrios Ataloglou is an Electrical and Computer
Engineer with a MSc in Medical Informatics. He
received his diploma in 2014 from the Faculty of
Engineering of Aristotle University of Thessaloniki
and his MSc in 2017 form the School of Medicine
of the same university. He is a member of the
Technical Chamber of Greece. He has previously
worked as a Computer Programmer/Analyst. Since
May 2017, he has been working as a Research
Associate at the Information Technologies Institute
(ITI) of the Center for Research and Technology

Hellas (CERTH). His research interests include deep learning methods, image
processing and biomedical applications.

Kosmas Dimitropoulos is a research fellow at
Visual Computing Lab of Information Technologies
Institute - Centre for Research and Technology Hel-
las (ITI-CERTH) and an academic faculty member
of AIMove (Artificial Intelligence and Movement in
Industries and Creation) Post-Master Programme at
MINES ParisTech University. He holds a diploma
in Electrical and Computer Engineering and a Ph.D.
degree in Applied Informatics. His main research
interests lie in the fields of multi-dimensional data
modelling and analysis, human computer interaction,

virtual reality and serious games. His involvement with these research areas
has led to the co-authoring of more than 100 publications in refereed journals
and international conference proceedings. He has participated in several
European and national research projects and has served as a regular reviewer
for a number of international journals and conferences. He is a member of
IEEE and the Technical Chamber of Greece.

Federico Alvarez (M’07) received the Telecom
Engineer degree (Hons.) in 2003 and Ph.D. de-
gree (cum laude) in 2009, both by “Universidad
Politécnica de Madrid” (UPM) where he is currently
working as assistant professor. From 2003 he is
member of the research group “Visual Telecom-
munications Applications group” (GATV) of UPM.
Dr. Álvarez current interests include multimedia
processing and analytics, networked media and
multi-sensor fusion. He had participated in national
and international standardization groups and he co-

authored 20 papers in refereed journals, 10+ books and book chapters and
40+ papers in international conferences.

Petros Daras is a Research Director at the In-
formation Technologies Institute of the Centre for
Research and Technology Hellas. He received the
Diploma in Electrical and Computer Engineering,
the MSc degree in Medical Informatics and the
Ph.D. degree in Electrical and Computer Engineer-
ing all from the Aristotle University of Thessaloniki,
Greece in 1999, 2002 and 2005, respectively. He is
the head researcher of the Visual Computing Lab
coordinating the research efforts of more than 50
scientists. His research interests include 3D media

processing and compression, multimedia indexing, classification and retrieval,
annotation propagation and relevance feedback, bioinformatics and medical
image processing. He has co-authored more than 200 papers in refereed
journals and international conferences, and has been involved in more than
50 national and international research projects.

The original publication can be found in: https://ieeexplore.ieee.org/document/8463635/

https://ieeexplore.ieee.org/document/8463635/

	Introduction
	Related work
	Proposed Method
	Background
	LDS module
	Transition matrix calculation
	LDS module implementation

	LDS blocks
	Baseline Residual block
	Baseline LDS block
	Pre-activated LDS block
	Bottleneck LDS block
	Bottleneck pre-activated LDS block


	Experimental results
	CIFAR classification
	Baseline LDS results
	Pre-activated LDS results
	Bottleneck LDS results
	Combination and comparison with other ResNet extensions
	Training time

	ImageNet classification
	Object detection

	Conclusion
	References
	Biographies
	Anastasios Dimou
	Dimitrios Ataloglou
	Kosmas Dimitropoulos
	Federico Alvarez
	Petros Daras


