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Abstract—Assessing the structural integrity of the hippocam-
pus (HC) is an essential step towards prevention, diagnosis and
follow-up of various brain disorders due to the implication
of the structural changes of HC in those disorders. In this
respect, the development of automatic segmentation methods
that can accurately, reliably and reproducibly segment the HC,
has attracted considerable attention over the past decades. This
paper presents an innovative 3D fully automatic method to be
used on top of the multi-atlas concept for the HC segmentation.
The method is based on a subject-specific set of 3D Optimal
Local Maps (OLMs) that locally control the influence of each
energy term of a hybrid Active Contour Model (ACM). The
complete set of OLMs for a set of training images is defined
simultaneously via an optimization scheme. At the same time,
the optimal ACM parameters are also calculated. Therefore,
heuristic parameter fine-tuning is not required. Training OLMs
are subsequently combined, by applying an extended multi-
atlas concept, to produce the OLMs that are anatomically more
suitable to the test image. The proposed algorithm was tested on
three different and publicly available datasets. Its accuracy was
compared with that of state-of-the-art methods demonstrating
the efficacy and robustness of the proposed method.

Index Terms—Hippocampus segmentation, hybrid ACM,
multi-atlas, prior knowledge, local weighting scheme, Optimal
Local Maps.

I. INTRODUCTION

Brain disorders are major contributors to morbidity, disabil-
ity, and premature mortality in many developed and developing
countries worldwide [1]. Every year, over one-quarter of adult
Americans are diagnosed with a mental illness, such as Major
Depressive Disorder (MDD), Post-Traumatic Stress Disorder
(PTSD), schizophrenia, and Alzheimer’s Disease [2]. More-
over, every year a third of the EU’s population is diagnosed
with mental disorders [3]. The number of patients becomes
even higher if neurological disorders, such as epilepsy and
dementia, are also taken into account. Apart from making
life difficult for patients on a personal level, brain disorders
have a considerable societal and financial cost. In this respect,
improved prevention and treatment of brain disorders is a key-
issue, and could alleviate healthcare costs. Assessing the struc-
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(a) (b) (c)
Fig. 1. A sagittal slice of a 3D MR volume (a), zoomed version of (a)
where the hippocampal region is indicated with magenta color (b), and the
reconstructed 3D model of the hippocampus (c).

tural integrity of the hippocampus (HC), which is a structure
of the limbic system (Figure 1), is an essential step toward
this, due to its implication in such disorders. Dysfunction
and neurodegeneration of HC plays a fundamental role in the
development of various brain disorders. Many studies support
that altered HC volume and connectivity represents a specific
endophenotype; indicatively in schizophrenia [4], [5], [6], in
first-episode schizophrenic patients [7], in bipolar disorder [8],
[9], [10], in epilepsy [11], in Alzheimer’s [12], [13], in Mild
Cognitive Impairment [14], [15], in dementia associated with
multiple sclerosis [16], [17], and in Down’s syndrome [18].
Hence, HC morphology alterations have shown the capacity to
be potentially used as a biomarker in decision making systems
regarding various brain disorders. Thus, HC morphometry
is a potentially powerful tool for many diseases diagnosis,
prognosis and monitoring. However, apart from the appropriate
evidence and widespread agreement of the usefulness of HC
volumetry, its establishment as a biomarker requires that it
can be measured with appropriate accuracy and reproducibility
[19].

Traditionally, HC structural assessment has been based on
manual or semi-automated segmentation from MRI scans.
However, time-constraints posed by those methods, largely
as a result of the vast amount of data produced by MRI,
rater bias and cost, constitute the major obstacles in the
effective, large-scale morphological study of HC. Therefore,
reliable automatic HC segmentation offers a valuable clinical
tool, already showing its usefulness. Recently, in a large-
scale, genome-wide association meta-analysis of hippocampal,
brain, and intracranial volume [20] automated hippocampal
volumetry has successfully enabled the discovery of novel
genes associated with hippocampal volume in schizophrenia.
In [21] it is clearly stated that the aim is fostering the use of
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hippocampal volumetry in routine clinical settings regarding
Alzheimer’s, which requires standardization firstly on the
segmentation protocol (given the variety of protocols), and
secondly on the automatic segmentation method. Similarly, a
collaborative initiative on Alzheimer’s between Europe and
USA (EADC-ADNI) plans the adoption of HC volumetry as
a new diagnostic criterion of Alzheimer’s and in therapeutic
trials [19]. Thus a roadmap has been defined in order to
establish HC volumetry as an Alzheimer’s biomarker, which
requires reliable automatic segmentation. Once HC volumetry
is established, every day clinical practice would then require
subjective and highly accurate HC segmentation for proper
and reliable disease diagnosis (potentially within a decision
support system), monitoring, and treatment evaluation, which
can even lead to drug discovery. Given the existing evidence of
HC alterations in other disorders (e.g. schizophrenia, bipolar
disease, epilepsy, etc.), similar actions are foreseen for these
cases too.

Several methods have been proposed for automatic HC
segmentation. However, it remains a very challenging task. Re-
sults in literature report that HC is among the brain structures
for which the segmentation accuracy of automatic segmenta-
tion methods is lower compared to other brain structures [22],
[23], [24]. Automatic segmentation methods of deep brain
structures, such as the HC, can be broadly divided into three
major categories: (1) atlas-based techniques, (2) deformable
models and (3) active appearance models.

Atlas and multi-atlas based methods imply non-rigidly reg-
istering one or multiple (in the case of multi-atlas techniques)
training images to the target image using some similarity
measure. The labeled image(s) of the training image(s) are
subsequently propagated to the space of the target image using
the calculated wrapping fields, to offer the final segmentation.
In the case of the multi-atlas methods an extra step is required;
fusing the transformed labeled images or a selected subset
of them. In literature, there exists a substantial amount of
variations of the multi-atlas concept [25], [23], [26], [27], [28].
These methods mainly differ in the registration method, the
way for selecting a subset of the training labeled images before
fusion, as well as the label fusion approach that is followed. A
recent workshop offered comparative evaluation among state-
of-the-art multi-atlas techniques [29]. In total, 25 algorithms
entered the challenge and their performance was evaluated on
a publicly available dataset (abbreviated as OASIS-MICCAI
dataset in this work). Among the various multi-atlas methods
that were evaluated, the ones that reached higher accuracy in
terms of Dice similarity coefficient [30] are the joint label
fusion technique proposed by Wang et al. [31] and the Non-
Local STAPLE proposed by Asman et al. [32]. The first one is
based on joint label fusion combined with the bias correction
[33], and was proved to be the top performer of the challenge.
The Non-Local Staple method is a statistical fusion technique
using the non-local means framework.

In the second category, popular examples of deformable
models are the Active Contour Models (ACM). ACMs allow
a contour to deform iteratively to partition an image into
distinct regions according to the image gradients (edge-based
ACM), or the intensities’ statistical information (region-based

ACM). ACMs when used in combination with an implicit
representation of the object of interest, have proved to be
powerful tools in image segmentation. One popular example
of edge-based methods is the Geometric Active Contour model
(GAC) [34], whose evolution is terminated when “strong”
edges are encountered. On the other hand, region-based ACMs
use statistical information regarding the distribution of intensi-
ties, inside and outside the contour, making them less sensitive
to image distortions, as well as to the “leakage” effect. The
Chan-Vese model [35], that is based on the Mumford-Shah
segmentation framework [36], is one of the most widely used
region-based ACMs to detect objects whose boundaries are
not defined by strong edges. However, the sole use of regional
information can lead to erroneous segmentation results in the
case of objects with well-defined boundaries due to the lack
of boundary terms. To tackle the problems posed by the use
of solely region or edge-based information, hybrid approaches
have been proposed [37].

Nonetheless, ACMs solely depend on image information.
Thus, their drawback is the lack of anatomical knowledge
about structures undergoing segmentation. This limitation,
which can be overcome through modeling and integration
of prior knowledge of anatomical structures into the seg-
mentation framework, has become a key-issue in medical
image analysis. One of the earliest and most influential works
towards this direction was that of Cootes et al. [38] who
incorporated into the ACM framework global shape constraints
learned by means of Principal Component Analysis (PCA).
They named their method as Active Shape Models (ASM)
to avoid confusion with traditional ACM. In Leventon et al.
[39], a non-parametric, intrinsic model based on the implicit
representation of the shapes was constructed and incorporated
into a GAC segmentation framework. The same approach
was later adapted by Yang et al. [40], to build a statistical
neighbor prior, able to constraint the segmentation based on
neighborhood properties between adjacent structures. Yang et
al. incorporated the constructed models into a region-based
ACM framework to achieve simultaneous segmentation of
neighboring structures. The aforementioned ASMs, however,
are modeling global shape-prior knowledge through PCA, thus
cannot account for local shape variations.

Incorporation of texture in the ASM framework led to
Active Appearance Models (AAMs) [41], [42], [43], [44].
AAMs use PCA-based linear subspaces to model variation
of both shape and texture information from a training set.
The initial concept of AAM required the identification of
landmarks. In an effort to overcome this issue, the integration
of level-sets in the AAM framework was proposed by Hu et
al. [45], [46]. In Toth et al. [47], a multi-feature landmark-free
AAM was presented. Other interesting approaches extending
the initial idea of AAMs include combination of the AAM with
patch-based label fusion [48], and the Bayesian appearance
model [49]. Despite its advantages, such as fast performance,
AAM is a local search technique and thus requires good
initialization [50].

All the aforementioned active models focus on modeling
and integrating prior information, rather than optimally bal-
ancing the degree of local influence that the prior knowledge
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and image information should have at a voxel level. Global
weighting, which implies consistent boundary properties, has
traditionally been used. However, this hypothesis is not true
in some challenging cases, and thus is removed within this
work. In fact, HC has spatially varying boundary properties,
demonstrating clear, blurry and even missing borders. Towards
this direction, we recently developed a local weighting scheme
[51] to improve the weighting between the image and the prior
term. A local weighting map, called Gradient Distribution on
Hippocampus Boundary map (GDHB), was built based on the
learned gradient values across the boundary of the HC.

Based on the same concept, in [52] we defined an Optimal
Local Weighting map (OLW), via an optimization procedure.
The optimization criteria are designed to generate the most
accurate segmentations for a set of training images, given
the corresponding ground-truth segmentations. The training
OLWs are adapted on the test image and fused, to generate the
OLW values of the latter. OLW is subsequently incorporated
into an ACM framework defined by two energy terms, the
region-based image term and the prior term. The efficacy of
this concept was validated through experiments on the central
sagittal slice of HC.

Hereby, the concept of OLW is further extended and a
fully automatic subject-specific segmentation framework is
proposed that models the local properties of HC by making use
of a complete set of Optimal Local Maps (OLMs), applying it
on 3D MR images. The OLMs produced are incorporated into
a hybrid ACM framework, which includes three energy terms:
a region-based term, an edge-based term and a prior term.
The prior term, which is a label spatial distribution map, is
built based on a straightforward multi-atlas framework. Thus,
the proposed method is a mixture of the multi-atlas concept
together with the ACM framework, in which OLMs are used
to locally blend the energy terms.

OLMs refer to three different 3D maps: (i) a map that
applies the local weighting between the prior energy term and
the image derived terms (W1), (ii) a map that locally balances
the contribution between the region- and the edge-based term
(W2), and (iii) a map that controls locally the time step used in
the evolution of the level set (S). To the best of our knowledge
this is the first work to define the purpose and extraction of
such three maps. All parameters included into the hybrid ACM
model are calculated during training through an optimization
procedure, avoiding heuristic parameter fine-tuning, ensuring
optimal contour evolution based on the captured HC boundary
and shape properties. The advantage of the proposed scheme,
is that the ACM based on OLMs allows for capturing of fine
details. Furthermore, the multi-atlas concept is utilized, since it
can naturally incorporate the training OLMs, treating them as
extra atlas modalities, thus constructing multi-fold atlases, i.e
the atlas image, its label image and the corresponding OLMs
(left part of Figure 2).

The proposed algorithm was tested on three different
datasets and demonstrated its appropriateness to be used as
a supplementary technique to the multi-atlas methods.

II. METHODS

A. Description of Data

Three datasets were used in the context of this work:
1) OASIS dataset: The OASIS database [53] consists of

T1-weighted MR image volumes acquired with a 1.5T Vi-
sion scanner, produced by averaging four scans of the same
individual, offering images with reduced noise levels. The
MR image volumes were resampled to produce images with
resolution 1.0mm × 1.0mm × 1.0mm and were spatially
warped into the Talairach space. The size of the volumes
is 176 × 176 × 208 voxels. The database is very large (416
subjects), but no manual segmentations are available. As a
result, a subset was chosen so as to cover the entire age
span of the subjects and to include subjects with different
degrees of dementia. A professional radiologist provided us
with manual segmentations of HC, which we offer publicly
to the research community1. The selected subset consists of
23 right-handed subjects (13 females and 10 males) with ages
ranging from 18 to 96 years old. Among them, 2 subjects
have a Clinical Dementia Rating scale (CDR) equal to 0.5,
indicating very mild dementia while 2 subjects have CDR scale
of 1, indicating mild dementia.

The manual protocol followed for the segmentation of the
OASIS dataset is a close variant of the protocol used in the
study of Narr et al. [54]. This protocol is an adaptation from
existing protocols [55], [56], [57], [58], [59], [60] and defines
HC as a homogeneous gray matter structure. However, it
should be noted the current discussion on whether to include
or not non-gray matter parts in the hippocampal formation
[61], [62]. The non-gray matter parts under discussion to be
included in hippocampus are the alveus and fimbria.

2) IBSR dataset: The IBSR dataset is provided by the
Center for Morphometric Analysis at Massachusetts General
Hospital2. It contains T1-weighted MR image volumes of
various image resolutions (from 0.8mm × 0.8mm × 1.5mm
to 1.0mm×1.0mm×1.5mm) from 18 subjects. The volumes
have been spatially normalized into the Talairach orientation
(rotation only). The subjects’ age varies from youngsters, of
less than 7 years of age, to older people of 71 years. Among
the subjects, 4 of them were female, while the rest 14 subjects
were male. Volumes’ size is 256× 256× 128 voxels.

The IBSR repository further offers the corresponding man-
ual segmentations of HC. The manual segmentation protocol
followed is described in Makris et al. [63] and regards HC as
a homogeneous gray matter structure.

3) OASIS-MICCAI dataset: The OASIS-MICCAI dataset
is also a subset of the OASIS database, that was used in the
recent evaluation workshop of MICCAI 2012 “Workshop on
Multi-Atlas Labeling” [29]. Of the 35 MR image volumes in
the subset, 15 were used for training and 20 for testing. The
average age of the subjects in the training set is 23 years old
(ages ranging from 19 to 34 years old), while in the testing set
the average age is 47.5 years old (ages ranging from 18 to 90
years old). Both training and testing datasets contain female
and male subjects; 10 MRIs from females and 5 from males,

1http://vcl.iti.gr/hippocampus-segmentation/
2http://www.cma.mgh.harvard.edu/ibsr/
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Fig. 2. Overview of the proposed methodology for calculating the spatial distribution map L, the OLMs as well as the ACM parameters for a target image.
The resulting L, OLMs and ACM parameters are incorporated into the ACM framework, to produce the final segmentation.

and 12 from females and 8 from males, are included in the
training and testing sets, respectively.

Manual segmentations for the dataset are provided by
Neuromorphometrics, Inc.3 under academic subscription. The
manual segmentation protocol4 used for HC segmentation
includes also white matter parts (fibria/alveus) in the hip-
pocampal region.

B. Overview

The key point of the proposed method is the blending of
different types of information in a hybrid ACM framework
through the incorporation of a set of subject-specific Optimal
Local Maps (i.e. W1, W2 and S) to be used on top of the
multi-atlas concept. The level set evolution depends on three
energy terms: the edge-based term, the region-based term and
the prior term. The latter is built by the subject-specific spatial
distribution of labels map L offered through multi-atlas. In this
scheme, W2 is used to balance the contribution of each image-
derived energy term. Hence, in the presence of strong edges
W2 weights more the edge-based term on that region, while
in low gradient regions the region-based term is trusted more.
Similarly, W1 balances between the combined image terms and
the prior term. Thus, the prior term is used in regions where the
image information is not sufficient to drive the segmentation in
the right direction. S aims to control the time step for the level
set evolution, defining smaller time steps when the level set
is close to convergence. Vice versa, S takes higher values on

3http://Neuromorphometrics.com/
4www.braincolor.org

homogeneous regions, where the evolving contour is far from
the actual boundary, to speed up evolution and convergence.

As Figure 2 shows, once the OLMs and ACM parameters
of the atlases are extracted, the atlases are registered to the test
image. The fusion step follows, to extract the subject-specific
OLMs, the spatial distribution label map L, as well as the
ACM parameters. Then, the ACM evolution starts evolving
a contour both on the MR image and on L, and optimally
blending their outcomes. For the initialization of the ACM
evolution, the region with the most likely voxels to belong
to hippocampus (defined as the regions of L with the highest
values) is used.

C. Prior Information

The first step towards modeling prior information is to build
L, which offers information about the spatial distribution of the
structure’s labels. In this work, we investigated two different
fusion techniques for the construction of L. The first one is a
simple multi-atlas fusion concept based on a global weighted
average technique. Thus, given a set of n training images Ii,
i = 1, .., n and their corresponding labeled images Li, as well
as the wrapping fields calculated by non-rigidly registering Ii
to the target image I , L is provided as:

L =
∑

i=1,..,n

si · F (Li) (1)

where F represents the wrapping process of the labeled
images Li to the space of I , and si stands for the similarity
between the registered training image Ii and the target image I
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expressed by means of cross-correlation. All si are normalized
so that

∑
i=1,..,N

si = 1.

The tasks of non-rigid registration and similarity calculation
are performed with the ANTs toolkit. More precisely, the
symmetric normalization methodology (SyN) [64] is utilized,
which is based on optimizing and integrating a time-varying
velocity field. The instructions in Klein et al. [65] were
followed to choose the similarity metrics and the velocity field
regularization.

The second fusion technique that was investigated for the
construction of L is based on the recent joint label fusion
technique5 which was proposed by Wang et al. [31]. According
to this approach:

Ljoint(x, y, z) =
∑

i=1,..,n

wi(x, y, z) · F (Li(x, y, z)) (2)

where wi refer to the voting weights (3D matrices of size
equal to the size of Li) calculated by the use of the joint label
fusion technique, and are subject to

∑
i=1,..,n

wi = 1.

The reason for investigating two different multi-atlas fusion
techniques is two-fold. Firstly, the multi-atlas concept is cru-
cial for the performance of the proposed method as it offers
L, which is used to provide the prior term. Secondly and
most important, the proposed method is a locally weighted
ACM on top of the multi-atlas concept and it is designed
to improve the multi-atlas result no matter how accurate the
latter is. By incorporating one of the most accurate multi-
atlas methods according to the results from the MICCAI 2012
workshop, it is possible to demonstrate the appropriateness
of the proposed method to work as a complementary method
even to sophisticated and highly accurate multi-atlas methods.

D. ACM evolution

Let C denote the evolving curve, which is implicitly rep-
resented as the zero level set of a signed distance function φ.
The evolution of the curve C is driven by the image terms
and the prior term. Hence, by introducing the local weighting
maps W1 and W2 the contour update equation is defined as:

∂φ

∂t
= W1 ◦

∂φimage
∂t

+ (1−W1) ◦ ∂φprior
∂t

(3)

where the operation ◦ denotes the Hadamard product, and

∂φimage
∂t

= W2 ◦
∂φE
∂t

+ (1−W2) ◦ ∂φR
∂t

(4)

where φR, φE and φprior correspond to the evolving contours
based on the region-based (ER), the edge-based (EE) and
prior (Eprior) term, respectively. Finally, by introducing S in
the level set framework, the evolving shape at iteration k is
calculated by:

φk = φk−1 + S ◦ ∂φk−1

∂t
(5)

The derivation of φR, φE , φprior and based on them the
final form of the evolution equation ∂φ

∂t can be found in the
Appendix section.

5http://www.nitrc.org/projects/picslmalf/

Fig. 4. Sagittal slices of a training MR image Ii(top row) and a test MR image
(bottom) of the OASIS dataset. The contours of hippocampus are represented
with magenta. The corresponding slices from the 3D training W1i, W2i, Si
(top) and of the testing W1, W2, S (bottom) are presented in columns 2, 3
and 4 respectively.

E. Calculation of training OLMs and ACM parameters
through graph-cuts

Another means of capturing prior knowledge is the mod-
eling of the varying boundary properties of HC, through the
construction of local blending maps (OLMs), that define at
voxel level which energy terms are to be trusted more for
accurate segmentation results.

Graph cuts [66] have been widely used in computer vision
in various problems, whose solution can be found through
discrete pixel labeling. Graph cuts require formulating the
pixel labeling in terms of energy minimization, assuming that
the minimum energy solution corresponds to the maximum a
posteriori estimate. Hereby, the Maxflow algorithm, introduced
by Boykov and Kolmogorov [67], is used to minimize two
energy functionals E(f) (Figure 3). These allow the calcula-
tion firstly of the training OLMs and secondly of the ACM
parameters for the n training images, i.e. W1i, W2i, Si, and
λ1i, λ2i, i = 1, ..., n.

Minimizing the two energy functionals requisites that W1i,
W2i, Si and λ1i, λ2i are defined such as the image and
prior terms that drive the evolving level-set will force it to
move towards the corresponding ground-truth level set, despite
its initial position. Thus, by imposing minimum difference
between the needed move of the level set and the ground-
truth zero level set extracted by the label image, and repeating
the procedure until convergence of the level set, the curve will
approach and finally fall onto the ground-truth contour. Once
convergence is accomplished, the training OLMs and ACM
parameters are defined as the average from all iterations. More
details can be found in the Appendix section.

F. Adapting training OLMs and ACM parameters through
registration

The focus of this section is on creating a subject-
specific segmentation framework that accounts for the sub-
ject’s anatomy. Towards this aim, a multi-atlas concept is used
to produce subject-specific OLMs and ACM parameters for the
target image. Attention should be paid to the fact that in the
context of this section, as an atlas we consider the coupling
of an anatomical image with its corresponding OLMs.

As mentioned in subsection II-C, each anatomical image in
the training set Ii, i = 1, ..., n is non-rigidly registered to the
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Fig. 3. Training phase: Overview of the procedure for calculating the training OLMs and ACM parameters for the training images via an optimization scheme.

test image. The resulting transformations are used to propagate
the training OLMs to the space of the target image (Figure 4).
Denoting the wrapping procedure as F , the resulting local
maps and ACM parameters are combined according to the
similarity si: 

W1

W2

S
λ1

λ2

 =
∑

i=1,..,n

si ·


F (W1i)
F (W2i)
F (Si)
λ1i

λ2i

 (6)

III. EXPERIMENTS AND RESULTS

A. Evaluation Framework

The performance of an algorithm is potentially affected by
the scanner type, imaging conditions, demographic character-
istics and even by the quality of manual segmentations and
the segmentation protocol used. To overcome these limitations
and achieve fair comparisons, we evaluated the proposed
method (abb. OLM-ACM when weighted average fusion is
used for building the spatial distribution map, and OLM-
ACM Joint when the sophisticated joint label fusion scheme is
incorporated) in 3D MR images using three different datasets
that vary in terms of the aforementioned characteristics.

To assess the behavior of the proposed methodology on
HC segmentation, experiments were conducted to evaluate its
performance through comparison with other methods. For the
IBSR and OASIS datasets, the broadly-used leave-one-MRI-
out procedure was followed, in order to offer fair comparison
with the published results of other methods. For the OASIS-
MICCAI dataset we followed the evaluation protocol of the
MICCAI challenge to enable a straightforward comparison of
our results, where 15 MRIs were used for training and 20
for testing. The Dice similarity coefficient (D) is used in all
datasets as a segmentation performance measure due to its
popularity and importance in evaluating and comparing the
performance of segmentation methods. D is given by:

D =
2|Ĥ ∩H|
|Ĥ|+ |H|

=
2 · Pr ·Re
Pr +Re

, D ∈ [0, 1] (7)

OASIS dataset Dice Method Description
µ± σ

OLM-ACM Joint 0.86 ± 0.05 Hybrid ACM with OLMs
& multi-atlas with joint
label fusion

ACM Joint 0.84 ± 0.08 Hybrid ACM
with global weighting
& multi-atlas with joint
label fusion

Multi-atlas Joint 0.84 ± 0.04 Multi-atlas &
(‘PICSL Joint’) with joint label fusion
OLM-ACM 0.81 ± 0.09 Hybrid ACM with OLMs

& multi-atlas with
weighted average fusion

ACM 0.79 ± 0.02 Hybrid ACM
with global weighting
& multi-atlas with
weighted average fusion

Multi-atlas 0.80 ± 0.08 Multi-atlas with &
weighted average fusion

Babalola et al. [50] 0.77 ± 0.07 AAM model

TABLE I
COMPARISON RESULTS FOR THE OASIS DATASET USING MEAN DICE’S

SIMILARITY INDEX.

where Pr and Re stand for Precision and Recall respectively.
D = 0 indicates no overlap between the actual (H) and
the estimated volume (Ĥ), while D = 1 indicates perfect
agreement.

B. Results and Comparisons

1) OASIS dataset: Due to the absence of published results
in our OASIS dataset, a state-of-the-art AAM segmentation al-
gorithm [50] offers a valuable indication on the expected Dice
values. The implementation of the latter is publicly available6.
In addition, the proposed method’s performance is compared
with that of the corresponding multi-atlas method on which
the spatial distribution map relies on. More precisely, the
ACM framework based on OLMs that uses either the weighted
averaging for building the prior term (OLM-ACM), or the

6http://www.isbe.man.ac.uk/∼kob/vaam 1 0/index.html
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the OLM-ACM Joint method are connected with those of each of the methods under comparison on the same subject to allow for direct comparison. The
optimum position in the Precision-Recall space is the upper right corner (1, 1). On the Dice similarity index plot, colored asterisks stand for the Clinical
Dementia Rating (CDR) of each subject (red asterisk stands for CDR=1 which indicates mild dementia, green for CDR=0.5 indicating very mild dementia,
while blue for CDR=0 which indicates no dementia). The age of each subject appears above or below the corresponding CDR asterisk. Subjects are sorted
by ascending ground-truth HC volume.
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Fig. 6. Bland-Altman plots for the OASIS dataset showing graphically the agreement between the manually segmented volumes and the volumes segmented
by means of OLM-ACM Joint, Multi-atlas Joint and AAM method.

sophisticated joint label fusion (OLM-ACM Joint), are com-
pared with Multi-atlas and Multi-atlas Joint methods, which
are produced by applying majority voting on L and Ljoint, re-
spectively. This comparison actually reveals the contribution of
the proposed methodology on top of the multi-atlas, regardless
of the fusion technique. It should be noted that the Multi-
atlas Joint method is our reproduction (using the publicly
available tools of ANTs toolkit and joint label fusion) of the
method proposed by [31] and abbreviated as ‘PICSL Joint’
during the MICCAI 2012 workshop. PICSL Joint ranked 3rd
in the challenge, while when combined with bias correction
reached the first place. Moreover, segmentation results using
a hybrid ACM based on global weighting for blending the
edge, the region and the prior term were produced. As in the
case of the proposed method, the performance of the hybrid
ACM method using two different approaches for building the
prior term is evaluated. In the first case the prior term is build
using L (ACM), while in the second the Ljoint is used instead
(ACM Joint).

The resulting mean Dice similarity coefficient and the
corresponding standard deviations for all experiments are
presented in Table I. Comparing the OLM-ACM with the
Multi-atlas method, and the OLM-ACM Joint with the Multi-
atlas Joint method respectively, an improvement of 1-2%
can be observed (p-values from paired t-test are 0.045 and
0.047, respectively). This demonstrates that the multi-atlas
approach still leaves space for improvements that the proposed
methodology takes advantage of by combining both image

(edge and intensity) and prior information in an optimal way.
Comparing the resulting Dice similarity coefficients by means
of the ACM method and the ACM Joint approach (0.79
and 0.84) with those achieved when using the Multi-atlas
and Multi-atlas Joint methods (0.80 and 0.84 respectively),
no improvement can be seen. This suggests that the hybrid
ACM with global weighting is insufficient for improving the
multi-atlas result. It is important to note that in order to find
the adequate ACM parameters for the hybrid ACM without
OLMs, exhaustive heuristic fine-tuning was used and only the
best achieved results are presented here. Therefore, the incor-
poration of the OLMs concept, which uses local weighting
and parameters calculated with the use of an optimization
procedure, is required in order for the ACM framework to
be able to offer improvements to the multi-atlas methods.

A comparison plot of the Dice similarity coefficient for
each subject is provided in Figure 5 with the aim to allow
comparisons among the OLM-ACM Joint, Multi-atlas Joint
and the AAM methods. The Clinical Dementia Rating (CDR)
and the age of every subject are also provided in the plot. The
subjects have been sorted according to ascending hippocampal
volume in an effort to demonstrate the influence of volume in
the performance of the methods. Further, comparison plots
on additional metrics are also provided, i.e. the precision
and recall metrics, the Haussdorff distance and the undirected
average difference. The plots clarify that in the OASIS dataset,
OLM-ACM Joint performs better than the Babalola et al.
approach [50] and Multi-atlas Joint for most subjects on every
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(a) (b) (c)

Fig. 7. Segmentation results for subjects 2 (1st row), 12 (2nd row), 14 (3rd row) from OASIS dataset by (a) OLM-ACM Joint, (b) Multi-atlas Joint, and
(c) the AAM method of [50]. On the both 2D slices and 3D models, blue color represents false positives, green true positives and magenta false negatives.

metric. It can also be observed that there is a decrease in
segmentation performance on older subjects, especially the
ones suffering from dementia for all aforementioned meth-
ods. However, segmentation performance in those subjects
may have been affected by the lack of sufficient amount of
similar cases. Apparently, experimenting with a dataset, with
only a few problematic cases, is not sufficient for drawing
conclusions on a method’s behavior in those cases.

Furthermore, the agreement between the automatically and
manually segmented volumes was studied with the use of
the Bland-Altman analysis (Figure 6). A high overestimation
bias for the AAM method can be observed, while the Multi-
atlas Joint presents an underestimation bias. Furthermore,
Multi-atlas Joint shows a light tendency to overestimate small
volumes and to underestimate the large ones. The same
tendency can be observed for the OLM-ACM Joint method.
However, the OLM-ACM Joint method has a much lower bias
when compared to the other two methods. This indicates that
the segmented volumes, calculated by means of the OLM-
ACM Joint method, are closer to the manually segmented
ones. Figure 7 illustrates segmentation results for 3 different
subjects.

2) IBSR dataset: In order to validate the performance of
the proposed method in the IBSR dataset, the segmentation
results produced are compared with the results published over
the years on this dataset from state-of-the-art segmentation
methods, including various multi-atlas based methods. The
resulting mean Dice similarity coefficient and the standard
deviation of the methods are presented in Table II allowing
a direct comparison among methods. The results indicate that
OLM-ACM Joint outperforms all previously published re-
sults. Furthermore, comparing the OLM-ACM with the Multi-
atlas and the OLM-ACM Joint with the Multi-Atlas Joint
presents a consistent improvement of 0.5-0.6% (p-values of

IBSR dataset Dice Method Description
µ± σ

OLM-ACM Joint 0.852 ± 0.021 Hybrid ACM with OLMs
& multi-atlas with joint
label fusion

Multi-atlas Joint 0.847 ± 0.023 Multi-atlas &
(‘PICSL Joint’) with joint label fusion
OLM-ACM 0.839 ± 0.024 Hybrid ACM with OLMs

& multi-atlas with
weighted average fusion

Multi-atlas 0.833 ± 0.026 Multi-atlas with &
weighted average fusion

Rousseau et al. [68] 0.83 Patch-based labeling
Lötjönen et al. [28] 0.814 Multi-atlas

& intensity modeling
Sdika [69] 0.81 Multi-atlas

& intensity classification
Khan et al. [24] 0.76 ± 0.03 Multi-structure registration

& supervised atlas
& correction

Artaechevarria et al. [70] 0.75 Multi-atlas & multiple
combination strategies

Akselrod et al. [71] 0.69 Multiscale segmentation
with probabilistic atlas prior
atlas prior

Fischl et al. [22] 0.75 ± 0.02 FreeSurfer

TABLE II
COMPARISON RESULTS FOR THE IBSR DATASET USING MEAN DICE’S

SIMILARITY INDEX (µ) AND THE CORRESPONDING STANDARD DEVIATION
(σ) WHERE AVAILABLE. THREE DECIMAL POINTS ARE USED WHEN

AVAILABLE TO ALLOW FOR FAIR RANKING, AS DIFFERENCES AMONG
METHODS ARE IN SOME CASES LOWER THAN 1%.

paired t-tests 0.03 and 0.042 respectively), as well as smaller
dispersion of the resulting Dice similarity coefficients (as
demonstrated by the σ values). MR images from the IBSR
dataset differ significantly from those of the OASIS dataset
in terms of imaging quality/varying resolution and scanner
types used. Therefore, the improvement in image segmentation
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Fig. 8. Bland-Altman plot for the IBSR dataset showing graphically the agree-
ment between the manually segmented volumes and the volumes segmented
by means of OLM-ACM Joint.

for both datasets suggests that the proposed method may be
insensitive to differences in scanner type and image quality.

Moreover, the Bland-Altman analysis in Figure 8 demon-
strates an overestimation bias for OLM-ACM Joint method,
while the Multi-atlas Joint method presents (similarly with the
OASIS results) a larger underestimation bias. Furthermore, for
the Multi-Atlas Joint method the tendency to underestimate
volumes is stronger for subjects with large HC volumes.

3) OASIS-MICCAI dataset: Multi-atlas labeling techniques
have gained increased popularity over the past years for the
segmentation of brain structures, including the hippocampus.
The “Grand Challenge on Multi-Atlas Labeling” at the MIC-
CAI 2012 workshop has provided the scientific community
with an insight to the theory and application of current state-
of-the-art multi-atlas methods, as well as with a compara-
tive evaluation among them using the mean Dice similarity
coefficient. In total, 25 different multi-atlas approaches were
presented and validated, while the segmentation masks have
been made publicly available. Following the same protocol
as in the challenge, the proposed methodology is applied to
the challenge’s dataset. Please note that around half of the
methods, including the three highly ranked, have used the
ANTs toolkit for the task of non-rigid registration, as the
proposed method does. Thus, a fair comparison is available.

The mean Dice similarity coefficient values obtained by
means of all 25 methods, as well as OLM-ACM, OLM-
ACM Joint, Multi-atlas and Multi-atlas Joint, are provided in
Table III. It should be noted that the method ‘PICSL Joint’ of
Table III is actually the Multi-atlas Joint method. The results
demonstrate that the proposed methodology, when combined
with the joint label fusion scheme, achieves accuracy of
0.865, with the highest accuracy achieved in this dataset
being that of the ‘PICSL BC’ method [72], which equals to
0.869. However, comparing OLM-ACM with Multi-atlas and
OLM-ACM Joint with Multi-atlas Joint, it is clear that the
application of the proposed ACM framework on top of the
multi-atlas concept is beneficial also in this dataset.

Furthermore, Figure 9 presents comparison plots for the four
top ranked methods presented in Table III using four metrics.
The Dice similarity coefficient plot shows that, except for
the three smallest volumes, no bias between volume size and
segmentation performance was observed for any of the meth-
ods. Furthermore, the precision-recall diagram demonstrates
higher recall values for the proposed methodology, while the

Method Dice
µ± σ

1. ‘PICSL BC’ 0.869 ± 0.020
2. ‘NonLocalSTAPLE’ 0.866 ± 0.024
3. OLM-ACM Joint 0.865 ± 0.026
4. ‘PICSL Joint’ - Multi-atlas Joint 0.862 ± 0.026
5. ‘MALP EM’ 0.860 ± 0.020
7. ‘CIS JHU’ 0.851 ± 0.022
8. ‘maper’ 0.849 ± 0.031
9. ‘BIC-IPL-HR’ 0.846 ± 0.018
11. ‘SpatialSTAPLE’ 0.846 ± 0.018
10. OLM-ACM 0.843 ± 0.037
12. ‘CRL Weighted STAPLE ANTS+Baloo’ 0.843 ± 0.038
13. ‘DISPATCH’ 0.841 ± 0.036
14. ‘STEPS’ 0.841 ± 0.038
15. ‘CRL Weighted STAPLE ANTS’ 0.840 ± 0.036
16. ‘SBIA SimMSVoting’ 0.840 ± 0.043
17. ‘SBIA SimRank+NormMS’ 0.839 ± 0.038
18. ‘CRL MV ANTS’ 0.839 ± 0.036
19. ‘SBIA BrainROIMaps MV IntCorr’ 0.838 ± 0.037
20. ‘CRL STAPLE ANTS’ 0.838 ± 0.037
21. ‘CRL MV ANTS+Baloo’ 0.837 ± 0.041
22. ‘CRL STAPLE ANTS+Baloo’ 0.837 ± 0.042
23. ‘BIC-IPL’ 0.837 ± 0.022
24. ‘SBIA BrainROIMaps JaccDet IntCorr’ 0.837 ± 0.037
25. ‘SBIA SimRank+NormMS+WtROI’ 0.836 ± 0.041
26. Multi-atlas 0.833 ± 0.032
27. ‘UNC NIRAL’ 0.830 ± 0.034
28. ‘CRL Probabilistic STAPLE ANTS’ 0.828 ± 0.038
29. ‘CRL Probabilistic STAPLE ANTS+Baloo’ 0.827 ± 0.044

TABLE III
COMPARISON RESULTS FOR THE OASIS-MICCAI DATASET USING MEAN
DICE’S SIMILARITY COEFFICIENT. THREE DECIMAL POINTS ARE USED TO

ALLOW FOR FAIR RANKING OF THE METHODS.

rest of the methods demonstrate higher precision. Moreover,
the agreement between manually and automatically segmented
volumes by means of the four aforementioned methods is
indicated using the Bland-Altman analysis (Figure 10). OLM-
ACM Joint presents a higher overestimation bias than the rest
of the methods, while has smaller variation than them.

It is worth mentioning that the proposed concept was tested
on datasets that differ in terms of the manual segmentation
protocol. As mentioned in II-A, the manual segmentation
protocol used in the OASIS-MICCAI dataset includes non
gray-matter parts in the hippocampal region, while those used
in IBSR and OASIS dataset do not. The proposed methodology
was designed to work according to manual segmentation
protocols that consider HC as a homogeneous gray matter
structure. However, for the sake of completeness we wanted to
show our performance also in the OASIS-MICCAI dataset, in
which apparently our method can not perform in an optimum
way; the region based term cannot support the inclusion of
white matter, since the vast majority of HC voxels have a
darker intensity. However, the proposed method ranked high
in all datasets, regardless of the manual protocol used. Thus,
the results suggest the potential robustness of the proposed
method to the segmentation protocol.

IV. DISCUSSION AND CONCLUSIONS

This paper advocated the incorporation of OLMs into a
hybrid ACM, to be used on top of the multi-atlas concept for
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Fig. 9. OASIS-MICCAI subset: Comparison of the four top ranked methods, as presented in Table III, on four metrics. On the precision vs recall plot, the
results of the OLM-ACM Joint method and each of the remaining methods on the same subject are connected to allow for direct comparison. Subjects are
ranked by ascending ground-truth HC volume and their ages are provided in the Dice plot. Note that in the OASIS-MICCAI subset, the Clinical Dementia
Rating (CDR) for all subjects, but subject 16, is 0 or not provided by OASIS (young subjects), in contrast with OASIS subset where subjects with different
CDR were included (Figure 5).
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Fig. 10. OASIS-MICCAI subset: Bland-Altman plots showing graphically the agreement between the manually segmented volumes and the volumes segmented
by means of the four top ranked methods presented in Table III.

W1 W2 S

Case A 0.54 0.43 3.77
Case B 0.44 0.38 3.88

Fig. 11. The actual boundary (blue color) and HC dilated region used for the
calculation of the mean values of OLMs presented in the table on the right
as case A (on the boundary) and B (purple region), respectively.

HC segmentation. OLM-ACM tends to improve segmentation
accuracy compared to traditional prior-knowledge and data
driven ACM. This is because the latter makes use of the
hypothesis of consistent boundary properties and thus applies
global weighting to the energy terms. On the contrary, OLM-
ACM defines each term’s contribution at a voxel level, taking
into account the spatially varying properties of boundaries and
thus allowing the optimal exploitation of the ACM energy
terms. Furthermore, it consistently improves the result of the
multi-atlas methods in all three datasets, which demonstrates
its efficacy as a supplementary technique to the multi-atlas
methods.
W1 tends to underline image properties, either edges or

statistical differences of intensities, in those regions which are
located close to the boundary, by weighting them more. In this
respect, W1 makes it possible for a level set to converge at an
accurate voxel point where the actual boundary is located. The
table in Figure 11 allows us to observe that W1 does indeed

take its higher values on the boundary, as desired. The sole
use of W1 is not, however, a sufficient means of achieving
optimal segmentation. This is because, apart from the general
knowledge where the image term should be trusted more, it is
of great significance to determine at voxel level whether the
edge or the region term is more trustworthy.

The concept of W2 was introduced to tackle this issue. In
regions of the boundary where gradients are high, the edge-
based term is used more frequently. Vice versa, in regions char-
acterized by a lack of strong edges the region term is preferred
to allow the level set to evolve correctly. It should be noted
that the use of the region-based term is generally preferred,
as HC is a structure with mainly ambiguous boundaries. This
is confirmed by Figure 11 (W2 < 0.5 means more weight on
ER). In addition, the level set evolution depends on the step
used for its evolution. When large steps are used the evolution
process is accelerated. However, when the level set is close to
the real boundary, the step should be small enough to capture
small deformations that are needed to achieve segmentation
accuracy. This is why the use of S in ACM methods seems
to be of high importance.

Regarding execution time, the major bottleneck is the task
of non-rigid registration, included in the multi-atlas procedure.
More precisely, the testing procedure involves registering the
test image with each training image. This procedure requires
n × 2 hours (n is the size of the training set) with ANTs
toolkit routines on an Intel Core i7 3.90Ghz computer (using
1 core). The subsequent transformation of the labels and
training OLMs to the space of the target image and the
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calculation of the similarity metrics si takes on the same
computer 5 min, while around an hour is required for the
joint label fusion algorithm. The ACM evolution requires only
6 min on average (with the use of un-optimized Matlab code).
This means that any burden regarding the computation time
needed is due to the registration procedure, since during the
testing phase our method increases the computational time
infinitesimally comparing with the multi-atlas required time.
For this reason, future work will focus on avoiding the task of
non-rigid registration. Some first works towards this direction
have recently been presented [68], [73], [74]. As far as the
training phase is concerned, it is also computational heavy
due to the sophisticated and complex nature of extracting the
OLMs. On the same computer the training requires n × 2.6
hours on average. However, as any other training procedure,
the training is performed only once and is an offline procedure.

The proposed framework was evaluated in three publicly
available datasets, none of them equipped with statistics on
manual segmentation variations. These offer a good indication
of the segmentation task’s difficulty in a given dataset, as the
goal is to offer less, or even similar, variability than the one
observed between different experts. Indicatively, in two recent
3 Tesla HC studies the reported inter-rater variability was 0.91
[75], while in [11] it was 0.832 (with the intra-rater being
0.891, and the automatic segmentation performance 0.844).
The results presented in [76] show comparable Intraclass
Correlation Coefficient between the automatic and manual
volumes (0.898), compared to the inter-rater reliability (0.929).
Similarly, [77] reports higher manual-manual (0.63) compared
to manual-automated (0.61) HC agreement, while in [78] the
difference is much higher in two datasets (inter-rater 0.80 vs
automatic 0.77, and inter-rater 0.90 vs automatic 0.75). In
[79] two raters were using the same tool to enhance their
HC segmentation skills. In a two series experiment both of
them managed to raise their intra-rater agreement (from 0.79
to 0.94). Interestingly, once this was accomplished, their inter-
rater agreement decreased from 0.68 to 0.57. This could mean
that the two raters were doing excellent but different segmen-
tations, and is further suggesting that inter-rater reliability may
be a useful indication but perhaps insufficient too.

Overall, the proposed method is an ACM based exten-
sion of the multi-atlas methodology. Experimental results on
three datasets, with different manual segmentation protocols,
demonstrate the efficacy of the proposed method and its
appropriateness to be used on top of multi-atlas methods, even
the sophisticated ones. Thus, combination of the proposed
method with an even better performing multi-atlas based
algorithm (such as the PICSL BC [33]) can lead to further
improvements and is inline with our future work. However,
results from the OASIS-MICCAI dataset in comparison with
those from OASIS and IBSR datasets, show that there exists
space for further improvements in datasets for which the
manual segmentation protocol followed includes white matter
parts in the hippocampal region. In this respect, future work
will include investigating ways to assign in W1 higher values
to the prior term in the alveus/fimbria regions. Given that the
multi-atlas based prior knowledge mapped in L will be voting
the inclusion of alveus/fimbria, this modification will allow

the proposed methodology to perform in an optimum way in
such datasets too.

In conclusion, evidence favors the inclusion of HC volume-
try in clinical practice, to enhance disease diagnosis, within
a decision support system. Hence, actions are envisaged for
establishing it as a biomarker. The above highlight the need
for automatic HC segmentation methods that can offer as
high accuracy as possible. Any improvement that is proved
statistical significant could help identifying a more precise and
reliable biomarker. The proposed framework demonstrates a
supplementary technique to the multi-atlas methods, consis-
tently improving their performance, while slightly increasing
the computational cost. It ranked high in three datasets (even in
one with a different definition of hippocampus), posing itself
as a promising candidate for large-scale experimentation.
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APPENDIX

A. Energy Model

Following the level set method [80], in the image domain
Ω ∈ R3 , we define an evolving curve C implicitly represented
as the zero level set of a signed distance function φ : R3 → Ω

C = {(x, y, z) ∈ Ω | φ(x, y, z) = 0} (8)

where φ(x, y, z) < 0 inside the contour C and φ(x, y, z) > 0
outside the contour C.

The contour update equation based on the local weighting
maps W1 and W2 is defined as:

∂φ

∂t
= W1 ◦

[
W2 ◦

∂φE
∂t

+ (1−W2) ◦ ∂φR
∂t

]
+(1−W1)◦ ∂φprior

∂t
(9)

B. Region-based term (ER)

The region-based term used is the one presented by Chan-
Vese in [35], where the curve is being evolved to minimize
the following energy functional:

ER = λ1

∫
Ω1

|I(x, y, z)− c1|2dxdydz+

+λ2

∫
Ω2

|I(x, y, z)− c2|2dxdydz, (x, y, z) ∈ Ω (10)

where I is the target MR image, c1 and c2 are the average
intensities of the regions inside and outside the contour,



IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 12

respectively and λ1, λ2 ≥ 0 are balancing factors for the
properties of the interior and the exterior regions of the
estimated boundary. Based on ER, the evolution equation of
the contour driven by the region-based term becomes:

∂φR
∂t

= δε(φ)

[
µ div

( ∇φ
|∇φ|

)
− ν − λ1(I − c1)2 + λ2(I − c2)2

]
(11)

where δε(φ) is the Dirac function, ν controls the propagation
speed, and µdiv

(
∇φ
|∇φ|

)
is a regularization term that controls

the smoothness of the contour.

C. Edge-based term (EE)

The edge-based term is formulated by minimizing the
energy functional defined in Caselles et al. [34]:

EE =

∫
Ω

g(v)|∇φ(v)|dv (12)

where g is an edge stopping function defined as in [34]:

g(|∇(I)|) =
1

1 + |∇Gσ ∗ I|
(13)

with Gσ standing for the Gaussian convolution kernel of
size 3x3x3 and standard deviation 0.5. The contour evolution
equation driven only by the edge-based term reads:

∂φE
∂t

=

[
g|∇(φ)|(div

(
∇φ
|∇φ|

)
) +∇g · ∇φ

]
(14)

where
∇φ
|∇φ|

is the regularization term.

D. Prior term (Eprior)

The prior term is modeled by applying the region-based
ACM on L. The selection of the Chan-Vese approach to model
the prior term is based on the fact that L is an image with very
smooth transitions. Thus, the energy functional is defined as:

Eprior = v1

∫
Ω1

|L(x, y, z)− d1|2dxdydz+

+v2

∫
Ω2

|L(x, y, z)− d2|2dxdydz, (x, y, z) ∈ Ω (15)

where d1 and d2 are the mean values in the regions of L
inside and outside C. Similarly to equation (10), v1 and v2

are balancing factors for the properties of the interior and the
exterior regions, which were set equal to one, since both inside
and outside regions are smooth and homogeneous. Based on
Eprior, the evolution equation for the contour driven by the
prior term is defined as:

∂φprior
∂t

= δε(φ)

[
µ div

( ∇φ
|∇φ|

)
− ν − v1(L− d1)2 + v2(L− d2)2

]
(16)

By means of equations (9), (11), (14), (16), the overall
contour update formula becomes:

∂φ

∂t
= W1 ◦W2 ◦

[
g|∇(φ)|div(

∇φ
|∇φ| ) +∇g · ∇φ

]
+

+ δε(φ)

[
(1−W1 ◦W2)µ div

(
∇φ
|∇φ|

)
−

−W1 ◦ (1−W2) ◦
(
λ1(I − c1)2 − λ2(I − c2)2

)
−

− (1−W1) ◦
(
v1(L− d1)2 + v2(L− d2)2

)]
(17)

E. Calculation of training OLMs and ACM parameters
through graph-cuts

Figure 3 provides the overview of this procedure. Let us
consider the problem of finding the optimum combination of
values for W1i, W2i, Si at a voxel v for a training image
Ii, i = 1, .., n. Such a procedure can be handled as a graph-
cut labeling problem where each label fv is being mapped
to a combination of three labels: a label fv1 ∈ [0, 1] that
represents the amount of contribution of the prior term (W1i),
a label fv2 ∈ [0, 1] that represents the amount of contribution
of the edge-based term (W2i) as well as a label fv3 ∈ [1, 6]
representing the step of evolution (Si). W1i’s and W2i’s values
are in the interval [0, 1] as they represent percentages of
contribution of the various energy terms, while the values of
Si stand for the size of the time steps and thus, can be integer
numbers. The mapping function is expressed as:

f : fv ∈ [0, P ]→ fv1 ∈ [0, 1] ∧ fv2 ∈ [0, 1] ∧ fv3 ∈ [1, 6]
(18)

where P is the number of possible permutations of
fv1, fv2, fv3. Due to computational considerations, only 8
discrete values in the interval [0,1] were used for both fv1

and fv2. For the same reason, the S’s possible values were
limited to 6. It is obvious that using more values could lead
to better accuracy, but this selection was done having in mind
an optimal balance between accuracy and computational cost
in terms of memory requirements.

In order to formulate our problem, we consider the complete
set of voxels V which belong to image Ii of the training set
and its corresponding label image Li that serves as the ground-
truth image. The goal is to define an optimal labeling f for V.
Finding the optimal labeling is equivalent to minimizing an
energy functional E(f). According to graph cut theory, the
energy functional can be formulated as:

E(f) =
∑
v∈V

Dv(fv) +
∑

v∈P,q∈Nv

Vv,q(fv, fq) (19)

where Dv is the individual voxel cost for voxel v and measures
at which extent label fv fits for voxel v given the ground-
truth segmentation and the resulting one. Nv is the set of
neighboring voxels of v and Vv,q(fv, fq) [66] is the interaction
potential between voxels v, q that penalizes discontinuities
between neighboring voxels and thus encourages spatial co-
herence and it is defined as Vv,q(fv, fq) = min(|fv1− fq1|+
|fv2−fq2|+|fv3−fq3|,K), where K is set equal to 4 based on
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experimentation. Within our framework, the data cost function
Dv is defined as:

Dv = |S ◦ ∂φ
∂t

(fv)− φGT | (20)

where ∂φ
∂t is given by equation (17) and φGT stands for the

level set formulation of the corresponding label image.
A similar formulation with that in equation (19) is also used

in order to find optimal ACM parameters, λ1i, λ2i for each
image in the training set. Thus, to calculate λ1i, λ2i, which
are set in [0, 1], graph-cuts are used to minimize the difference
between the region update term and the level set formulation
of GT:

Dv = |S ◦ ∂φR
∂t

(fv)− φGT | (21)

REFERENCES

[1] Pan American Health Organization, “Strategy and plan of action on
mental health”, Resolution CD49.R17 of the 49th Directing Council,
Washington DC: PAHO.

[2] N.A. DeCarolis, A.J. Eisch, “Hippocampal neurogenesis as a target for the
treatment of mental illness: a critical evaluation”, Neuropharmacology,
vol. 58(6), pp.884-93, 2010.

[3] H.U. Wittchen, et al., “The size and burden of mental disorders and other
disorders of the brain in Europe 2010”, European Neuropsychopharma-
cology, vol. 21, pp. 655-679, 2011.

[4] B. Bogerts, M. Ashtari, G. Degreef, J.M. Alvir, R.M. Bilder, J.A.
Lieberman, “Reduced temporal limbic structure volumes on magnetic
resonance images in first episode schizophrenia”, Psychiatry Res, vol.
35(1), pp. 1-13, 1990.

[5] A. Breier, R.W. Buchanan, A. Elkashef, R.C. Munson, B. Kirkpatrick,
F. Gellad, “Brain morphology and schizophrenia. A magnetic resonance
imaging study of limbic, prefrontal cortex, and caudate structures”, Arch
Gen Psychiatry, vol. 49(12), pp. 921-926, 1992.

[6] D. Velakoulis, S. J. Wood, M.T. Wong, P.D. McGorry, A. Yung, L.
Phillips, D. Smith, W. Brewer, T. Proffitt, P. Desmond, C. Pantelis,
“Hippocampal and Amygdala volumes according to Psychosis stage and
diagnosis: a magnetic resonance imaging study of chronic schizophre-
nia, first-episode psychosis, and ultra-high-risk individuals”, Archives of
General Psychiatry, vol. 63(2), pp. 139-49, 2006.

[7] A. Sumich, X.A. Chitnis, D.G. Fannon, S. O’Ceallaigh, V.C. Doku, A.
Falrowicz, “Temporal lobe abnormalities in first-episode psychosis”, Am
J Psychiatry, vol. 159(7), pp. 1232-1235, 2002.

[8] P. Brambilla, J.P. Hatch, J.C. Soares, “Limbic changes identified by
imaging in bipolar patients”, Curr Psychiatry Rep., vol. 10(6), pp. 505-
509, 2008.

[9] C. Langan, C. McDonald, “Neurobiological trait abnormalities in bipolar
disorder”, Mol. Psychiatry, vol. 14(9), pp. 833-846, 2009.

[10] H.P. Blumberg, J. Kaufman, A. Martin, R. Whiteman, J.H. Zhang,
J.C. Gore, D.S. Charney, J.H. Krystal, B.S. Peterson, “Amygdala and
hippocampal volumes in adolescents and adults with bipolar disorder”,
Archives of General Psychiatry, vol. 60(12), pp. 1201-1208, 2003.

[11] G.P. Winston, M.J. Cardoso, E.J. Williams, J.L. Burdett, P.A. Bartlett, M.
Espak, C. Behr, J.S. Duncan, and S. Ourselin, “Automated hippocampal
segmentation in patients with epilepsy: Available free online”, Epilepsia,
2013.

[12] European Medicines Agency, “Qualification opinion of low hippocampal
volume (atrophy) by mri for use in regulatory clinical trials in pre-
dementia stage of alzheimers disease”, 2011.

[13] R.L. Joie, A. Perrotin, V.d.L. Sayette, S. Egret, L. Doeuvre, S. Belliard,
F. Eustache, B. Desgranges, G. Chételat, “Hippocampal subfield vol-
umetry in mild cognitive impairment, Alzheimer’s disease and semantic
dementia”, NeuroImage: Clinical, Volume 3, 155-162, 2013.

[14] A.T. Du et al., “Magnetic resonance imaging of the entorhinal cortex
and hippocampus in mild cognitive impairment and alzheimer’s disease”,
Journal of Neurology, Neurosurgery and Psychiatry, 71, 441-447, 2001.

[15] C. R. Jack et al., “Medial temporal atrophy on mri in normal aging and
very mild alzheimers disease”, Neurology, 49, 786-794, 1997.

[16] B. Fontaine, D. Seilhean, A. Tourbah, C. Daumas-Duport, C. Duyck-
aerts, N. Benoit, B. Devaux, J.J. Hauw, G. Rancurel, O. Lyon-Caen,
“Dementia in two histologically confirmed cases of multiple sclerosis:
one case with isolated dementia and one case associated with psychiatric
symptoms”, J Neurol Neurosurg Psychiatry, 57, 353-9, 1994.

[17] M. Tsolaki, A. Drevelegas, S. Karachristianou, K. Kapinas, D. Di-
vanoglou, K. Routsonis, “Correlation of dementia, neuropsychological
and mri findings in multiple sclerosis”, Dementia, 48-52, 1994.

[18] S.J. Teipel, M.B. Schapiro, G.E. Alexander, J.S. Krasuski, B. Horwitz,
C. Hoehne, H.J. Müller, S.I. Rapoport, H. Hampel, “Relation of corpus
callosum and hippocampal size to age in nondemented adults with down’s
syndrome”, Am J Psychiatry, 160, 1870-8, 2003.

[19] C.R. Jack, et al., “Steps to standardization and validation of hippocampal
volumetry as a biomarker in clinical trials and diagnostic criteria for
Alzheimer’s disease”, Alzheimer’s and Dementia, 7(4): 474-485, 2011.

[20] J. Hass, E. Walton, H. Kirsten, J. Liu, L. Priebe, et al., “A Genome-Wide
Association Study Suggests Novel Loci Associated with a Schizophrenia-
Related Brain-Based Phenotype”, PLoS ONE 8(6), 2013.

[21] G.B. Frisoni, C.R. Jack, “Harmonization of magnetic resonance-based
manual hippocampal segmentation: a mandatory step for wide clinical
use”, Alzheimer’s and Dementia, 7(2):171-4, 2011.

[22] B. Fischl, D.H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove,
A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo,
N. Makris, B. Rosen, A.M. Dale, “Whole brain segmentation: Automated
labeling of neuroanatomical structures in the human brain”, Neuron, vol.
33(3), pp. 341-355, 2002.

[23] P. Aljabar, R.A. Heckemann, A. Hammers, J.V. Hajnal, D. Rueckert,
“Multi-atlas based segmentation of brain images: atlas selection and its
effect on accuracy”, NeuroImage, vol. 46, pp.726-738, 2009.

[24] A.R. Khan, M.K. Chung, M.F. Beg, “Robust atlas-based brain segmenta-
tion using multi-structure confidence-weighted registration”, International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), vol. 12, pp. 549 -557, 2009.

[25] R.A. Heckemann, J.V. Hajnal, P. Aljabar, D. Rueckert, and A. Ham-
mers, “Automatic anatomical brain MRI segmentation combining label
propagation and decision fusion”, NeuroImage, Volume 33, Issue 1, pp.
115-126, 2006.

[26] A.R. Khan, N. Cherbuin, W. Wen, K. Anstey, P.S. Sachdev, M.F.
Beg, “Optimal weights for local multi-atlas fusion using supervised
learning and dynamic information (SuprDyn): Validation on hippocampus
segmentation”, NeuroImage, vol. 56, pp. 126-139, 2011.

[27] D.L. Collins and J.C. Pruessner, “Towards accurate, automatic seg-
mentation of the hippocampus and amygdala from MRI by augmenting
ANIMAL with a template library and label fusion”, NeuroImage, vol. 52,
Issue 4, October 2010.

[28] J.M. Lötjönen, R. Wolz, J.R. Koikkalainen, L. Thurfjell, G. Waldemar,
H. Soininen, D. Rueckert, “Fast and robust multi-atlas segmentation of
brain magnetic resonance images”, NeuroImage, vol. 49, Issue 3, pp.
2352-2365, 2010.

[29] “Workshop on Multi-Atlas Labeling”, in Medical Image Computing
and Computer Assisted Intervention (MICCAI), 2012 (https://masi.vuse.
vanderbilt.edu/workshop2012/index.php/Main Page).

[30] L. Dice, “Measure of the amount of ecologic association between
species”, Ecology, vol. 26, pp. 297-302, 1945.

[31] H. Wang, J.W. Suh, S.R. Das, J. Pluta, C. Craige and P.A. Yushkevich,
“Multi-Atlas Segmentation with Joint Label Fusion”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35(3), 2013.

[32] A.J. Asman, and B.A. Landman, “Non-local statistical label fusion for
multi-atlas segmentation”, Medical Image Analysis, vol. 17(2), pp. 194-
208, 2013.

[33] H. Wang, P.A. Yushkevich, “Spatial Bias in Multi-Atlas Based Segmen-
tation”, Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 909-916, 2012.

[34] V. Caselles, R. Kimmel, G. Sapiro, “Geodesic active contours”, Inter-
national Journal of Computer Vision, vol. 22, no. 1, pp. 61-79, 1997.

[35] T.F. Chan and L.A. Vese, “Active contours without edges”, IEEE
Transactions on Image Processing, vol. 10, pp. 266-277, 2001.

[36] D. Mumford, J. Shah, “Optimal approximation by piecewise smooth
functions and associated variational problems”, Commun. Pure Appl.
Math , vol. 42, pp. 577-685, 1989.

[37] Y. Zhang, B.J. Matuszewski, L. Shark, C.J. Moore, “Medical Image
Segmentation Using New Hybrid Level-Set Method”, Fifth International
Conference BioMedical Visualization: Information Visualization in Med-
ical and Biomedical Informatics, pp. 71-76, 2008.

[38] T.F. Cootes, C.J. Taylor, D.H. Cooper and J. Graham, “Active Shape
Models-Their training and applications”, Computer Vision and Image
Understanding, vol 61, pp. 38-59, 1995.

[39] M.E. Leventon, W.E.L. Grimson, and O. Faugeras, “Statistical shape
influence in geodesic active contours”, IEEE Conference on Computer
Vision Pattern Recognition, vol. 1, pp. 316-323, 2000.



IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 14

[40] J. Yang, L.H. Staib, J.S. Duncan, “Neighbor-Constrained Segmentation
with Level Set Based 3D Deformable Models”, IEEE Trans. on Medical
Imaging, vol. 23(8), pp. 940-948, 2004.

[41] G.J. Edwards, C.J. Taylor, and T.F. Cootes, “Interpreting face images
using active appearance models”, Proceedings IEEE International Con-
ference on Automatic Face and Gesture Recognition, pp. 300-305, 1998.

[42] T.F. Cootes, G.J. Edward, C.J. Taylor, “Active appearance model”,
Proceedings of European Conference on Computing and Visualization,
1998.

[43] T.F. Cootes, G.J. Edwards, and C.J. Taylor, “Active Appearance Mod-
els”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 23, no. 6, pp. 681-685, Jun. 2001.

[44] M.B. Stegmann, R. Larsen, “Multi-band Modelling of Appearance”,
Image and Vision Computing, vol. 21(1), pp. 61-67, 2003.

[45] S. Hu and D.L. Collins, “Joint level-set shape modeling and appearance
modeling for brain structure segmentation”, NeuroImage, vol. 36, pp. 672-
683, 2007.
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