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ABSTRACT
In this paper, we analyze data from Microsoft Kinect v2 camera using Kalman Tobit
and Kalman filters so as to minimize noise. The data concern three-dimensional spatial
coordinates recording movements of a persons’A joints, which are subject to measurement
errors. The noise variances of the process and the measurements are estimated using the
maximum likelihood function. In order to include into the model restrictive conditions
based on anthropometric data (e.g. the distances between various joints) we apply the
Tobit Kalman Filter. Additionally, restrictions for the joints displacements per fame
based on real data can be used in order to get better results. Finally simulations of
skeleton before and after using Kalman filtering are presented.
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1. INTRODUCTION

Human skeleton tracking motion is a scientific field, which is studied by com-
mercial RGB-D sensors last years, such as depth sensors (i.e., sensors using the
depth coordinate as basic coordinate). The depth sensors are very useful in many
applications, such as monitoring of daily activity recognition [1], and health track-
ing [2]. In this paper it is shown that the Microsoft Kinect v2 sensor is able to
achieve human skeleton tracking performance in a low-cost manner for activity
recognition.
However, Kinect sensor generates a low quality human skeleton tracking due to
occlusion, self-occlusion and lack of accuracy in very fast movements. Especially
when the human skeleton’s joints are occluded, they often appear to be shifted in
a no reasonable manner.
The method presented in this paper is based on appropriately smoothing the
joints’ spatial coordinates. In literature, in order to denoising , they have been



used various common stochastic filters, such as Kalman filter (KF) [3] and no
stochastic model, such as Savitzky-Golay filter (SGF) [4] e.t.c.. Although, these
filters do not use any restrictions on the noisy measurements. In this paper our
aim is to develop a stochastic filter which will not allow the joints to move ab-
normally, and without affect the real movements. For this reason, we studied
the joints’ speeds by carrying out various experiments using groundtruth sensors.
Then we applied the Tobit Kalman filter (TKF) [5] by taking into account the
speeds restrictions.
Microsoft [6] proposed various filters for smoothing human skeleton motion data,
but it does not refer how some filter’s parameters should be chosen. In [7] a
method based on the use of multiple Kinect sensors for human skeleton tracking
is proposed. They achieve in determining the reliability of each 3D joint position
by employing a data fusion method based on KF using multiple Kinect sensors.
They take into account the measurement variance of noise for determining the
contribution of an observation to the fused measurement. Additionally, they ex-
plain how to estimate the measurement variance for each one of the measurements.
Finally, they present the average 3D position error of ten activities produced by
their method, by a single Kinect and the average derived by multiple Kinect sen-
sors, respectively. In all but one scenario (daily activities), their method gives
better results than the standard KF.
Other scientists who are dealing with activity recognition via neural networks,
use a simple SGF in order to smooth the data [8]. This method is based on the
previous, as well as the current and the two following observations.
The rest of paper is organized as follows. In Section 2 TKF procedure along with
the related likelihood function is provided. In Section 3 TKF approach for human
skeleton tracking is established. Finally, in Section 4, conclusions are presented.

2. TOBIT KALMAN FILTER

In this section we describe briefly TKF, which provides a classification scheme
for censored models [9]; these classes depend on the type of censoring and in-
clude also the cases of censoring [10], that depends on other variables. In the
applications cases of censoring, the censored measurement model provides a mea-
surement, either in knowing the exact value or in knowing that the value lies into
an interval.
In the general case of scalar measurements, the Tobit model is referred to as the
censored regression model determined by,

y∗k = hxk + vk,

yk =


y∗k, Tl < y∗k < Tu

Tl, y∗k < Tl

Tu, y∗k > Tu,

(1)



where y∗k is the latent variable, yk is the censored measurement, h is an arbitrary
scalar, Tl, Tu are the lower and upper thresholds-limits respectively and vk is a
Gaussian random variable with mean 0 and variance σ2v . By (1) it is obvious that
TKF determines a non-linear process.
In order to face the problem of censored measurements, we propose TKF defined
in [5].

xk+1 = Axk + wk,

y∗
k = Hxk + vk,

with

yk,i =


y∗k,i, Tl,i < y∗k,i < Tu,i

Tl,i y∗k,i < Tu,i

Tu,i, y∗k,i > Tu,i.

i = 1, 2, ...,m (2)

where k stands for the time step and wk and vk are random vector variables fol-
lowing N(0,Qk) and N(0,Rk), respectively, where N(µ,Σ) denotes the normal
distribution with mean µ and covariance matrix Σ. A and H are the transition
and the observation matrices, respectively, while yk = (yk,i)

m
i=1,y

∗
k = (y∗k,i)

m
i=1 are

the censored observations (measurements) and the latent observations, respec-
tively and m designates the dimensionality of the process.
The probability function of the ith component of the measurement given the state
vector is

f(yk,i|xk,i) =
1

ri
φ

(
yk,i − hixk,i

ri

)
u(yk,i − Tl,i)u(Tmax,i − yk,i)

+Φ

(
Tl,i − hixk,i

ri

)
δ(Tl,i − yk,i)

+

(
1− Φ

(
Tmax,i − hixk,i

ri

))
δ(Tmax,i − yk,i), (3)

where φ and Φ are the probability and cumulative distribution function of stan-
dard normal distribution respectively, δ stands for the Kronecker delta function
and u for the Heavyside function.
Next, we denote by Pun,k, Pl,k, Pu,k the probabilities of a measurement to be
uncensored, or censored from below or censored from above, respectively, at time
k. Then by (3) it is derived that

Pun,k = diag


Φ

(
Tu,1−h1x̂

−
k,1

rk,1

)
− Φ

(
Tl,1−h1x̂

−
k,1

rk,1

)
...

Φ

(
Tu,m−hmx̂−

k,m

rk,m

)
− Φ

(
Tl,m−hmx̂−

k,m

rk,m

)
 , (4)



Pl,k = diag


Φ

(
Tl,1−h1x̂

−
k,1

rk,1

)
...

Φ

(
Tl,m−hmx̂−

k,m

rk,m

)
 , (5)

Pu,k = diag


1− Φ

(
Tu,1−h1x̂

−
k,1

rk,1

)
...

1− Φ

(
Tu,m−hmx̂−

k,m

rk,m

)
 . (6)

By taking into account the above matrices, the expected value of the mea-
surement when censored and uncensored measurements are included given the a
priori estimation of the state vector has the form:

E(yk) = Pun,k(Hx̂−
k + R

1
2 lk) + Pl,kTl + Pu,kTu (7)

where Tu = (Tu,i)i=1,..,m,Tl = (Tl,i)i=1,..,m and the parameter lk at time k is the
inverse Mill ratio [11],

lk = P−1
un,k


φ

(
Tu,1−h1x̂

−
k,1

rk,1

)
− φ

(
Tl,1−h1x̂

−
k,1

rk,1

)
...

φ

(
Tu,m−hmx̂−

k,m

rk,m

)
− φ

(
Tl,m−hmx̂−

k,m

rk,m

)
 .

The covariance matrix of the measurement is given by

R∗
k = Rk

(
I + P−1

undiag(ck)− diag(lk)2
)

(8)

where the parameter ck [11] is given by

ck = diag


Tl,1−h1x̂

−
k,1

rk,1
φ

(
Tl,1−h1x̂

−
k,1

rk,1

)
− Tu,1−h1x̂

−
k,1

rk,1
φ

(
Tu,1−h1x̂

−
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...

Tl,m−hmx̂−
k,m

rk,m
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(
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 .

TKF process is defined as [12], [9]:
The Predict Stage:

x̂−
k = Ax̂k−1, (9)

P−
k = APk−1A

T + Qk. (10)

The Update Stage:

R1 = P−
k HTPun,k,



R2 = Pun,kHP−
k HTPun,k + R∗

k,

Kk = R1R
−1
2 , (11)

x̂k = x̂−
k + Kk(yk −E(yk|x̂−

k )), (12)

Pk = (I−KkPun,kH)P−
k . (13)

The likelihood function for the ith component of the censored measurement
yk, is:

Li(y1,i, ..., yn,i) =
∏

yk,i=T i
below

Φ(T lik)
∏

yk,i=T i
above

(1− Φ(Thik))

×
∏

T i
below< yk,i< T i

above

1√
h2iP

−
k,i + r2i

φ

(
yk,i − hix̂−k,i√
h2iP

−
k,i + r2i

)
, (14)

3. IMPLEMENTATIONS AND EXPERIMENTS

In this paper we use the Microsoft Kinect v2 sensor to record 3D point se-
quences of a human skeleton (in motion). In human skeleton motion tracking, the
body is represented by a number of joints (25 in total), corresponding to differ-
ent body parts such as head, neck, shoulders, etc. Each joint is represented by
the vector of its Euclidean 3D space coordinates and our aim is to denoise the
measurements for every joint in order to improve the representation of human
movements. Thus, we denoise each one of the joints’ coordinates separately; the
input is the vector of the joints’ coordinates, y∗

k = [y∗k,1, y
∗
k,2, y

∗
k,3] and the output

is the vector of the denoised states coordinates, xk = [xk,1, xk,2, xk,3]. Thus, we
define the initial observation and the transition matrices to be equal to the iden-
tity matrix.
Next, we have to estimate the covariance matrix for the process noise, Qk at time
step k. Firstly we assume that the covariance matrix of the measurement noise,
Rk, is constant and its entries are of the order 0.01m2. We chose to initialize the
matrix Rk in that way under the assumption that the Kinect sensor exhibits sig-
nificant errors on each axes. We have conducted various experiments by Kinect,
showing that even if an individual is at rest and in front of the Kinect, the RMSE
in the displacement estimation between measurement and groundtruth data is
almost 0.02m while in the case where the human skeleton is occluded the RMSE
is bigger (0.03m - 0.20m), thus a variance of 0.01 m2 seems a good choice,

R = 0.01

1 0 0
0 1 0
0 0 1

 . (15)

In order to correct the noise, we studied many recordings by state of the art,
Vicon; we observed that the velocity of spatial coordinates x and z did not exceed



31 cm per two consecutive frames for every joint, while the coordinate y did not
exceed 18 cm respectively. Thus we took these restrictions into account, in order
to correct the data. So we constructed a TKF with limits Tl and Tu for the
spatial coordinates [x, y, z] as follows,

Tu,k = (x̂k−1 + 0.31, ŷk−1 + 0.18, ẑk−1 + 0.31),

Tl,k = (x̂k−1 − 0.31, ŷk−1 − 0.18, ẑk−1 − 0.31),

where Tu,k and Tl,k are the limits of TKF at time k which depend on the previous
estimation of spatial coordinates. Thus, for the measurement yk = [xk, yk, zk] at
time k we get

yk,i =


y∗k,i, T i

l,k < y∗k,i < T i
u,k

T i
l,k, y∗k,i < T i

l,k

T i
u,k, y∗k,i > T i

u,k.

i = 1, 2, 3

The aforementioned TKF model can appropriately smooth big aberrant move-
ments due to Kinect’s errors. Apparently, if T i

l,k → −∞ and T i
u,k →∞ (i.e., the

range of TKF’s state values becomes too big) TKF becomes the standard KF.
Now, in order to create a general model for de-noising Kinect’s measurements, (in
which we will not estimate the matrix Qk for every time-window, because this
is time consuming) we can assume that Qk is constant. Then, by the likelihood
function (14), the entries of the matrix Q can be derived. Interestingly we noticed
by various joints’ movements, that the entries of Q appeared (were estimated) to
be smaller than those of matrix R, and generally they depend on the accuracy
of the Kinect v2 sensor and the joints’ speed. Concerning slow motions or the
human skeleton at rest, the values are experimentally found to be smaller than
10−4m2 and for faster motions they lie between 10−3m2 and 10−2m2. We have
to notice that in some cases where the entries of Q were found to be quite large
(10−2m2), the human skeleton moved too quickly in an abnormal manner due to
occlusions and self-occlusions. Thus, we assume that the covariance matrix of the
noise process is

Q = 0.001

1 0 0
0 1 0
0 0 1

 , (16)

otherwise, if we assume smaller or bigger values, TKF will over-smooth or it will
not denoise the Kinect’s measurements, respectively. So, the above assumption
seems to provide a good approximation in order to smooth the Kinect’s v2 sensor
measurements.
Beyond the above method (TKF), we use the standard KF, where the covariance
matrix, R, is defined as in (15), and the covariance matrix for the process noise,
Q, can be estimated by the likelihood function give in [13]. The results in human
motion data capturing by Kinect showed that the entries of Q are almost the



same as in TKF, thus we assume that the matrix Q in KF is defined as in (16).
In our first experiment, we evaluate our proposed method with respect to ground
truth data. Thus, we monitor a man throwing a ball with his right hand, and we
record this motion by a Kinect and the Vicon system at the same time. The num-
ber of Kinect’s and Vicon’s frames are 266 and 139, respectively. We note that
Kinect time-stamp is almost 0.033 sec per frame while Vicon time-stamp is con-
stantly 0.032sec. We interpolate Vicon data in order to deal with the time-stamp
problem; after interpolation, the new Vicon data include 133 frames. Therefore,
we temporally synchronize the two sensors to start together. To do so, we initially
calculate the angles of knees and elbows obtained by Kinect and Vicon data and
then, we calculate the RMSE between these angles for different delays. The re-
sults show that the minimum values of RMSE for every angle appeared for delays
of 92-95 frames. The different delays between the angles in some cases are some-
what expected because Kinect records fast movements with delay. KF smooths
the spatial coordinates without affecting the movement (see Fig. 1). TKF perform
exactly the same smoothing in all joints as KF, while SGF does not perform a
satisfactory smoothing in some points where the measurements have a significant
error.
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Figure 1: The right hand’s spatial coordinates by Kinect, SGF, KF and TKF.

In Table 1 we observe the RMSEs for the angles as they arise for delays
t = 92, 93, 94, 95 frames, respectively. In all cases, the RMSEs are big enough
because of the occlusion of some joints during the recording. However, as can be
seen, we get lower RMSEs in all cases via TKF.
In some others experiments, we record various human skeleton motions by a

Kinect v2 sensor. In some of the recordings, the human skeleton seems to ”fall



down” for one or two frames due to occlusions. Thus, we apply SGF, KF and
TKF in order to correct this error. As can be seen in Fig. 2, the head’s spatial
coordinate y (of human skeleton) resulted by TKF, does not follow the error
produced by the Kinect device. In constraint with TKF, SGF and KF follow the
”fall” for 75cm and 50 cm respectively.
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Figure 2: The head’s spatial coordinate y by Kinect, SGF, KF and TKF.

4. CONCLUSION

The aim of this paper is to improve human skeleton tracking, using a Kinect v2
sensor, which generates error in recordings due to occlusion, self-occlusion e.t.c..
Thus, we propose to use TKF for human skeleton motion tracking in real time.
In this approach we defined the limits Tu,k and Tl,k in a reasonable manner for
every time k. For that purpose we considered human skeleton motion data, with
various joints’ movements, which were obtained by means of the groundtruth sen-
sor, Vicon.
The covariance matrix of the noise process Q, using TKF procedure was esti-
mated via maximum likelihood estimation. Between the three filters, i.e., SGF,
the standard KF and TKF, the last one was more accurate performing a better
human skeleton tracking. Furthermore, in some frames when the human skeleton
seemed to ”fall down” due to occlusion, the method of proposed TKF, corrected
better the error in recordings than the standard KF and SGF.
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Angles Kinect SGF KF TKF

Right Elbow 39.31 37.44 35.57 35.02

Left Elbow 31.58 30.65 25.92 25.10

Right Knee 16.70 16.79 15.90 14.75

Left Knee 26.25 25.81 24.80 25.00

Angles Kinect SGF KF TKF

Right Elbow 38.76 36.86 34.94 34.37

Left Elbow 32.18 31.27 26.27 25.34

Right Knee 17.03 17.12 15.74 14.57

Left Knee 26.38 26.01 24.36 24.46

Angles Kinect SGF KF TKF

Right Elbow 38.43 36.63 34.45 33.85

Left Elbow 32.99 32.09 26.27 25.88

Right Knee 17.77 17.79 15.86 14.74

Left Knee 26.67 26.46 24.19 24.16

Angles Kinect SGF KF TKF

Right Elbow 38.39 36.64 34.25 33.66

Left Elbow 33.96 33.06 27.61 25.70

Right Knee 18.78 18.78 16.21 15.19

Left Knee 27.14 27.02 24.27 24.12

Table 1: RMSEs for the angles by Kinect , SGF, KF and TKF for time delay 92, 93,
94 and 95.


