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ABSTRACT Understanding human-object interaction is a fundamental challenge in computer vision and
robotics. Crucial to it is the ability to infer ‘‘object affordances’’ from visual data, namely the types of
interaction supported by an object of interest and the object parts involved. Such inference can be approached
as an ‘‘affordance reasoning’’ task, where object affordances are recognized and localized as image heatmaps,
and as an ‘‘affordance segmentation’’ task, where affordance labels are obtained at a more detailed, image
pixel level. To tackle the two tasks, existing methods typically: (i) treat them independently; (ii) adopt
static image-based models, ignoring the temporal aspect of human-object interaction; and / or (iii) require
additional strong supervision concerning object class and location. In this paper, we focus on both tasks,
while addressing all three aforementioned shortcomings. For this purpose, we propose a deep-learning based
dual encoder-decoder model for joint affordance reasoning and segmentation, which learns from our recently
introduced SOR3D-AFF corpus of RGB-D human-object interaction videos, without relying on object
localization and classification. The basic components of the model comprise: (i) two parallel encoders that
capture spatio-temporal interaction information; (ii) a reasoning decoder that predicts affordance heatmaps,
assisted by an affordance classifier and an attentionmechanism; and (iii) a segmentation decoder that exploits
the predicted heatmap to yield pixel-level affordance segmentation. All modules are jointly trained, while the
system can operate on both static images and videos. The approach is evaluated on four datasets, surpassing
the current state-of-the-art in both affordance reasoning and segmentation.

INDEX TERMS Object affordances, human-object interaction, reasoning, semantic segmentation, deep
learning, encoder-decoder model, attention mechanism, RGB-D video.

I. INTRODUCTION
Despite significant advances in the tasks of object detec-
tion [1]–[7], tracking [8]–[11], segmentation [12]–[16], and
classification [17]–[20], the goal of understanding the util-
ity of perceived objects remains elusive. To accomplish this
objective, a computer vision system should be able to pre-
dict the so-called ‘‘object affordances’’, namely the set of
actions that humans can perform while interacting with an
object [21], and, further, to locate which object parts support
interaction. Our paper aims to advance this challenging topic,
focusing on the problem of pinpointing object affordances
in visual data. Specifically, it addresses this at both a coarse
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information level, in the form of localizing object affordances
as image heatmaps, as well as at a finer, more detailed extent,
seeking the object affordance segmentation at pixel level.

In the literature, object affordances have been tradi-
tionally considered as auxiliary information in computer
vision and robotics applications, focusing on the effect
that applied actions have on object appearance [22]–[25].
More recently though, there has been increasing interest
in affordance localization and segmentation, since these
tasks lead to more detailed representations of affordance
information that can, for example, be exploited in scene
understanding and action recognition. Regarding localiza-
tion, existing approaches [26]–[29] rely mostly on predicting
saliency-based heatmaps in static images, without associat-
ing them with specific affordance classes though. Similarly,
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existing affordance segmentation methods [30]–[34] predict
affordance classes at the pixel level on objects detected in
static images.

However, such image-based approaches to affordance
localization and segmentation base their learning on static
representations that lack temporal information. Hence,
they are limited by the sheer fact that affordances are
spatio-temporal by nature, since they involve interaction. It
is thus not surprising that very recent works on affordance
reasoning (i.e., affordance localization and recognition, com-
bined), have successfully demonstrated the advantages of
learning spatio-temporal features, compared to predicting
salient hotspots using static information alone [35], [36].
These works adopt the so-called ‘‘learning from observa-
tion’’ paradigm, processing human-object interaction videos
to learn the object part that affords specific actions to be
carried out. Interestingly, these methods do not depend on
object details.

Inspired by the above, in this paper we proceed further and
argue that affordance reasoning can be exploited to improve
affordance segmentation by a joint modeling approach within
the aforementioned ‘‘learning from observation’’ paradigm,
aiming to achieve robust affordance understanding. In partic-
ular, we advocate that it is possible to localize and segment
object affordances based on hand-object interaction informa-
tion, without requiring strong object-related supervision (i.e.,
object labels and bounding boxes) or an intermediate step of
object detection. We provide a high-level visualization of our
strategy in Fig. 1.

We develop our approach starting from our recent pre-
liminary work [37], where we proposed an end-to-end
encoder-decoder model for affordance segmentation. As
depicted in Fig. 2(a), thatmodel was based on spatio-temporal
information encoded from human-object interaction, and
it contained a single decoder that relied solely on a
soft-attention mechanism to focus on the interaction location
and guide affordance segmentation. Here, we extend this
early architecture to serve our joint affordance reasoning
and segmentation strategy, by introducing a model with two
decoders, one for each task, that can be trained jointly for
both. To demonstrate the advantages of having a dedicated
decoder for affordance localization, we first investigate the
reasoning task independently via a single decoder, as shown
in Fig. 2(b), and we compare the resulting model to state-of-
the-art affordance reasoning approaches. We then introduce
the second decoder targeting semantic segmentation to form
our proposed model, as depicted in Fig. 2(c), and train it
jointly without any object-related supervision. To operate, our
model encodes at its front-end both appearance and motion
information of human-object interaction through two respec-
tive encoders, each learning from both RGB and depthmap
visual streams.

Thus, our main contribution lies on the exploration
of both affordance reasoning and segmentation tasks
within a joint spatio-temporal approach with no need of
strong object-related supervision, introducing an end-to-end

FIGURE 1. High-level overview of our learning approach to joint object
affordance reasoning (left) and segmentation (right) based on
human-object interaction (top). The latter is used to learn the heatmap of
the interaction spot and the corresponding affordance class, with the
predicted heatmap further utilized to improve pixel-level affordance
segmentation. Notably, our approach does not require strong
object-related supervision (i.e., object class and bounding box) and can
operate on both static images and videos.

convolutional dual encoder-decoder model that encodes
color, depth, and motion information from human-object
interaction data and predicts affordance heatmaps, classes,
and segmentations. To our knowledge, this constitutes the
first such work in the affordance understanding literature.

In order to investigate the suitability of our proposed
approach, we conduct a large number of experiments on our
publicly released SOR3D-AFF corpus,1 which we introduced
recently [37] to support affordance reasoning and segmenta-
tion research with its numerous RGB-D human-object inter-
action videos and corresponding annotations. In addition,
whenever suitable, we consider alternative datasets available
in the literature [30]–demo2vec2018cvpr. As we report in our
experiments, we significantly outperform the state-of-the-art
in both affordance reasoning and segmentation tasks.

The remainder of the paper is organized as follows:
Section II overviews related work on affordance reasoning
and segmentation; Section III details the architecture of the
proposed encoder-decoder model; Section IV presents the
experimental framework and results; and, finally, Section V
summarizes the work.

II. RELATED WORK
Object affordance information has attracted significant inter-
est in the literature, as it can be exploited in a wide spectrum
of computer vision and robotics tasks. Here, related work is
summarized in three categories.

A. AFFORDANCE AS AUXILIARY INFORMATION
It is well-established by cognitive neuroscience that the
human brain leverages object affordance information to
identify objects or to interact with them. This fact has

1Available at http://sor3d.vcl.iti.gr/

89700 VOLUME 9, 2021

http://sor3d.vcl.iti.gr/


S. Thermos et al.: Joint Object Affordance Reasoning and Segmentation in RGB-D Videos

FIGURE 2. Overview of the proposed model and its two variants considered. In all cases, appearance and motion information of human-object
interaction is encoded, producing spatio-temporal embeddings through a convolutional LSTM (cLSTM) module. These are fed to the soft-attention
mechanism (©∗ ) focusing on the human-object interaction spot, to the MLP-based affordance recognition branch, and to three different decoding
schemes, namely: (a) the segmentation-only decoder of our preliminary work [37], predicting pixel-level affordance labels; (b) the reasoning-only
decoder, predicting affordance heatmaps (detailed in Fig. 3); and (c) the proposed two-decoder model, jointly trained for both affordance reasoning and
segmentation (detailed in Fig. 5).

motivated early research on the potential of affordance
information in computer vision [25], [38], [39]. For exam-
ple, affordance information has been exploited through
active embodiment and interaction observation to improve
object recognition [40]–[42], or used to learn semantics and
boost object localization for improved scene understanding
[43], [44]. In action understanding, object affordances have
been utilized for action anticipation [45]–[49], hand grasp
generation [50], [51], and used as context information to
improve action recognition [52], [53].

B. AFFORDANCE REASONING
The affordance reasoning task is realized as the combina-
tion of affordance localization and recognition. Early stud-
ies on the topic focus solely on its localization aspect,
exploring saliency-based methods to predict affordance
heatmaps on static images [26]-salgan. In contrast, more
recent works adopt the ‘‘learning from observation’’ per-
spective by processing human-object interaction videos, and
reason about object affordances by associating each predicted
heatmap with the corresponding affordance class. Specif-
ically, Fang et al. [35] present ‘‘Demo2Vec’’ that learns
spatio-temporal embeddings from product demonstrations
and predicts keypoints on the object affordance part, while
Nagarajan et al. [36] propose a model that infers heatmaps
based on gradient-weighted attention maps for pre-defined
actions.

C. AFFORDANCE SEGMENTATION
Object affordance segmentation, i.e., the pixel-wise identifi-
cation of the object part that enables a specific interaction,
is a challenging task that has been mostly treated in the
literature as a static semantic segmentation problem, in most
cases in a strongly supervised fashion and usually coupled
with object detection. For example, Myers et al. [30] used
hierarchical matching pursuit, as well as normal and curva-
ture features derived from RGB-D data, to learn pixel-wise

labels of affordances for common household objects, while
Nguyen et al. [31] proposed an encoder-decoder architec-
ture to predict pixel-wise affordances based on depthmaps.
Similarly, Do et al. [32] expanded the architecture of [31] by
adding a region proposal network [54] to predict the bounding
box of the target object and also investigated the joint learn-
ing of detecting and segmenting the object affordance part.
Further, Sawatzky et al. [34] proposed a weakly-supervised
setting using convolutional neural networks (CNNs) and
keypoints annotation to predict reasonable but not precise
pixel-level affordances, which they subsequently refined by
the GrabCut algorithm [55]. Finally, deviating from the
above, in our recent preliminary work [37] we proposed a
spatio-temporal model with a single decoder to learn affor-
dance segmentations from human-object interaction videos.
Its architecture constitutes the basis of this paper, and it is
suitably extended to jointly address object affordance reason-
ing and segmentation, as discussed in the Introduction and
detailed below.

III. MODEL ARCHITECTURE AND LEARNING
The architecture of the proposed encoder-decoder model
for joint object affordance reasoning and segmentation is
depicted in Fig. 2(c) and is inspired by the so-called U-Net
model [56]. More specifically, it consists of two encoders
(one capturing appearance and the other motion information),
a bottleneck with a residual block and a convolutional long
short-term memory (cLSTM) module [57], the soft-attention
mechanism of our earlier work [37], a multi-layer per-
ceptron (MLP) for affordance class recognition, and two
decoders (one for affordance hotspot localization and one
for its segmentation at the pixel level). The architecture
includes skip connections between the layers of the appear-
ance encoder and the two decoders, as such are known to
help recover the full spatial resolution and improve gradient
flow [56]-shelhamer, he2016cvpr. In the following, prior to
the description of all model components, we present the
supported input representations.
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FIGURE 3. Detailed architecture of the affordance reasoning model of Fig. 2(b). From left to right: (i) RGB-D and 3D flow input
streams pass through respective convolutional encoders, and the resulting encoded features are fused; (ii) the latent space
consists of one residual block and a cLSTM module, followed by a soft-attention mechanism (©∗ ) that is further detailed in Fig. 4;
(iii) the convolutional decoder predicts the affordance heatmap; and (iv) the fully-connected network (MLP) predicts the
affordance class following a softmax operator (�). Skip connections between the appearance encoder and the reasoning
decoder are also used. In the diagram, single numbers below or above layers denote the number of channels used, whereas
H ×W numbers indicate spatial resolution.

A. INPUT REPRESENTATIONS
Localizing and segmenting object parts based on human-
object interaction can benefit from both appearance and
motion information. Thus, in our approach we use color and
depth information to accurately represent appearance, while
for motion we employ 3D optical flow that can efficiently
encode the temporal dynamics of hand movement [60].
The resulting representations are then fed to corresponding
encoders, as described in Section III-B.
In more detail, we choose to combine RGB and depth

information, by first mapping each RGB frame to the corre-
sponding depthmap resolution (employing the RGB-D align-
ment process described in [42]) and subsequently appending
the resulting color frame to the depthmap along the chan-
nel dimension. This yields a 4 × H × W input, where
H = W = 300 represent the height and width of the
input image and depthmap after center-cropping (see also
Section IV).

Regarding 3D optical flow, we utilize the algorithm of [61]
that computes the 3D motion vectors between consecutive
RGB frames and their corresponding aligned depth images.
We then colorize these vectors by normalizing their val-
ues along each axis to the [0 , 255] range, thus transform-
ing them to a three-channel image of size 3 × H × W .
Such colorization enables us to exploit transfer learning by
using deep-learningmodels that are pre-trained on large-scale
image datasets.

Examples of these input representations can be found in
Section IV-A, where the datasets of our experiments are
described. Note also that in case of static images, the motion
input representation is set to all zeros. Further, if depth infor-
mation is unavailable, RGB-only appearance information and
2D optical flow are used instead. Such modifications are nec-
essary to allow experiments on traditional image and video
databases, as described in Section IV-B.

B. APPEARANCE AND MOTION FEATURE ENCODERS
In order to exploit the appearance and motion features of the
human-object interaction, we encode the extracted RGB-D
and the 3D flow information using two encoders, as depicted
in Fig. 3 where the affordance reasoning model variant of
Fig. 2(b) is detailed. Both encoders share the typical structure
of a VGG CNN [62], i.e., 11 convolutional (CONV) layers
each followed by a rectified linear unit (ReLU) activation
function. Threemax pooling (POOL) layers with 2× 2 kernel
size and stride 2 are used to downsample the RGB-D and 3D
flow input representations, while the downsampled feature
maps are concatenated at the model bottleneck.

In particular,2 let Xd×h×w
RGBD and Xd×h×w

3DOF denote the output
features of the RGB-D encoder and the 3D optical flow one,
respectively, with d = 512, h = w = 37 representing
the number of channels, height, and width of both features.
Then, the two convolutional features are concatenated along
the channel dimension and convolved with d kernels of size
1× 1, producing the activation mapXd×h×w

CAT (see also Fig. 3).

C. BOTTLENECK AND AFFORDANCE RECOGNITION
The bottleneck of the model, also visible in Fig. 3, consists
of a residual block and two cLSTM layers, aiming to capture
temporal dependencies of the human-object interaction. The
residual block follows the ReLU-CONV-ReLU-CONV struc-
ture, adopting the pre-activationmethod and the identitymap-
ping proposed in [63] for performance improvement. Both
the residual block and cLSTM use CONV layers with 3 × 3
kernel size and stride equal to 1. The activation maps after the
residual block and the last cLSTM layer, respectively denoted
by X̃d×h×w

and X
d×h×w

, have the same dimensionality.

2In our notation, we use bold-italic capitals for vectors and matrices, with
optional superscripts denoting their dimensionality, and plain italic capitals
for their elements, with subscripts denoting their position.
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The cLSTM layers are followed by a soft-attention mecha-
nism that is detailed in Section III-D.

Besides the attention module, the cLSTM output is also
processed by an average pooling and three 512-dimensional
MLP layers, respectively. The MLP is followed by a softmax
classifier for affordance recognition. We use this to further
regularize the model parameters during training, as well as to
associate the predicted affordance label to the corresponding
affordance heatmap of the reasoning decoder (detailed in
Section III-E). Note that we choose to place the affordance
recognition branch after the cLSTM module, inspired by the
2D/3D action recognition literature, where both appearance
and motion features are encoded in the context of various
CNN-LSTM model architectures [64], [65].

D. SOFT-ATTENTION MECHANISM
Depending on object detection before predicting its affor-
dance requires extra supervision of the object class and
bounding box, while also adding significant complexity to the
model architecture. Since the affordance part of the object is
‘‘exposed’’ during the interaction with the human, we instead
chose to utilize the soft-attention mechanism of [37], which
forces the model to focus on that specific object part based on
both spatial and temporal information [66].

The aforementioned mechanism is object-agnostic, and its
structure is summarized in three steps, as depicted in Fig. 4:
First, the X̃ and X activation maps are concatenated at the
channel dimension, and the resulting feature is convolved
using a kernel of size 1 × 1. Then, the softmax function is
employed to normalize the activation values to the [0 , 1]
range, forming the ‘‘excitation’’ (attention) mask M1×h×w.
Finally, the mask is multiplied with each channel of X in an
element-wise manner. The result of this mechanism is upsam-
pled by nearest-neighbor interpolation and is re-applied to the
activation maps of the reasoning decoder after each upsam-
pling layer, as also shown in Figs. 3 and 5.

FIGURE 4. Details of the employed spatio-temporal soft-attention
mechanism: The spatial feature of the last residual block of the network
bottleneck is first concatenated with the cLSTM output. The result is
processed by a CONV layer with kernel size 1× 1 and a softmax operator
(�) to yield the attention mask. The attention is applied to the latent
pipeline by multiplying the mask with the spatio-temporal feature in an
element-wise manner (�).

E. REASONING AND SEGMENTATION DECODERS
We use separate decoders for the tasks of affordance reason-
ing and segmentation. These have similar structure, however

the segmentation decoder is deeper, since more detailed spa-
tial information is required for semantic segmentation at the
pixel level, as compared to the coarser heatmap prediction.

In more detail, the reasoning decoder is a combination of 6
CONV, 6 ReLU, and 3 upsampling layers, and predicts an
H × W heatmap, as also depicted in Fig. 3 (or in the middle
part of Fig. 5). More specifically, after each upsampling layer
a CONV layer follows, and its output feature is concatenated
with the corresponding one from the appearance and motion
encoders through skip connections. A CONV layer with 1×1
kernel size follows, forcing intra-channel correlation learn-
ing. Note that each channel of the produced activation map
is multiplied with the attention mask M in an element-wise
manner, as described in Section III-D. The last CONV layer
results in a 1 × H × W feature, where a softmax function is
applied over all its values to yield the final heatmap DH×W

that can be viewed as a probability mass function. Note
that the ReLU activation function is employed after each
CONV layer, and that nearest-neighbor interpolation is used
for upsampling.

FIGURE 5. Details of the decoding part of the proposed model. The MLP
and the two decoders receive the spatio-temporal cLSTM feature as input.
The soft-attention mechanism (©∗ ) guides the reasoning decoder at
different levels of granularity, while the predicted interaction hotspot
operates as an additional attention mechanism, masking the
segmentation decoder activations to improve the pixel-wise prediction of
nine affordance classes.

As mentioned, the segmentation decoder follows a similar
architecture with the reasoning one, but employs a larger
number of CONV and ReLU layers (14 each) in order to bet-
ter preserve spatial information details. The main difference
between the two decoders is that, instead of using the output
of the soft-attention mechanism to mask the activations after
each upsampling module, the segmentation decoder exploits
the predicted affordance heatmap D. For this purpose, D is
multiplied in an element-wise manner with each channel of
the activation map after each upsampling layer. Note that the
heatmap is downsampled to two different spatial resolutions,
namely 75 × 75 and 150 × 150, in order to match the
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height and width of the activation map after each upsampling
layer. The segmentation decoder finally produces a 3D fea-
ture UC×H×W using a softmax function, or equivalently a
total of C predicted 2D affordance maps, where C denotes
the number of affordance classes (nine, in this paper). Its
architecture is also depicted in Fig. 5 (upper part).

F. JOINT-TASK LEARNING
We argue that the affordance reasoning and segmentation
tasks are complementary to each other as: (i) their predictions
are based on the same spatio-temporal embedding that is
designed to focus on the human-object interaction hotspot;
and (ii) the segmentation task can benefit from the localiza-
tion of this hotspot, as the affordance heatmap and segmen-
tation mask should overlap.

To take advantage of this complementarity, we train our
model jointly for the two tasks, by minimizing the following
loss function:

Ltotal = λ1Lseg + λ2Lheat + λ3Laff, (1)

where λ1, λ2, λ3 ∈ [0 , 1] are hyper-parameters that add
to 1. In (1), we compute Lheat as the Kullback-Leibler diver-
gence (KLD) between the predicted D̂ and the ground-truth
D heatmaps (probability mass functions) as follows:

Lheat =

H∑
i=1

W∑
j=1

D̂i,j log
D̂i,j
Di,j

, (2)

with label smoothing of D to avoid zeros. Further, we define
Lseg as the per-pixel cross-entropy of the predicted and
ground-truth affordance labels (normalized over the total
number of pixels), given by:

Lseg = −
1
HW

C∑
c= 1

H∑
i= 1

W∑
j= 1

Uc,i,j log(Ûc,i,j), (3)

where Û ,U are the predicted and the ground-truth affordance
maps, respectively. Finally, we define L aff as:

L aff = −

C∑
c= 1

Ac log(̂Ac), (4)

where Â, A are the C-dimensional vectors of the predicted
and ground-truth affordance labels, respectively.

We provide additional training setup details in
Sections IV-B and IV-C. Further, in order to enrich the
comparison of our model with an alternative approach in
the literature that depends on strong object supervision, we
also develop a suitable model variant incorporating additional
terms to the training loss of (1), as we discuss in Section IV-C.

IV. EXPERIMENTAL FRAMEWORK AND RESULTS
We next proceed with evaluating our proposed approach.
For this purpose, we first introduce our publicly available
SOR3D-AFF corpus and overview three additional datasets,
all used in our experiments. We then provide implementation

details of our models, review the evaluation metrics used, and
report a large number of experiments. In these, we compare
our approach to alternative methods for the affordance rea-
soning and segmentation tasks, report both quantitative and
qualitative results, and conduct suitable ablation studies.

A. DATASETS
To address the challenging tasks of affordance reasoning
and segmentation based on spatio-temporal human-object
interaction information, we have created the ‘‘Sensorimo-
tor Object Recognition 3D AFFordance’’ dataset (SOR3D-
AFF). This constitutes a subset of the SOR3D database that
was first introduced in [24] solely for sensorimotor object
recognition. The database has been subsequently augmented
with suitable affordance annotations and also used in our
recent preliminary work [37]. It is the first dataset to con-
tain human-object interaction videos coupled with pixel-level
affordance annotations, while also enabling the investigation
of the depthmap added value to affordance reasoning and
segmentation.

Besides SOR3D-AFF, we also employ the OPRA video
database [35] to evaluate our reasoning model alone, since
it does not have pixel-level affordance annotations to allow
segmentation evaluation. Note that for both sets, we predict
affordance heatmaps and/or segmentations on the so-called
‘‘target’’ frame of the given video sequence (as defined in
their descriptions below). In addition, we use the UMD [30]
and IIT-AFF [33] databases to qualitatively evaluate our seg-
mentation model on objects unseen during training. The latter
two sets contain static images only, coupled with pixel-level
segmentation annotations. We provide an overview of all four
databases in Table 1 and more details next.

TABLE 1. Overview of the video and static image datasets used in our
experiments for affordance reasoning (R) and / or segmentation (S)
evaluation with reported quantitative (N), qualitative (L), and / or
ablation study (A) results.

1) THE SOR3D-AFF VIDEO CORPUS
This dataset consists of 1201 RGB-D human-object inter-
action videos from the SOR3D database [24], captured at
1920×1080 and 512×424-pixel resolution for the RGB and
depth streams, respectively. The data are split into 962 videos
for training and 239 videos for testing. SOR3D-AFF sup-
ports nine affordance classes, namely ‘‘grasp’’, ‘‘cut’’, ‘‘lift’’,
‘‘push’’, ‘‘rotate’’, ‘‘hammer’’, ‘‘squeeze’’, ‘‘paint’’, and
‘‘type’’, of ten household object types, namely ‘‘ball’’,
‘‘book’’, ‘‘brush’’, ‘‘can’’, ‘‘cup’’, ‘‘hammer’’, ‘‘knife’’,
‘‘pitcher’’, ‘‘smartphone’’, and ‘‘sponge’’.
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FIGURE 6. SOR3D-AFF data, annotation, and pre-processing examples. Four interaction sequences are considered (top-to-bottom rows): ‘‘hammer with
hammer’’, ‘‘grasp cup’’, ‘‘lift brush’’, and ‘‘push book’’. Depicted are (left-to-right columns): (a) a sample sequence frame; (b) the last (‘‘target’’) sequence
frame; (c) its affordance segmentation annotation; (d) its affordance heatmap annotation (cropped for clarity); (e) the sample frame after RGB-D
alignment, with the color image mapped to the depthmap 512× 424-pixel resolution; and (f) its colorized 3D optical flow, center-cropped to 300× 300
pixels. The resolution in (a)-(c) is 1920× 1080 pixels.

In creating this dataset, we chose to omit some object
categories from the original SOR3D set and their correspond-
ing affordances, as their annotation turned out problematic
(e.g., typically, object ‘‘pen’’ was mostly occluded during
interaction and had very noisy depthmap, while object ‘‘box’’
had a removable cover, thus its shape ended up different at the
interaction conclusion). Further, we only considered SOR3D
videos with the interaction spot visible in all frames.

The developed dataset is endowed with multiple anno-
tations, but only at the last frame of each video sequence
(‘‘target’’ frame), namely: (i) pixel-level affordance labels;
(ii) the affordance heatmap, based on Gaussian blurring of
10-15 marked pixels that indicate the human-object interac-
tion hotspot; (iii) the affordance label; (iv) the object bound-
ing box; and (v) the object label. Indicative SOR3D-AFF
examples are depicted in Fig. 6, including some of the afore-
mentioned annotations, as well as the input representations
detailed in Section III-A.

2) THE OPRA VIDEO CORPUS
This dataset consists of 20,774 RGB video clips at various
resolutions, split into 16,976 clips for training and 3,798 clips
for testing. Each video contains the demonstration of an appli-
ance feature that involves human-object interaction (e.g.,
‘‘scoop food from the pan’’), and it is paired with a static
image that depicts the corresponding object (e.g., ‘‘pan’’)
without any background or occlusion (‘‘target’’ image). Each
such image is annotated with an affordance heatmap, which
is the result of Gaussian blurring applied on ten marked

pixels that indicate the human-object interaction spot. In total,
OPRA supports seven affordance classes, namely ‘‘hold’’,
‘‘touch’’, ‘‘rotate’’, ‘‘push’’, ‘‘pull’’, ‘‘pick up’’, and ‘‘put
down’’.

3) THE UMD IMAGE CORPUS
This dataset contains color images and aligned depthmaps
(both at 640×480-pixel resolution) of 105 kitchen, workshop,
and garden tools that belong to 17 object categories and
are captured at various view-points. These static images are
accompanied by pixel-level affordance labels, correspond-
ing to seven affordance classes, namely ‘‘grasp’’, ‘‘cut’’,
‘‘scoop’’, ‘‘contain’’, ‘‘pound’’, ‘‘support’’, and ‘‘wrap-
grasp’’.

4) THE IIT-AFF IMAGE CORPUS
This dataset contains images from ImageNet [67] and addi-
tional ones at various resolutions. All images depict cluttered
scenes that include multiple objects, and they are annotated
with pixel-level affordance labels and object bounding boxes.
The IIT-AFF dataset supports nine affordance classes, namely
‘‘contain’’, ‘‘cut’’, ‘‘display’’, ‘‘engine’’, ‘‘grasp’’, ‘‘hit’’,
‘‘pound’’, ‘‘support’’, and ‘‘w-grasp’’.

B. AFFORDANCE REASONING EVALUATION
We first evaluate the affordance reasoning branch of our pro-
posed architecture, i.e., themodel depicted in Figs. 2(b) and 3.
Specifically, we provide implementation details of the model
(including a variation of it), alternative algorithms to compare
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it against, the evaluation metrics used, our quantitative and
qualitative results, as well as an ablation study to justify
its chosen architecture. This evaluation is conducted on the
SOR3D-AFF and OPRA video datasets, since the UMD and
IIT-AFF sets lack heatmap annotations.

1) IMPLEMENTATION DETAILS AND A PROPOSED MODEL
VARIANT
We temporally sub-sample the videos of SOR3D-AFF and
OPRA to 10 frames per second (fps) and center-crop all
frames to 300 × 300 pixels. We pre-train the two encoders
of our model on separate datasets. Specifically, we train
the RGB-D encoder followed by the cLSTM for 50 epochs
on the UTKinect action recognition dataset [68], while for
the colorized 3D flow encoder we utilize the weights of a
VGG16model pre-trained on ImageNet [67]. For the decoder
and the MLP layer weights initialization, we employ the
Xavier method [69]. We fine-tune the model in an end-to-end
fashion for 80 epochs, using batch size equal to 6, Adam opti-
mization [70], and learning rate set to 2 × 10−5. Due to the
small batch size, we choose to use group normalization [71]
between each CONV and ReLU layer. Further, in (1), we set
λ1 = 0, since there is no segmentation here. We set the
remaining loss-function hyper-parameters to λ2 = 0.3 and
λ3 = 0.7 for the first 50 epochs, since recognition of the
affordance class is a critical step towards the prediction of
the affordance heatmap (and thus should initially guide the
total loss), while for the last 30 epochs we set both weights
to 0.5. We implement the model3 in PyTorch [72] and run all
computations on two Nvidia Titan X GPUs.

To be fair in our comparisons to alternative literature
models that employ color information alone (e.g., without
the depth stream), we consider a color-only variant of our
proposed model, as already indicated in Section III-A. This
variant uses 2D optical flow instead of 3D in the motion
encoder. In fact, we compute the 2D displacement vector
fields between sequential frames following the optical flow
stacking approach of [73]. We refer to this model as ‘‘RGB-
only’’ to easily distinguish it from our RGB-D system.

2) ALTERNATIVE MODELS FROM THE LITERATURE
We evaluate our reasoning model against the considered as
the state-of-the-art in the affordance reasoning literature:
• Demo2Vec [35], a model designed to predict affordance
heatmaps on target object images based on demonstra-
tion videos and trained with heatmap annotations. Here,
we re-implement it to support the input resolutions of
both SOR3D-AFF and OPRA data. Compared to our
proposed model, the Demo2Vec architecture differs in
the following aspects: it uses deeper encoders; instead of
one cLSTM, it contains two (one for each stream), with
the resulting spatio-temporal representations fused by an
attention mechanism; its affordance classifier involves

3Code is made publicly available at https://github.com/
spthermo/STCAE

an LSTM; its decoder is shallow, based on transpose
convolutions and tiled features from the encoder pooling
layers (as in [74]); and, finally, it lacks encoder-decoder
residual connections.

In addition, we compare our model against the following:
• Grounded human-object interactions (GHOI) [36], a
model designed to predict affordance heatmaps based on
human-object interaction videos. GHOI is trained in a
weakly supervised manner, employing affordance class
annotations alone. Here, we use the original implemen-
tation of [36].

• Img2Heat, adopting the term and goal from [36] and
defining it as a static Demo2Vec variant. The model
follows the Demo2Vec architecture, however it is trained
without the video context, i.e., using only static images.

• Saliency generative adversarial network (SalGAN) [28],
which estimates the most salient regions in an image by
predicting heatmaps. The model is trained in a super-
vised manner using saliency annotations. Here, we con-
sider its original implementation [28] and pre-train it on
the SALICON dataset [75].

Among these models, we consider SalGAN as weakly super-
vised for affordance class prediction, since it is trained using
saliency annotations that do not correspond to specific affor-
dance classes. Similarly, GHOI is weakly supervised for
affordance heatmap prediction, as it is trained using affor-
dance class labels only. In contrast, Demo2Vec, Img2Heat,
and our proposed model are strongly supervised, as they are
all trained employing affordance heatmap annotations. Note
also that SalGAN and Img2Heat can only operate on static
images, in contrast to GHOI, Demo2Vec, and our model.

3) EVALUATION METRICS
To quantitatively evaluate our reasoning model against the
aforementioned alternative models, we consider three met-
rics: (i) the KLD, described in (2), with lower values signify-
ing better results; (ii) the similarity or histogram intersection
(SIM), with higher values being better, and (iii) a variant
of the area under the receiver operating characteristic curve,
termed AUC-J, with higher values indicating better results.

SIM is a popular metric in the saliency literature [76], mea-
suring the similarity between two heatmaps, D̂ (predicted)
and D (ground truth), that assume values within [0 , 1] and
sum to 1 over the H × W -pixel image. It is defined as:

SIM(D̂,D) =
H∑
i= 1

W∑
j= 1

min(D̂i,j ,Di,j). (5)

Since both KLD and SIM are distribution-based metrics, to
diversify our evaluation we also consider the location-based
AUC-J metric [77], [78]. AUC-J views heatmap prediction as
a binary classification problem (object affordance vs. back-
ground regions) and is computed based on the plot of the true
positive vs. false positive classification rates, when compar-
ing appropriately binarized versions of D̂ and D.
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TABLE 2. Evaluation of our proposed affordance reasoning model against alternatives on the SOR3D-AFF and OPRA test sets, in terms of the KLD, SIM,
and AUC-J metrics. Arrow ↑ indicates that higher values of the corresponding metric are better, while arrow ↓ implies the opposite.

4) QUANTITATIVE EVALUATION RESULTS
In Table 2, we report the performance of the aforemen-
tioned models on the SOR3D-AFF and OPRA datasets (on
their test-set ‘‘target’’ frames), in terms of the KLD, SIM,
and AUC-J metrics. To be fair in the comparisons and to
accommodate OPRA that lacks depth data, we consider the
RGB-only variant of our RGB-D reasoning model, which
ignores depth as discussed earlier. In addition, to benchmark
the depth stream contribution, we also evaluate our RGB-D
model on SOR3D-AFF, where this stream is available.

Based on Table 2, we deduce that video-based models
(lower part of table) are superior to ones operating on static
images (upper part). Further, we readily observe that our
proposed reasoning approach achieves the best results on
both datasets and for all three metrics. In more detail, on the
SOR3D-AFF database, our RGB-D model yields the best
KLD, SIM, and AUC-J (1.44, 0.41, and 0.76, respectively),
surpassing its RGB-only variant and thus demonstrating the
depth value to affordance reasoning. Notably, our RGB-only
model also prevails over the remaining alternatives, slightly
outperforming Demo2Vec. We believe this is due to our rea-
soning decoder design, namely the upsampling CONV layers
used instead of just transposed ones. This way, our decoder
is able to preserve more fine-grained spatial information up
to the heatmap prediction [79]. We observe similar trends
on the OPRA dataset, where again our RGB-only model
outperforms Demo2Vec slightly and all other alternatives by
larger margins. It should be noted that the above compar-
isons (i.e., of our RGB-D model vs. its RGB-only variant,
as well as of our models against their alternatives) hold with
statistical significance for all metrics, based on the Wilcoxon
non-parametric test at p < 0.05 [80].
Regarding computational resources, our model is again

superior to its closest performing competitor (Demo2Vec).
Indeed, it is slightly faster at inference, processing one
video frame in 24ms against 27ms of Demo2Vec. In addi-
tion, it is leaner, having 10.7M parameters vs. 15.8M
of the latter. These differences can be attributed to our
lighter encoder architecture and the additional cLSTM of
Demo2Vec, although are somewhatmitigated by its shallower
decoder. Further, the pre-activation and identity mapping in
the residual block of our model bottleneck contribute to its
faster runtime [63].

FIGURE 7. Affordance heatmap prediction on ‘‘target’’ images of the
SOR3D-AFF (upper three rows) and OPRA (lower three rows) datasets,
using different models per column (model names are shown at the top).
Each heatmap is associated with the corresponding affordance class
predicted by each model (left). The heatmaps are overlaid on the target
images for better visualization, while the object classes are also shown
for clarity (left).

5) QUALITATIVE EVALUATION RESULTS
In Fig. 7, we depict some indicative affordance heatmap
predictions on target frames of the SOR3D-AFF and OPRA
test sets. From the visualized examples, we observe that our
model is able to predict accurate heatmaps, associated with
the affordance label of the interaction (e.g., the predicted
heatmap highlights the pan handle in the target image of
the ‘‘hold pan’’ OPRA video sample). In contrast, the static
approaches Img2Heat and SalGAN, both trained on images,
highlight the most salient regions of the objects regardless
of the affordance class (e.g., the predicted heatmap of the
SOR3D-AFF ‘‘rotate cup’’ video sample highlights both
the handle and the top area of the cup). Finally, by observing
the performance of the GHOI model, which is able to effec-
tively predict heatmaps associated with specific affordances
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despite being trained without heatmap ground truth, we con-
clude that temporal information of human-object interac-
tion is more valuable to affordance reasoning than strong
supervision.

6) ABLATION STUDY
To demonstrate the contribution of each individual compo-
nent of the proposed affordance reasoning architecture, we
conduct an ablation study considering three variations for
each of our RGB-only and RGB-D models. Specifically,
we evaluate: (i) the single appearance-only encoder model;
(ii) the single appearance-only encoder with the soft-attention
mechanism; and (iii) the two-encoder model (both appear-
ance and motion) with the soft-attention mechanism present.

In Table 3, we report performance of the six resulting vari-
ants on the SOR3D-AFF test set in terms of the KLD, SIM,
andAUC-Jmetrics. Evidently, RGB-Dmodels are superior to
their RGB counterparts in all three cases examined. Integra-
tion of the soft-attention mechanism to the appearance-only
encoder improves results, and incorporation of optical flow
(2D or 3D) through the motion encoder further boosts perfor-
mance of both RGB-only and RGB-D models.

TABLE 3. Ablation study on our affordance reasoning model architecture.
Various model variants (with or without depth information, soft-attention
mechanism (‘‘α’’), and optical flow) are evaluated for affordance heatmap
prediction in terms of KLD, SIM, and AUC-J on the SOR3D-AFF test set.

In addition to heatmap prediction, the reasoning task
includes affordance class inference, which is achieved by the
MLP classifier in our proposed architecture (see Fig. 3). To
investigate its performance, we conduct an ablation study
similar in spirit to the one just described, varying the encoding
scheme (note that the attention mechanism does not relate to
theMLP). Specifically, for each of our RGB-only andRGB-D
systems, we consider: (i) the single appearance-only encoder;
and (ii) the two-encoder model.

In Table 4, we report performance of the four resulting
systems on the SOR3D-AFF test set in terms of classifica-
tion accuracy for each of the nine affordance classes and
overall. As expected, the RGB-D models turn out superior
to their RGB counterparts, showcasing the contribution of
the depth stream, while the two-encoder models outperform
the corresponding single-encoder ones, demonstrating the
importance of temporal information. Interestingly, the above
remarks hold per affordance class as well. Finally, among all
classes, the ‘‘grasp’’ affordance reaches the highest accuracy,
followed by the ‘‘hammer’’ one, while the more complex

affordance ‘‘squeeze’’ achieves the lowest accuracy. These
observations hold for all model variations considered.

C. AFFORDANCE SEGMENTATION EVALUATION
Wefinally evaluate the affordance segmentation performance
of our proposed architecture, paralleling in our presentation
the structure of Section IV-B.We report results on the datasets
of Section IV-A with available segmentation ground truth,
namely on SOR3D-AFF, UMD, and IIT-AFF.

1) IMPLEMENTATION DETAILS AND A PROPOSED MODEL
VARIANT
Similarly to the reasoning setup, all data from the aforemen-
tioned corpora are resized to a 300 × 300-pixel resolution,
while each video from SOR3D-AFF is decimated to 10 fps.
Focusing on the joint model, we pre-train both encoders as
reported in the reasoning setup and fine-tune the model for
200 epochs. We set the batch size equal to 4 and apply group
normalization to the activations after each CONV layer, while
we use a learning of 2 × 10−5. Following (1), we set λ1 =
0.3, λ2 = 0.1, λ3 = 0.6, and we optimize the model by the
Adam algorithm [70].

In addition, since the SOR3D-AFF database also provides
labels of object bounding boxes and object classes, we imple-
ment a model variant with ‘‘extra supervision’’ to exploit
such annotations, by introducing two extra terms to train-
ing loss (1). This allows us additional comparisons with an
alternative affordance segmentation model in the literature,
which is based on strong object supervision and is discussed
below. For this purpose, we employ the L2-norm to quantify
the object bounding-box error, defined as:

L bbox = ‖ R̂− R ‖2, (6)

where R̂ and R are 4-dimensional vectors containing respec-
tively the predicted and ground-truth object bounding-box
information (top left corner coordinates, width, and height).
Further, we modify (4) to measure the object recognition loss
that we denote as L obj (the vectors of (4) now correspond
to the predicted and ground-truth object classes, with the
number of classes being C = 10). The total loss for joint
model training then becomes:

L(upd)
total = λ 1 L seg + λ 2 L heat + λ 3 L aff

+λ 4 L bbox + λ 5 L obj, (7)

where we set λ1 = 0.2, λ2 = λ4 = 0.1, and λ3 =
λ5 = 0.3. We also modify the model architecture suitably,
by introducing a region proposal network (RPN) [54] and a
region-of-interest (RoI) align layer [2] at the end of the model
bottleneck. These are followed by a regressor and a classifier
MLP, positioned parallel to the two decoders, to predict the
object bounding-box coordinates and class, respectively.

2) ALTERNATIVE MODEL FROM THE LITERATURE
We evaluate our model against the state-of-the-art in the
affordance segmentation literature:
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TABLE 4. Ablation study on our reasoning model architecture concerning the MLP affordance classifier performance on the SOR3D-AFF test set. Four
model variations are evaluated (with or without depth information and optical flow), with classification accuracy (%) reported per affordance class and
overall.

• AffordanceNet [32], a convolutional encoder-decoder
that operates on static images and relies on strong object
supervision. The model comprises a single appear-
ance encoder, a convolutional bottleneck, and a sin-
gle decoder dedicated to affordance segmentation. Such
segmentation is restricted within the bounding box of
the detected object, thus, following the bottleneck, the
model also contains an RPN module, a RoI Align layer,
and MLPs for object classification and bounding-box
prediction. Here, we re-implement AffordanceNet to
allow 300 × 300-pixel input, training it for 50 epochs
with batch size 8 and learning rate equal to 2× 10−5.

Note that we do not consider other alternatives in our compar-
isons, since AffordanceNet is the only model in the literature
designed explicitly for affordance segmentation, being the
most recent evolution of earlier versions by its authors that
are now considered obsolete.

3) EVALUATION METRICS
We use two metrics to evaluate model performance for affor-
dance segmentation. The first is the intersection-over-union
(IoU), originally proposed in [81]. Adapted to the problem
of interest, IoU quantifies the pixel-level overlap between the
predicted affordance segmentation4 Û and the corresponding
ground truth U , and it is defined as:

IoU(Û,U) =
|Û � U|

|Û| + |U| − |Û � U|
, (8)

where� denotes element-wise matrix multiplication and | • |
is the number of ones in its matrix argument (equivalently
here, the sum of the matrix elements).

The second metric used is the F-score and its weighted
version, since some affordances are associated with more
objects than others in our data. Theweighted F-score has been
proposed in [82] and is defined as:

Fw =
2 Pw Rw
Pw + Rw

, (9)

where Pw and Rw are the weighted versions of the standard
precision and recall metrics, respectively. In particular, for our
experiments on SOR3D-AFF, we set the weights of the most
dominant affordance classes ‘‘grasp’’ and ‘‘lift’’ to 0.2, that
of next dominant class ‘‘push’’ to 0.1, and for the remaining

4Compared to its use in (3), Û is binarized following the softmax.

six affordances we set their weights to 0.0833, so that they all
add to 1.

4) QUANTITATIVE EVALUATION RESULTS
In Table 5, we report the affordance segmentation evaluation
of our proposed joint model on the SOR3D-AFF test set,
when applied on human-object interaction videos, or just on
the target (last) frame of the dataset sequences. In the first
case, since there exist no alternative models in the literature
for inferring pixel-level affordance labels from videos, we
only provide results of our model. In the static image infer-
ence scenario though, we also evaluate AffordanceNet.

From the table, we easily deduce that video-based affor-
dance segmentation performs much better than image-based
one, with our model achieving an IoU of 0.731 against
0.559 of the static run and an F-score of 0.820 vs. 0.617.
Such improvements demonstrate the capacity of our pro-
posed approach to exploit the spatio-temporal nature of
human-object interaction for object affordance segmentation,
supporting our argument that a model can be trained on
interaction sequences to infer affordance labels in both videos
and images.

TABLE 5. Affordance segmentation evaluation of various models on the
SOR3D-AFF test set, in terms of IoU, F-score, and weighted F-score.

In the static case, we observe from the bottom part of
Table 5 that our model performs comparably to Affor-
danceNet. Note, however, that the latter depends on
strong object-related supervision (e.g., object class and
bounding-box information) and requires object detection.
In contrast, we have designed our model with no need
of such annotations or object detection, limiting its super-
vision to only affordance-related annotations (and only at
the last frame of the interaction video). However, if we
choose to exploit object-related annotations by develop-
ing a suitable variant of our model (with ‘‘extra super-
vision’’, as discussed earlier), our approach ends up
outperforming AffordanceNet. Indeed, this model variant
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achieves an IoU of 0.575 vs. 0.561 of AffordanceNet, an
F-score of 0.625 against 0.618, and a weighted F-score
of 0.638 vs. 0.621. All three gains are statistically significant,
based on the Wilcoxon non-parametric test at p < 0.05 [80].
Concerning speed, our proposed model is significantly

faster than AffordanceNet, due to the expensive object detec-
tion components of the latter. As a result, AffordanceNet
requires 113ms to infer a segmentation, assuming a single
detected object. In comparison, our model performs the task
in only 37ms, adding approximately 13ms of overhead to
our reasoning-only model runtime, due to the second decoder
and the heatmap-guided segmentation process. As expected,
‘‘extra supervision’’, when incorporated to our model, slows
it down considerably to 97ms, due to the region proposals
and RoI alignment overhead. Still, this model variant remains
slightly faster than AffordanceNet.

Regarding model size, AffordanceNet has 226.7M train-
able parameters, 186M of which belong to the object class
and bounding-box prediction branch, and the remaining
40.7M to the encoder-decoder part. In comparison, ourmodel
is significantly lighter, having only 13.2M parameters. This
is due to our shallower encoder and decoder architectures, as
well as the upsampling-CONV layers that are used instead of
deconvolution layers with larger filter size.

Completing our quantitative evaluation, in Table 6, we
present object affordance segmentation results of our pro-
posed model per affordance class, based on video or static
image inference. There, we can observe the superiority of
the dominant affordances (i.e., those associated with most
of the dataset objects), such as ‘‘grasp’’ and ‘‘lift’’, as well
as the satisfactory performance of complex affordances that
modify the object visual appearance, such as ‘‘squeeze’’.
Note that affordance label weighting leads to slightly better
F-score overall, which is expected given the very confident
predictions for the dominant affordances.

5) QUALITATIVE EVALUATION RESULTS
Besides the quantitative evaluation, we use samples from
the image-only UMD and IIT-AFF datasets to qualitatively
evaluate our proposed model performance and judge its gen-
eralization to unseen data during its training. We depict pre-
dicted affordance segmentations in Fig. 8, color-coding the
pixel-level predictions and drawing them if Ûc,i,j > 0.75 (the
images are also center-cropped to 300× 300 pixels).
In the upper two rows of Fig. 8, we can observe that our

model is able to confidently predict affordances on objects
of the UMD dataset that are similar to those in SOR3D-
AFF (e.g., ‘‘cup’’, ‘‘hammer’’, and ‘‘knife’’), although it has
never seen the exact same objects during its training. Further,
in the lower two rows of the figure, our model is able to
infer reasonable segmentations of the dominant affordances
on samples from the challenging IIT-AFF dataset, although it
has never been trained on multi-object cluttered data scenes.
Notably, our model has never seen object class ‘‘cable’’, but
manages to provide ‘‘grasp’’ or ‘‘rotate’’ pixel-level affor-
dance predictions for it (right-most examples).

FIGURE 8. Predicted affordance segmentations by our proposed model
on objects of the UMD (upper two rows) and IIT-AFF (lower two rows)
datasets, unseen during training. Affordances are color-coded (‘‘grasp’’:
light green, ‘‘lift’’: green, ‘‘rotate’’: red, ‘‘push’’: cyan) and are shown when
Ûc,i,j > 0.75.

6) ABLATION STUDY
Similarly to Section IV-B, we report an ablation study
in Table 7, evaluating different variants of our affordance
segmentation model, in order to demonstrate the contribution
of each individual architecture component. In this study we
focus on the segmentation-onlymodel of our recent work [37]
(also depicted in Fig. 2(a)) – denoted as ‘‘Single’’ in the
table, as it employs one decoder only. This allows us to also
demonstrate the improvement achieved by our proposed joint
model training approach (see Fig. 2(c)) – denoted as ‘‘Joint’’.

We follow the same logic as in Table 3 for video-based
inference (upper part of Table 7), considering: (i) the sin-
gle appearance-only encoder; (ii) the single appearance-only
encoder with the soft-attention mechanism; and (iii) the
two-encoder model (both appearance and motion) with the
soft-attention mechanism present, in all cases in conjunc-
tion with RGB-only or RGB-D input encoding and the
single-decoder setup. Similarly to the reasoning task, we
observe that adding the attention mechanism and then the
motion encoder both improve results, with all three RGB-D
variants outperforming their RGB-only counterparts. In addi-
tion, we can see that incorporating the reasoning decoder
in the model architecture and jointly training the system
improves results further, for example increasing the F-score
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TABLE 6. Affordance segmentation performance of our model on the SOR3D-AFF test set, shown per class and overall, based on video or static image
inference.

TABLE 7. Ablation study on affordance segmentation model
architectures, based on video or static image inference on the SOR3D-AFF
test set. Various model variants are evaluated in terms of IoU and F-score:
single decoder vs. two jointly trained decoders, as well as with or without
depth information, soft attention mechanism (‘‘α’’), and optical flow.

from 0.80 to 0.82. We observe similar trends in static image
inference (lower part of Table 7) with RGB-D encoding
outperforming RGB-only, and the joint two-decoder system
outperforming the single-decoder one, for example in the
latter case improving F-score from 0.58 to 0.62.

V. CONCLUSION
In this paper, the related tasks of object affordance rea-
soning and segmentation are jointly investigated, follow-
ing the ‘‘learning from observation’’ paradigm based on
human-object interaction videos. In particular, an end-
to-end deep-learning based dual encoder-decoder model is
introduced for this purpose, without the need of strong
object-related supervision. The proposed model encodes
color, depth, and motion information from human-object
interaction videos and predicts the desired affordance
heatmaps and segmentation maps through two dedicated
decoders. The model also employs a spatio-temporal
soft-attention mechanism that enforces implicit localization
of the interaction hotspot to improve both tasks. An exten-
sive evaluation of the proposed approach is reported on
the recently introduced SOR3D-AFF corpus, which con-
sists of RGB-D interaction videos coupled with affordance
heatmaps and pixel-wise affordance class annotations, as well
as on three other state-of-the-art datasets. The experiments
demonstrate that the presented model predicts more accurate
affordance heatmaps compared to alternative state-of-the-art
methods in the literature, while achieving better performance

in segmentation predictionwhen operating either on videos or
static images. Finally, its generalization ability is illustrated
qualitatively on one video and two static image datasets.
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