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Abstract—This work provides a systematic understanding of the requirements of live 3D mesh coding, targeting (tele-)immersive
media streaming applications. We thoroughly benchmark in rate-distortion and runtime performance terms, four static 3D mesh coding
solutions that are openly available. Apart from mesh geometry and connectivity, our analysis includes experiments for compressing
vertex normals and attributes, something scarcely found in literature. Additionally, we provide a theoretical model of the tele-immersion
pipeline that calculates its expected frame-rate, as well as lower and upper bounds for its end-to-end latency. In order to obtain these
measures, the theoretical model takes into account the compression performance of the codecs and some indicative network
conditions. Based on the results we obtained through our codec benchmarking, we used our theoretical model to calculate and provide
concrete measures for these tele-immersion pipeline’s metrics and discuss on the optimal codec choice depending on the network
setup. This offers deep insight into the available solutions and paves the way for future research.
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1 INTRODUCTION & RELATED WORK

W E have reached a milestone where it is now possible
to capture high quality 3D content in real-time. When

remotely transmitted, this new type of three-dimensional
(3D) media can facilitate the concepts of tele-presence
[1], [2] and tele-immersion (TI) [3], or otherwise more

recently referred to as Holoportation [4]. Contemporary
TI platforms [2], [3], [4] produce 3D media content in the
form of Time-Varying Meshes (TVMs), which - in contrast to
dynamic meshes - are challenging to compress efficiently in
an online manner. This stems from their varying vertex and
triangle counts, and therefore connectivity, across frames.

Consequently, TVM compression is accomplished either
by using specialized TVM codecs that exploit inter-frame re-
dundancy or by compressing each frame individually, using
standard static 3D mesh coding. A noteable example for the
former is [5] which, however, has increased time complexity
and cannot operate at high frame rates in order to support
real-time applications. For the latter, most works focus on
encoding time-varying geometry and neglect connectivity.
In [6] a first attempt to efficiently encode TVM geometry
is discussed. However, this method does not deal with
connectivity coding and also requires storing an increased
amount of side-information in order to properly decode the
geometry of the TVM stream. In [7] the authors improve
the geometry coding, but otherwise handle connectivity in
an equally inefficient way.
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The ongoing MPEG-I [8] standardization work also
focuses on point cloud coding [9], which deals with time-
varying geometry omitting the connectivity information.
Two notable recent works focusing on point cloud compres-
sion are [10] and [11] which deal with motion estimation
using octree subdivided macro-blocks and spectral graph
transforms respectively, albeit operating at rates prohibitive
for remote interaction scenarios. Moreover, point cloud rep-
resentations require specialized rendering and very dense
sampling in order to reach the levels of fidelity that textured
meshes provide.

All these characteristics, namely the lack of proper con-
nectivity handling and the incapability of current TVM
inter-frame codecs to operate at real-time speeds, along
with the relatively immature state of current point cloud
solutions, make the use of static mesh codecs for real-time
TI streaming a quite appealing choice.

In this work, we focus on benchmarking the perfor-
mance of existing, open-source, static 3D mesh compression
methods, in the context of 3D immersive media interactive
live streaming1. More specifically, we consider the following
codecs: Google Draco [12], Corto [13], MPEG’s Open 3D
Graphics Compression (O3dgc) [14] and OpenCTM [15].
Among those open-source implementations, Draco is based
on [16], Corto is based on [17], O3dgc is based on [18], while
OpenCTM is the only library which is not based on any
academic publication.

While summarizing surveys on 3D mesh compression
present in the literature [19], [20], [21], currently, there is
a gap on the evaluation of contemporary 3D mesh codecs

1. We consider live streaming in the context of interactive (tele-)
immersion media applications and not live broadcasting scenarios. The
latter has relaxed latency requirements, but the former imposes more
strict latency restrictions to enable multi-user interactions.
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in a consistent experimental setup that takes into account
not only geometric rate-distortion (RD) performance of the
codecs but also their RD performance when compressing
normals and attributes, as well as their time complexity,
which is crucial for live streaming. This paper aims to be
one of the first works towards filling this scarcity with its
main contributions being:

• A thorough and extensive benchmarking, based on
more than 50000 experiments of the most popular
available open source static 3D mesh codecs in a
consistent experimental setup, taking into account
their RD performance not only for vertex geometry
but also for normals and attributes.

• A run-time performance benchmarking of these
codecs which uncovers their time complexity.

• A live TI streaming case study which estimates their
impact on the end-to-end performance of the TI
pipeline, in terms of frame-rate and latency.

2 EVALUATED 3D MESH CODECS OVERVIEW

In this section, a brief overview of the underlying encoding
algorithms that are utilized by the studied open-source 3D
mesh codecs is presented. All codecs use a similar geometry
quantization scheme that is based on quantizing the mesh
coordinates to a predefined grid, sized according to the
meshes’ bounding box. For Draco, Corto and O3dgc we give
details on their connectivity compression algorithm while
for OpenCTM, apart from the connectivity compression al-
gorithm we give further details on its geometry compression
scheme which slightly deviates from the rest of the codecs.

2.1 Corto

Corto is a simple, yet fast, mesh compression algorithm. The
encoding process visits one triangle at a time and maintains
a list of the edges of the processed region’s boundary. The
processed region is always homeomorphic to a disk and
is always growing, as new neighboring triangles to the
region are being visited. The three edges of the first triangle
are first added to the list. Then, iteratively one edge is
being extracted from the list and the algorithm encodes the
relation of the not-yet-visited triangle incident to the edge
with respect to the boundary of the already encoded region.
Four cases are distinguished:

• SKIP: This is the case when the extracted edge is
a boundary edge (i.e. it has no other non-processed
triangles adjacent) or the adjacent triangle is already
processed.

• LEFT or RIGHT: These cases denote the condition
when the adjacent to the extracted edge triangle,
shares two edges with the processed region’s bound-
ary.

• VERTEX: This case indicates that the adjacent to the
extracted edge triangle, shares exactly one edge with
the processed region’s boundary.

Fig. 1 depicts all the previously mentioned cases.

2.2 Draco

Draco uses Edgebreaker [16] as its underlying mesh com-
pression algorithm. Edgebreaker traverses the 3D mesh in
a series of steps. At each step the algorithm visits and
encodes one not-yet-visited triangle of the mesh. At each
stage the input mesh is divided into disjointed regions that
may share a vertex but no edges. The edges bounding each
region constitute a polygonal curve which is called a “loop”.
The edges of the loop are called “gates” with one gate
being active at each step. At every step, there is a triangle
incident to the active gate that is not yet visited. Let v denote
the vertex of this triangle that is not incident to the gate.
Edgebreaker encodes the relation of v with respect to the
gate’s loop boundary and the gate itself. Edgebreaker stands
out 5 cases labeled: C, L, E, R, S. When v does not belong
to the active gate’s loop, this case is marked as C. When
v belongs to the active gate’s loop and is also incident to
the active gate, then this condition is marked as R, L or E,
depending on the side of the active gate where v is incident
to (R or L). When v is incident to both sides of the active gate
the condition is marked as E. Finally, the condition where v
belongs to the loop but is not incident to the active gate, is
marked as S. In Fig. 2 an example of all Edgebreaker cases
is depicted.

2.3 O3dgc

O3dgc uses TFAN [18] as its mesh compression algorithm.
TFAN is based on traversing the mesh vertices from neigh-
bor to neighbor. At each step of the process, one vertex
is marked as the focus vertex. TFAN traverses the input
mesh by visiting triangles incident to the focus vertex in
the order they appear in the Triangle Fan (TF) represen-
tation. In the TF representation, an ordered set of vertices
{v0, v1, v2, ..., vd+1} form a set of d triangles {tj} such that
∀j ∈ {0, 1, ..., d−1}, tj = {v0, vj+1, vj+2}. In that case, v0 is
considered to be the center of the TF. At each step of TFAN,
a new focus vertex is extracted from a queue and the set
of its incident triangles is partitioned in TFs. Let O(vj) = j
denote the traversal order of the j-th vertex extracted from
the queue, i.e. O(vj) denotes the order in which vj was
extracted from the queue. Let also L(j) denote the ordered
set of vertices sharing with vj at least one visited triangle.
The vertices in the set L(j) are ordered by their traversal
order. All the vertices of the TF of the focus vertex are
traversed is the order they define the TF. Let “active” vertex
denote the currently traversed vertex of the TF. If the active
vertex of the TF has been previously visited, a binary value
of 0 is emitted to the S binary vector, while 1 is emitted
in the opposite case. When the active vertex is visited for
the first time, it is marked as visited and is inserted to the
queue in order to later process it as a focus vertex. Further,
the active vertex is inserted to the set L(j). In the case
where the active vertex was already visited, two different
conditions are considered. In the first case, the active vertex
is already included to the set L(j). In that case, the relative
index of the vertex inside L(j) is stored into an additional
integer vector I . On the other hand, if the active vertex does
not belong to L(j), the traversal order difference between
the active vertex of the TF and the focus vertex, which
consists a negative value to aid decoding, is stored in I .
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Fig. 1. Enumerating Corto various cases. From left to right: (S)kip, (S)kip, (L)eft, (R)ight, (V)ertex. Already processed triangles in black. Not-yet-
processed triangles in blue. Currently encoded triangle in gray. Current active edge in red. Boundary edges in yellow and removed boundary edges
in magenta. Newly added edges in green.

Fig. 2. Edgebreaker triangle traversal example. The active gate where
traversal begins is in green. The grown boundary as the triangle travers-
ing evolves in time in black.

Fig. 3. Example of TFAN coding. Already processed triangles in black.
Not-yet-processed triangles in blue. Currently encoded TF in gray. Focus
vertex in green. Vertices visited for the first time are in yellow. Vertices
already visited in red. Vertices are labeled according to their traversal
order as focus vertices. Left: Encoding vectors: S = {1, 1, 1, 1, 1}, I =
{}. Right: S = {0, 1, 1, 1, 0}, I = {2, 1}.

This procedure continues until all mesh vertices have been
processed as focus vertices. TFAN, further improves upon
compression ratio by exploiting common configurations of
the S and I vectors and encoding them as a single integer
in the C vector and only further encoding parts of S and I
as appropriate.

2.4 OpenCTM

OpenCTM has three different algorithm variants namely:
Raw, MG1 and MG2. In this study, we consider only the
MG2 variant since it is the one performing always the best
in rate-distortion terms. MG2 is a simple algorithm that is
based on sorting and delta coding for both geometry and
connectivity. Initially, a grid that fits the bounding box of the
mesh is constructed and the mesh vertices are sorted based
on their index inside the grid and subsequently (upon equal-
ity) based on their x coordinate. The difference between each
vertex and its grid cell’s origin is computed and quantized
based on the requested precision. Then, the sorted vertices’
grid indices are delta coded and appended to the output
bitstream along with the quantized delta coordinates. For

connectivity, the standard 3 integer representation is con-
sidered, with each integer referencing one vertex of each
triangle. Firstly, the vertex references inside each triangle
are rearranged so that the first index is the smallest one.
Then, the triangles are sorted based on their first and second
indices, with the second indices being used when the first
indices are equal. Finally, a delta coding scheme on the final
triangle list is applied so that the first index of each triangle
is delta coded with respect to the previous triangle in the
list, while the other two indices of the triangle are encoded
as a difference with respect to the first index of the same
triangle.

3 TELE-IMMERSIVE STREAMING

Tele-immersion is based on the next-generation video,
which is 3D video of live performances and is grounded
on two pillars: i) real-time 3D reconstruction of dynamic
scenes and ii) real-time compression and transmission of
the generated 3D media. There are two main directions that
can be pursued for the production of 3D media. The first
one reconstructs the user out of acquired sensor data in a
per frame basis and is also the direction that preliminary
attempts in capturing humans in full 3D initially pursued
[1], [2], [22]. Recently, another direction emerged as non-
rigid registration in real-time became possible. These recent
non-rigid production systems [4] fuse all information into a
canonical model representation by deforming the input on
a per frame basis, achieving higher fidelity results as a con-
sequence of the implicit denoising that integrating temporal
information into the canonical model offers. Despite their
differences however, both types of 3D production methods
extract an isosurface from an implicit representation and
transform it into a triangulated surface, using the marching
cubes algorithm [23]. This results in a TVM M : {V,T},
where V and T are the set of vertices and triangle indices
respectively.

This geometric representation facilitates an elevated
sense of presence as it can naturally position a user’s 3D
representation into a shared space, be it either virtual or real,
in appropriate scale and in a coherent manner with respect
to the surroundings. However, fully transferring a user’s
identity in 3D requires photorealism which is achieved by
also capturing and transmitting her/his realistic appearance
in the form of color information. The aforementioned 3D
capture and production systems [3], [4] accomplish this by
additionally transmitting the color camera feeds in real-
time, which are then used as supplementary textures to the
geometry. In order to render the final representation in a
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photorealistic and high quality manner, these textures need
to be blended appropriately during rendering. This means
that additional information that will drive the blending
of the textures needs to be transmitted. Such metadata
typically involve blending weights b and/or texture iden-
tifiers i. From a 3D codec point of view, they are mainly
distinguished by their data type, be it either floating or
fixed point data. Furthermore, realistic embedding of the
transmitted 3D representation also requires lightening the
renderings appropriately, so as to appear blended into the
environment. This requirement is met with the transmission
of extra surface information in the form of the surface’s
normals n.

We can thus conclude that streaming TI payloads consist
of texture and geometry M : {V,T,N,A} encoded infor-
mation, where N and A : {B, I} are the set of normals and
attributes accompanying the TVM, with the attributes com-
prising of the necessary metadata (blending weights and
texture indices respectively) to render the TVM. As a result,
3D codecs used for encoding TI TVMs need to also encode a
variety of custom attributes in addition to the vertex V and
connectivity T information. Therefore, when comparing
different codecs and analyzing their performance, we need
to follow a holistic approach and benchmark heterogeneous
payload coding efficiency, as well as computational perfor-
mance, given that the targeted application requires minimal
latency to facilitate multi-party interactions.

4 CODEC EVALUATION

In this section, we discuss on the benchmarking of the stud-
ied 3D mesh codecs with respect to all different evaluation
aspects. First, in subsection 4.1, we begin by commenting
on the generation of the TI dataset which all codecs are
evaluated on.

Most of the available codecs are able to be configured in
ways that allow faster encoding / decoding times at the cost
of achieving lower compression rates for the same distortion
level. An exhaustive benchmarking of all available configu-
rations of each codec is not practical. Thus, for each codec,
we have chosen some preset values for those configurations
that span the available parameter ranges. We call those
preset configurations codec “profiles”. The specifications of
those profiles that we have chosen to benchmark are given
in detail in subsection 4.2.

Subsequently, in subsection 4.3, we report RD perfor-
mance of the codecs for three different cases: a) encoding
connectivity along with vertex positions (also referred to
as “geometry”), b) encoding connectivity along with vertex
positions and normals and c) encoding connectivity along
with vertex positions and attributes. In their respective
subsections, we also comment on the methodology and
the employed error metrics. Not all profiles affect the rate-
distortion performance in all of the previously mentioned
cases (i.e. there are profiles that only affect the compres-
sion of normals and not positions, or the compression of
attributes and not normals or positions, etc.). Thus, only
relevant profiles are being benchmarked for each case, while
for illustration purposes, equivalent profiles are grouped
together.

Finally, in subsection 4.4, we report the relative per-
formance for all codec profiles while also adding another
dimension into the analysis, runtime performance. To that
end, we benchmark the time taken to compress and de-
compress the TI meshes. This is accomplished by setting
target distortion values for all attributes specific to the TI
streaming scenario, which are used to drive the relative
performance analysis. This analysis is conducted for the
three aforementioned cases, as well as for the complete
(i.e. full) case that includes vertex positions, normals and
attributes all together.

4.1 Dataset
It is apparent, that the RD performance of any codec does
not solely depend on the chosen profile, but also on the
structure of the provided input mesh. The most relevant 3D
mesh codec evaluations that are presented in the literature,
evaluate the codecs’ performance on 3D meshes generated
by 3D artists, or meshes that are generated by a surface
reconstruction algorithm applied on high precision range
scanned data. The meshes generated by either of those
methods are clean and free of noise, as opposed to 3D
meshes that are generated by 3D reconstruction methods
that are applied on data acquired by depth sensors operat-
ing at high frame-rates.

In this work, we focus our analysis on a practical applica-
tion of mesh compression, live TI streaming. Consequently,
we use a set of meshes generated by an actual TI pipeline,
and more specifically by the 3D reconstruction method of
[22]. Our TI dataset comprises 10 randomly selected distinct
frames (i.e. 3D models) depicting 5 different subjects with
variability in poses, as the subjects were captured while
executing different performances (i.e. punching, kicking,
conversing, expressing emotions, etc.). We use 10 differ-
ent models with their average vertex count being 16868,
spanning the range of [10242 − 21064] vertices, and their
average triangle count being 30713, spanning the range of
[18792− 36520] triangles.

4.2 Codec Profiles
In this subsection, we give a brief overview of the available
configuration options that are made accessible via the pro-
grammable interface of each 3D mesh codec participating
in this benchmark. For each one of them, the values of
the corresponding configuration implicitly affects its rate-
distortion performance and execution time. As previously
introduced in the beginning of Section 4, we select and name
specific “profiles” that comprise sets of specific configura-
tion options for each codec. In the following subsections
these profiles and their options are presented.

4.2.1 Corto
Corto encodes geometry and vertex normals at a quality
specified in the form of quantization bits while custom float-
ing point vertex attributes are quantized using an explicit
quantization step. Custom integer vertex attributes are not
directly supported. To overcome this limitation, we treat
these attributes as floating points quantized with a quantiza-
tion step of 1.0 unit. Corto is benchmarked in two variations
that differ only in the normals prediction scheme. In Corto’s
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default profile, which we call “Corto1”, the normals are esti-
mated from the quantized geometry and their differences
with the quantized actual normals is encoded using the
octahedron projection representation [24]. In Corto’s second
profile (“Corto2”) the quantized normals in the octahedron
projection representation are delta coded with respect to a
neighboring quantized normal belonging to a quad incident
to the normal’s vertex. In both profiles, the encoding of the
normals are driven by the Corto’s connectivity traversal of
the mesh.

4.2.2 Draco
Draco encodes all kinds of floating point vertex attributes
(positions, normals and custom attributes) at a detail level
specified by a given number of quantization bits. Custom
integer attributes are supported as well. In our case, the per-
vertex texture identifiers are losslessly encoded as integers,
while the texture blending weights’ precision is controlled
by a specified number of quantization bits. The Draco inter-
face allows adjusting the processing time versus compres-
sion ratio mixture via a “speed” setting expressed on an
integer scale from 10 (denoting the combination of options
that minimize processing time) to 0 (denoting the ones that
lead to the most possibly compressed representation). We
chose to benchmark three configurations, namely “Draco2”,
“Draco5” and “Draco9”, with the speed setting set to 2, 5
(the default) and 9 (the fastest setting possible that utilizes
the underlying EdgeBreaker [16] algorithm) respectively.

4.2.3 O3dgc
Apart from standard support for controlling geometric loss
via an externally provided number of quantization bits,
and in a way similar to Draco, O3dgc also supports vertex
normals as well as custom integer and floating point vertex
attributes. Using a combination of available options, we
opted for the benchmark of three encoding configurations
that differ in the geometry and custom attributes’ pre-
diction strategy. The “default” profile (O3d) makes use of
parallelogram prediction [25] for the geometry, differential
prediction for the custom floating point attributes and no
prediction for the integer ones. The “fast” profile (O3f ) uses
differential prediction for the geometry and no prediction
for both integer and floating point custom attributes. Finally,
the “small” profile (O3s) uses differential prediction for all,
geometry, integer and floating point vertex attributes. In all
of the aforementioned selected profiles, the (unit) normals
are first converted into a representation that exploits unit
sphere inscription in a cube. Apart from parallelogram
prediction which only applies to geometry, in the differential
prediction mode each vertex position, normal or attribute is
delta coded with respect to the value of the corresponding
position, normal or attribute belonging to a neighboring
vertex based on the connectivity of the mesh.

4.2.4 OpenCTM
Instead of specifying the number of quantization bits,
OpenCTM only allows controlling the geometric, nor-
mal and attribute loss via an explicit quantization step.
OpenCTM does not support integer attributes and thus, as
with Corto, we encode the per-vertex texture identifiers in a

floating point representation using a quantization step of 1.0
unit. Apart from the standard OpenCTM implementation
which uses LZMA (a variant of [26]) for entropy compres-
sion, we have implemented a custom version which replaces
the LZMA entropy compression module with LZ4 [27] (a
faster but less efficient variant of [26]). Therefore, we have
chosen to use two OpenCTM profiles, called “CTM-LZMA”
and ”CTM-LZ4”, which both use the OpenCTM’s internal
MG2 algorithm but differ in the lossless entropy compres-
sion algorithm. Both entropy compression algorithms were
chosen to be operated at the fastest possible speed setting,
favoring fast execution times over high compression ratio.

4.3 Rate-Distortion Performance Evaluation
In this subsection we report RD curves for the cases (a),
(b) and (c) that were introduced in the beginning of this
section. For each case we report average performance in
bit-rate and the corresponding distortion metric across all
the models of the respective dataset. This is accomplished
via averaging the bit-rate and the distortion metric for
constant quantization step or number of quantization bits
across the different models of the dataset. This analysis
leads to extracting average codec performance in real-world
captured data for each fixed value of the parameters that
control distortion.

4.3.1 Case A: Connectivity & Vertex Positions
First, we evaluate the codecs’ average RD performance
when compressing geometry and connectivity only. The
geometric distortion metric that we use is the standard
Hausdorff distance between the compressed and the un-
compressed meshes which is reported by the METRO [28]
tool with respect to (wrt) the mesh’s bounding box diagonal.
For the evaluation of the distortion metric, the METRO
tool was used with its default parameterization to sample
vertices, edges and faces by taking a number of samples
that is approximately 10 times the number of triangles in
the model.

Benchmark results
The benchmark results of this experiment for all profiles
of the mesh codecs are depicted in Fig. 4, top. It can be
easily observed that in geometry RD terms, both OpenCTM
profiles perform significantly worse than the other codecs,
hampering graph’s readability. Thus, a detailed view that
helps to better illustrate the performance differences of the
other codecs, in their various profiles, is also offered as an
inset.

The best codec in terms of RD is the slowest profile
of Draco. The second best profile in the same terms is
Draco5, which has very similar performance to O3d. Third
in order, O3f/s profiles perform similar to Draco9. Excluding
OpenCTM, Corto has the least efficient algorithm in terms
of RD, producing about one half the compression rates
produced by the best profile of Draco, for high to mid
distortion levels.

Finally, another important element depicted in Fig. 4
is that, for all codecs, when compressing geometry alone,
the geometric distortion of the compressed mesh is solely
determined by the value of the quantization parameter and
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does not depend in any way on the codec profile settings.
On the other hand, bit-rate depends on the combination of
the quantization parameter’s value and the codec profile
setting.

4.3.2 Case B: Connectivity, Vertex Positions & Vertex Nor-
mals
Secondly, we conduct an experiment to evaluate the RD
performance of the various codec profiles for the case of
compressing mesh geometry and connectivity jointly with
vertex normals. The nature of this experiment is two-
dimensional, as the final bit-rate is affected by two quan-
tization parameters: one for the vertex geometry and one
for the vertex normals. Each quantization parameter con-
trols the distortion level in its domain respectively. For an
evenhanded approach to benchmarking the various codec
profiles, we first pick a fixed level of geometric (Hausdorff)
distance and for each codec profile we try to tune the
quantization parameter for vertex positions to a proper
value that leads to this level of geometric distortion. Subse-
quently, we variate the normal quantization parameter for
each codec profile and draw RD curves that illustrate the
normal distortion for a given bit-rate. We repeat the above-
mentioned process for two different levels of geometric
distortion, resulting into 2 different normal RD curves. Since
each codec has its own way to perform quantization, exact
geometric distortion equivalence across codecs cannot be
achieved. However, our strategy to tune the vertex position
quantization values for each codec individually, ensures that
when evaluating the normal distortion versus bit-rate, the
distortion level of vertex positions across codecs is as close
as possible to the preset target level.

For the definition of the normal distortion metric, we
follow a Hausdorff-like root mean squared error (RMSE)
approach that measures the angle difference between the
compressed and original mesh’s vertex normals, relying on
a vertex correspondence strategy based on proximity. More
specifically, let A and B denote two meshes with vertices
v ∈ A and u ∈ B. Let also n(v) and n(u) denote the
normals of vertex v and u, respectively. Then we define the
following error function that calculates the normal distor-
tion from mesh A to mesh B:

nerr(A,B) =
√

1

N

∑
v∈A

[
min

u∈N (v)
∠(n(v),n(u))

]2
(1)

with N ∈ N∗ denoting the vertex count in A and N (v) =
{u ∈ B : ||u−v|| < r}, with r a predefined radius distance.
Let Mr denote a reference (uncompressed) mesh and Mc

denote its compressed version. We define the final normal
error distortion metric betweenMc andMr to be:

en(Mr,Mc) = max(nerr(Mr,Mc), nerr(Mc,Mr)) (2)

For each pair of Mc and Mr we set the parameter r
equal to their Hausdorff distance.

Benchmark results
The benchmark results of this experiment are presented
in Fig. 4 middle and bottom sub-figures, with each one
presenting results for a different geometric distortion level.

One of the most important observations of this experiment
is that the RMS error for normals for the first profile of
Corto1 and both profiles of OpenCTM does not converge
to zero, even for the higher bit-rates. Thus, in general, they
are significantly outperformed in rate distortion terms by
the rest of the codecs.

As with the previous case, when compressing geometry
along with normals, the best codec in RD terms is Draco2,
followed by the same codec’s Draco5 profile. For higher
geometric distortion (Hausdorff distance with respect to
the bounding box diagonal ≈ 0.0027) third in order comes
Draco9. Fourth and fifth come the O3dgc’s profiles (O3d and
O3f/s) respectively, while last in order is Corto2. For lower
geometric distortion (Hausdorff distance wrt bounding box
diagonal≈ 0.00065) the two O3dgc’s profiles perform closer
to Draco9.

In contrast to the previous case, in the present scenario
and for the Corto codec, the distortion of normals in the
compressed mesh is not solely controlled by the quantiza-
tion parameter but is also affected by the codec’s profile.
In RD terms, the first profile of Corto is clearly surpassed
by the second profile of the same Codec. Furthermore,
while for Draco, O3dgc and Corto2 the geometric distortion
has an insignificant impact on the final distortion of the
compressed normals, this is not the case for Corto1 and both
profiles of OpenCTM. The latter codec profiles compress
normals in a way that their distortion is also affected by
the distorted geometry of the compressed mesh, with lower
geometric loss improving the distortion of the normals for
the same quantization parameters.

4.3.3 Case C: Connectivity, Vertex Positions & Vertex At-
tributes
Last, we benchmark the RD performance of the various
codec profiles for the case of compressing mesh geometry
and connectivity along with vertex attributes. Similar to
the case with normals (Case B - subsection 4.3.2), the na-
ture of this experiment is also two-dimensional, with two
quantization parameters controlling geometric and attribute
distortions respectively. We follow the same approach as we
did previously, by first picking an appropriate value for
the corresponding quantization parameter that leads to a
preset level of geometric distortion. Then, we proceed in
evaluating attribute distortion versus bit-rate by adjusting
the attribute quantization parameter to various values. As
already discussed in Section 3 in the TI streaming case, the
vertices of the meshes have both integer and floating point
attributes. Specifically for the case of [22], they have two
integer texture identifiers and one floating point blending
weight for each texture pair which are used during render-
ing. In our experiments, the attributes corresponding to the
texture identifiers are encoded losslessly while the only at-
tribute that is subject to distortion is the one corresponding
to the blending weight. The final bit-rate though, is affected
by both types of vertex attributes.

To measure the attribute distortion between the com-
pressed and the original (uncompressed) meshes we define
an error metric which resembles the error metric we used
for normal distortion. In particular, if A and B denote two
meshes with vertices v ∈ A and u ∈ B and a(v) and a(u)
denote a single floating point attribute of vertices v and



JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 7

Fig. 4. Rate-distortion curves for all codecs when compressing geom-
etry (vertex positions and connectivity) only - top - and geometry with
normals - middle and bottom. For all cases, zoom-ins are provided as
insets to better illustrate differences for those codecs whose RD curves
are very close. For the normals RD curves, results are shown for a
constant geometric distortion level as mentioned in each plot’s subtitle.

u, respectively we define the following error function that
calculates the attribute distortion from mesh A to mesh B:

aerr(A,B) =
√

1

N

∑
v∈A

[
min

u∈N (v)
|a(v)− a(u)|

]2
(3)

with N and N (v), having the same notion as in subsection
4.3.2. For the uncompressed mesh Mr and its compressed
version Mc, we define the final attribute error distortion
metric betweenMc andMr to be:

ea(Mr,Mc) = max(aerr(Mr,Mc), aerr(Mc,Mr)) (4)

Fig. 5. Rate-Distortion performance (Attribute RMS distortion vs bit-rate,
for two fixed geometric distortion levels) when compressing Geometry
along with Vertex Attributes. On the top and bottom, rate-distortion
comparisons for high and low geometric losses, respectively.

Similar to subsection 4.3.2, for each pair ofMc andMr

we set the parameter r equal to their Hausdorff distance.

Benchmark results

We benchmark the various codec profiles for their RD
performance in encoding attributes for the two levels of
geometric distortion that we set in subsection 4.3.2, namely
Hausdorff distance (with respect to the bounding box)
≈ 0.0027 and ≈ 0.00065. The respective RD curves are
depicted in Fig. 5.

Ordering the various codec profiles in RD terms for this
particular case is very clear. Draco is the best performing
codec under the RD criterion, with its faster profiles con-
sistently producing higher bit-rates for the same level of
distortion, but still achieving better RD performance than
all other codecs. Fourth in order comes O3s followed by
O3d and O3f . Last in order are Corto (both of its profiles
perform the same) and the two profiles of OpenCTM.

From Fig. 5 it can be deduced that the final attribute
distortion level achieved by all codecs is not affected by their
profiles. The codec profiles only affect the final bit-rate. Fur-
ther, as observed in Fig. 5, the level of geometric distortion
has only a small impact on the achieved distortion levels of
the attributes. In addition, the ordering of the codecs in RD
terms does not change when geometric distortion decreases,
except that O3s reaches the performance of Draco9.
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4.4 Relative Comparison of Codec Performances

In the current section of the paper we discuss the relative
performance of the studied codec profiles in four aspects of
mesh compression namely bit-rate, distortion, encoding and
decoding times. We perform the analysis for four total cases:
compressing connectivity with vertex positions, compress-
ing connectivity with vertex positions and normals, com-
pressing connectivity with vertex positions and attributes,
and finally compressing connectivity along with vertex po-
sitions, normals and attributes altogether. An exhaustive
comparison in all of those aspects for all the possible values
of the quantization parameters is impractical, thus, we aim
to set a specific target level of distortion for each generic
vertex attribute and compare the various codec profiles in
the four aforementioned aspects.

Since our study is motivated by the application of those
codecs in a TI scenario, we pick the target distortion levels
for geometry, normals and attributes as such, in order to
align with this practical use case. In particular, for geom-
etry, we choose the Hausdorff distance with respect to the
bounding box diagonal to be ≈ 0.00065 which is equivalent
to ≈ 0.0003 meters, i.e. 0.3mm RMS error (as reported
by the METRO tool) and ≈ 0.0012 meters, i.e. 1.2mm of
actual Hausdorff distance. For normals, we target the 1◦

RMS angle distortion and for the attribute corresponding to
the texture blending weight (a value which lies in the range
[0− 1]), we aim at an RMS distortion level of about 0.0145.
As already discussed in the previous section, the exact target
level of distortion, in all the generic vertex attributes, cannot
be achieved by all codecs and thus, for each codec profile,
we find the value of the quantization parameter that leads
to a distortion which is as close as possible to the target level
that we have set.

To measure the encoding and decoding times for each
codec profile, we average the time taken for each codec
to compress / decompress the respective mesh 30 times,
in order to estimate the time taken to complete a single
compression / decompression pass. For each mesh we
convert the time measured by this process in per vertex
time units by dividing the time needed for each pass with
the mesh’s vertex count. Finally, we average the numbers
corresponding to the encoding / decoding times per vertex
for all the meshes in the dataset to get a representative
value of the codecs’ runtime performance. At this point it
is important to note that all codecs were built from source
code with all speed optimization options turned on2.

The figures that we present show the relative perfor-
mance of each codec with respect to the performance of the
best codec in each aspect and for each case. In all figures,
lower values indicate better performance. The figures are in
the form of bar charts, with the values of the bars being the
average codec performance in the respective aspect, across
all models. Additionally, we show error bars that indicate
the standard deviation of the measurements around the
average for the different models of the dataset.

2. Further, no codec implementation contains any type of assembly
optimizations or any CPU specific instruction extension sets.

4.4.1 Case A: Connectivity & Vertex Positions
The results of the first case when compressing connectivity
and geometry alone are depicted in Fig. 6. The geometric
distortion for all codecs is approximately equal, except for
OpenCTM which produced meshes with 26% more geo-
metric distortion than the rest of the codecs. In all aspects
and for all codecs, the standard deviation of each metric
across the different models of the dataset is relatively small
compared to the average value, making the average value a
good representative of the codec performances.

Comparing O3d with the O3f/s profiles, the latter two
produce ≈ 4.5% larger bit-rate but are about ≈ 20.5% and
≈ 27.35% faster in encoding and decoding respectively.
Draco9 produces ≈ 18% larger bit rate than Draco2 but at
the same time it is ≈ 20% and ≈ 16.3% faster in encoding
and decoding. Thus, Draco’s profiles showcase a better
trade-off between bit-rate and speed than O3dgc’s. Further,
comparing Draco with O3dgc, we observe that Draco2 is
better than O3d in all aspects while the same holds for
Draco5 when compared to the O3f/s profiles. Corto has the
faster encoder about ≈ 30.5% faster than Draco9 but at the
same time producing ≈ 48.3% larger bit-rate. The fastest
decoder is CTM-LZ4, but coming at a very increased bit-
rate compared to other codecs. Further, the performance of
CTM-LZMA is inferior to all profiles of Draco, Corto and the
O3f/s profiles in all aspects.

In order to showcase the discrepancy in RD between
quick and performant encoding we also offer BD-rates
[29], [30] for those codecs lying at these opposite perfor-

mance ends. While Fig. 6 showcases Draco’s superiority in
producing low bit-rates, there is no clear decision between
Corto and OpenCTM with respect to encoding/decoding
speed. To that end, we also factor in their relative perfor-
mance in lower bit-rate production, and thus, offer BD-
rate comparisons for Draco and Corto. Table 1 presents the
results for signal-to-noise ratio and bit-rate gains in relation
to the different profiles. For Corto both profiles produce
the same geometric rate-distortion curves, while for Draco
separate comparisons are offered for each speed preset.
Similar to [31], when calculating the PSNR we use closest
point correspondences and the bounding box’s diagonal
as the peak value3. While it is evident that coding speed
comes at the expense of efficiency, we also observe smaller
differences between Draco’s slow and fast speed profiles.

4.4.2 Case B: Connectivity, Vertex Positions & Vertex Nor-
mals
In Fig. 7 relative codec performances for the case of com-
pressing vertex normals along with mesh connectivity and
geometry are given. The geometric distortions in this case
for all codec profiles are the same as presented in subsection
4.4.1. While we have set a target of 1◦ (degree) RMS, Corto1
could not achieve a better distortion performance than ≈ 6◦

RMS. This behaviour has been mentioned in the discussion
of Section 4.3.2. For Corto1 we’ve set the quantization pa-
rameter to the value that led to the best distortion level
it can achieve with the minimum possible bit-rate, since

3. Given that our test models are reconstructed in life-size scale after
a uniform voxelization process, we expect consistent results across
models.
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TABLE 1
BD rates for Draco’s and Corto’s profiles. BD-SNR presents the quality gain for equal bit-rates, while BD-BR presents the percentage gain in

bit-rate for the same quality.

BD-SNR (dB) BD-BR (%)

Corto12 Draco2 Draco5 Draco9 Corto12 Draco2 Draco5 Draco9

Corto12 N/A -26.57 (1.82) -23.1 (1.75) -22.48 (1.97) N/A 88.59 (6.99) 67.44 (5.66) 60.36 (5.51)
Draco2 26.57 (1.82) N/A 4.12 (0.25) 5.6 (0.42) -46.91 (2.01) N/A -10.39 (0.6) -12.98 (0.86)
Draco5 23.1 (1.75) -4.12 (0.25) N/A 1.45 (0.41) -40.22 (2.078) 11.6 (0.75) N/A -2.89 (0.97)
Draco9 22.48 (1.97) -5.6 (0.42) -1.45 (0.41) N/A -37.57 (2.19) 14.93 (1.13) 2.98 (1.03) N/A

Fig. 6. Relative Comparison of Codec Performances: Geometric Distortion, Bitrate, Encoding and Decoding times when compressing connectivity
along with geometry alone. The presented results correspond to a ≈ 0.00065 geometric Hausdorff distortion (with respect to the bounding box’s
diagonal).

further increasing the bit-rate did not significantly reduce
the normal distortion. In addition, the normal distortion
measurements taken for the previously mentioned profile
have large standard deviation across the different models
compared to all other codecs whose distortion performance
is consistent for all models in the dataset.

Although Draco2 produces the best bit-rate, it has a
significant shortcoming in decoding time which is signifi-
cantly worse than the rest of the codecs. However, Draco5
is better than O3d in all aspects, while the same holds
for Draco9 over O3f/s. The fastest encoder and decoder is
Corto2. Moreover, Corto2 is consistently better than Corto1
and both OpenCTM’s profiles in all aspects. Finally, Corto2
produces ≈ 40% larger bit-rate compared to Draco9 but is
about ≈ 31.5% and ≈ 50% faster in encoding and decoding
time, respectively.

4.4.3 Case C: Connectivity, Vertex Positions & Vertex At-
tributes

We present relative codec performances for the case of
compressing mesh connectivity along with vertex geometry
and attributes in Fig. 8. Geometric distortion across codecs is
the same as in subsection 4.4.1. Corto produces about≈ 50%
more RMS attribute distortion than the best performing
codec (OpenCTM), while the others (Draco and O3dgc)
produced ≈ 7% more distortion than OpenCTM.

In this case, regarding O3dgc, the O3f performs closely
to O3d in bit-rate terms, while for the encoding and decod-
ing times it performs significantly better. O3s produces the
lowest bit-rate (closely to Draco9) at the cost of increased
time complexity.

Draco’s profiles produce the best bit-rates. However,
relative to one another, their encoding and decoding times
vary disproportionately to the bit-rate gain. Draco’s faster
profile (Draco9) surpasses O3d and O3f in all aspects. Fur-
thermore, it competes with O3s in bit-rate but outperforms
it in encoding and decoding runtimes.

Corto, still, has the fastest encoder and the second fastest,
but competitive, decoder after CTM-LZ4. Moreover, Corto
performs better than CTM-LZMA in all aspects and better
than O3f in all other aspects apart from decoding time.
Comparing Corto with the fastest profile of Draco we see
that Draco’s profile produces about ≈ 33.3% reduced bit-
rate while it is ≈ 51% and ≈ 65.8% slower in encoding
and decoding times, respectively. Thus, Corto offers a good
balance between produced bit-rate and encoding/decoding
runtimes.

4.4.4 Case D: Connectivity, Vertex Positions, Vertex Nor-
mals & Vertex Attributes
Finally, in Fig. 9 relative codec performances for the case of
compressing connectivity along with all of vertex positions,
normals and attributes are given. The distortion levels for
this case are the same as the ones discussed in all the
previous paragraphs of this section.

Regarding O3dgc, O3f produces slightly larger bit-rate
that the other profiles of the same codec, but it has a
significant improvement on encoding and decoding times.
For Draco, once again we observe that the various profiles
perform relatively close to one another in bit-rate, but they
behave very much differently in encoding/decoding times
with the profile performing better in bit-rate being consid-
erably slower. When comparing Draco with O3dgc, we ob-
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Fig. 7. Relative Comparison of Codec Performances: Normal Distortion, Bit-rate, Encoding and Decoding times when compressing connectivity
along with geometry and normals. The presented results correspond to ≈ 0.00065 geometric Hausdorff distortion (with respect to the bounding
box’s diagonal) and ≈ 1o normal angle distortion.

Fig. 8. Relative Comparison of Codec Performances: Attribute Distortion, Bit-rate, Encoding and Decoding times when compressing connectivity
along with geometry and attributes. The presented results correspond to ≈ 0.00065 geometric Hausdorff distortion (with respect to the bounding
box’s diagonal) and ≈ 0.0145 attribute RMS distortion.

serve that the fastest profile of Draco (Draco9) outperforms
all O3dgc’s profiles in all aspects.

In this experiment, Corto has the fastest encoder and de-
coder. Further, it surpasses both OpenCTM’s profiles in all
aspects. Compared to Draco9 it produces ≈ 43% increased
bit-rate but it is ≈ 33.7% faster in encoding and ≈ 48.7%
faster in decoding.

4.4.5 Discussion on codec relative performances
Overall, in all the cases above, in terms of bit-rate, the best
performing codecs are Draco and O3dgc with their various
profiles performing close to one another. Corto’s profiles
are the best next followed by CTM-LZMA and CTM-LZ4.
Regarding the encoding time, the best codec in all experi-
ments is Corto, while for decoding time Corto remains the
fastest decoder except from the case of decoding a mesh
that contains only geometry and connectivity, in which
case CTM-LZ4 performs better. Evidently, we observe that
when attributes (normals, texture indices, blending weights)
are progressively added into the payload, Corto2 performs
slightly better in terms of bit-rate wrt the Draco baseline pro-
file (Draco2), and that its runtime performance gain increases
multifold. Moreover, O3dgc’s slightly inferior performance
in attribute coding is also observed when compared to
Draco’s baseline. Interestingly, OpenCTM’s attribute coding
appears to be the most performant in terms of relative gains,
albeit still being overally inefficient.

5 LIVE STREAMING STUDY

In this section of the paper we conduct a theoretical study on
the performance of all codec profiles in a TI live streaming
scenario by plugging the actual measurements we have
acquired via benchmarking to a theoretical model of the
typical TI pipeline. The theoretical model aims to determine
the end-to-end latency of the streamed frames and the actual
frame-rate at the receiver’s side. The results of this theoret-
ical analysis are influenced by the codecs’ performances in
all the aspects we have benchmarked previously (namely
bit-rate, encoding and decoding runtimes). Futhermore, the
analysis would not be complete if we didn’t take into
account the different possible network conditions that may
apply in a TI scenario. Since none of the codecs participating
in this study can decompress incomplete or erroneous com-
pressed payloads, in the following study we assume that
the employed network layer uses the Transmission Control
Protocol (TCP) which guarantees both payload integrity and
payload delivery.

In subsection 5.1 we introduce the TI pipeline along
with the theoretical model that we use to opine about
frame latency and frame-rate at the side of the receiver. In
subsection 5.2 we present the calculation of the theoretical
model’s variables, while in subsection 5.3 we depict the
results of the theoretical analysis for each codec profile and
for various network conditions.
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Fig. 9. Relative Comparison of Codec Performances: Bit-rate, Encoding and Decoding times when compressing connectivity along with geometry,
vertex normals and vertex attributes. The presented results correspond to ≈ 0.00065 geometric Hausdorff distortion (with respect to the bounding
box’s diagonal), ≈ 1o normal angle distortion and ≈ 0.0145 attribute RMS distortion.

5.1 The Tele-Immersion Pipeline and the Theoretical
Model
In Fig. 10, the main components of a TI pipeline are given.
The source is supposed to be a 3D reconstruction component
that produces 3D meshes to be transmitted in real-time to
remote parties. We do not impose any restrictions on the
source (such as a specific output frame rate) because we
want to study the capacity of the pipeline independent from
source’s characteristics. The 3D meshes produced by the
source are subsequently compressed using anyone of the
previously introduced codec profiles and then transmitted
to a remote party which receives and decompresses the re-
ceived payload prior to rendering. At the sender’s side, the
compression and transmission of the frames are assumed to
be run in parallel (e.g. in separate threads with one thread
compressing the next frame while the previous frame is
transmitted to the network). When the compression of the
current frame has been finished, the compressed representa-
tion is enqueued to the transmission queue (“Queue #1”) in
order to be sent to the network when the transmission of the
previous frame finishes. Similarly, at the receiving side, the
data received by the network are put in the decompression
queue (“Queue #2”) in order to be decompressed after the
previously received frame has finished decompression. For
the system to be as real-time as possible (i.e. minimize
latency), both previously mentioned queues are assumed
to store only one frame. If a new frame is enqueued while
the previous frame has not been processed yet, the previous
frame is dropped and its place is taken by the newer frame.

At each point of the pipeline we define auxiliary vari-
able names that will help us with analyzing its end-to-end
performance. These variables are:

• cmprs out: The rate at which the encoder can pro-
vide compressed frames in frames per second.

• cmprs lat: The time needed by the encoder to com-
press a single frame in seconds.

• q1 wait t: The maximum time a frame will wait in
the transmission queue (“Queue # 1”) in seconds.

• trans push: The maximum rate at which the com-
pressed frames can be pushed into the network in
frames per second

• trans lat: The time, in seconds, that is required for
a compressed frame to be transmitted over to the

remote party.
• trans out: The rate at which the frames arrive at the

receiver from the network, in frames per second.
• q2 wait t: The maximum time a frame will wait in

the decompression queue (“Queue # 2”) in seconds.
• decmprs push: The maximum rate at which the re-

ceived frames can be sent for decoding, in frames per
second.

• decmprs lat: The time, in seconds, needed by the
decoder to decompress a single frame.

• decmprs out: The output frame rate of the decoder
in frames per second.

Following an analytic path to estimate the actual frame-
rate and end-to-end latency of the TI pipeline can get cum-
bersome and complex. However, by making a few, simple,
reasonable assumptions, we can calculate analytically lower
and upper bounds of the pipeline’s end-to-end latency and
an estimate of its frame-rate.

We will first assume that the source is producing 3D
meshes of approximate equal vertex and triangle count in
each frame, which is a reasonable assumption when 3D
reconstructing real humans standing at natural poses with a
fixed resolution volumetric 3D reconstruction method.

Then, from the benchmark results that we have con-
ducted for the various mesh codecs, we can acquire a good
estimate on the encoding/decoding time needed by each
codec in order to compress or decompress a frame. This is
accomplished by first calculating an intermediate variable
measured in “seconds per vertex” for the encoding and
decoding operations, respectively. This variable is calculated
by dividing the encoding / decoding time required to
compress a mesh by the total number of vertices in the
mesh and average across all models of the dataset, for
given quantization parameters. With this data we can then
estimate the average encoding and decoding time required
by the respective codec in order to compress / decompress
the meshes of approximately equal vertex count produced
by the source.

In a typical TI pipeline the 3D reconstructed human
meshes are further textured using the color images that
were captured during frame acquisition. In our study, we
account for an additional payload size that corresponds to
4 texture images (i.e. when using a 360◦ capturing setup of
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Fig. 10. Tele-Immersion Pipeline with variable names for live streaming study. Components of the Tele-Immersion pipeline are in teal (source and
sink) or gray (processing stages), while variable names are depicted in orange.

four cameras) compressed separately, via the standard H.264
video codec [32] at a moderate quality. Concerning the ad-
ditional processing time for compressing / decompressing
the four textures, we will use typical encoding / decoding
times that we calculated with internal benchmarking using
the nVIDIA’s GPU accelerated video codec NVENC [33]
running on a GTX 1070 GPU.

For the network conditions we will assume a moderate,
constant packet loss probability. Furthermore, since we as-
sume TCP as the underlying network protocol, we will use
the Mathis equation [34] to calculate the effective bandwidth
of the network link based on the line’s round trip time
(RTT), bandwidth and packet loss probability. The Mathis
equation is applicable to limit the effective bandwidth of
the line when the maximum TCP congestion window (for
the given packet loss) is smaller than the line’s bandwidth
delay product. Otherwise, the effective bandwidth of the
link is equal to the line’s bandwidth.

Finally, we will assume that the mesh compression / de-
compression components will be run on modern hardware,
similar to what we used for these experiments (i.e. an Intel
Core i7-7700K CPU clocked at 4.5 GHz - 4 physical cores, 8
logical threads - equipped with 32 GB of DDR4 RAM).

5.2 Calculating the variables of the TI pipeline’s theo-
retical model

In order to calculate the aforementioned variables of the the-
oretical model of the TI pipeline, we will first need to define
some additional supplementary variables that depend on
the mesh codec used and the network line’s characteristics.
Those supplementary variables are given next:

• cmprs t: The time needed to compress the 3D mesh
and its four accompanying textures, in seconds. This
time is the time needed by the mesh codec to com-
press the 3D mesh and the video codec to compress
the four textures.

• decmprs t: The time needed to decompress the 3D
mesh and its four accompanying textures, in seconds.

• EBW: The effective bandwidth of the network line in
Mbps.

• frame size: The average compressed frame size in
bytes with its payload corresponding to the sum of
the compressed 3D mesh and the size of the four
compressed accompanying textures.

• RTT: The line’s round-trip time is seconds.

With the above definitions given, we are now able to calcu-
late the variables of the TI pipeline’s theoretical model:

cmprs rate = 1/cmprs t, cmprs lat = cmprs t

trans push = 106 ×EBW/8× frame size

q1 wait t = min
(
1/cmprs rate, 1/trans push

)
trans lat = 1/trans push+ 0.5×RTT

trans out = min
(
cmprs rate, trans push

)
decmprs push = 1/decmprs t

q2 wait t = min
(
1/decmprs push, 1/trans out

)
decmprs lat = dcmprs t

decmprs out = min
(
decmprs push, trans out

)
According to the previous analysis, the approximate

end-to-end frame-rate of the TI pipeline is equal to
decmprs out. A lower bound on the end-to-end latency
is the quantity: cmprs lat + trans lat + decmprs lat,
while a respective upper bound is equal to cmprs lat +
q1 wait t+ trans lat+ q2 wait t+ decmprs lat.

5.3 Codec Live-Streaming Performance

In this paragraph we apply the theoretical model we de-
scribed in the previous subsection in order to obtain theo-
retical lower and upper bounds on the end-to-end latency
of the TI pipeline and an estimate of the final achieved
frame-rate. To accomplish this, we first set the scope of the
evaluation. We are going to provide a study for the case
of compressing and transmitting a full TVM representation
with connectivity, geometry, normals and attributes as well
as four texture images.

The meshes of our dataset that were generated by the
3D reconstruction method of [22] had an average vertex
count of 16868, and thus we pick this number as our average
mesh size. Subsequently, we set a target level of distortion
for each generic vertex attribute that all codecs must meet
for a fair comparison. The distortion levels that we have
set have already been discussed in the previous section
of the paper. More specifically, for geometry we’ve set a
target distortion level of ≈ 0.00065 Hausdorff distance with
respect to the bounding box diagonal. For normals, we set
the RMS distortion to 1◦ and for attributes to 0.0145 RMS.

From the benchmark analysis that we have performed
and discussed in the previous section, we are able to do
inverse calculation and compute the quantization parameter
values that lead to this average distortion behavior for each
codec. For the obtained quantization parameter values we
can calculate the estimated resulting bit-rate and encoding
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/ decoding time performance of each codec. Thus, the
frame size variable can be estimated by the calculated bit-
rate, while the encoding and decoding times of the codec
are calculated according to the methodology described in
Section 5.1.

In addition, we assume that the four accompanying tex-
tures of each mesh are half the Full HD resolution (960×540
pixels) and are compressed independently using the H.264
video codec, configured in its low-latency / high perfor-
mance “zerolatency” mode (i.e. not using B frames) and
constant quality across frames with quantization parameter
31, which is equivalent to per-frame JPEG compression
with 50% quality in PSNR sense (determined after exper-
imentation with textures from our dataset). An extensive
benchmarking experiment that we have conducted in our
labs concerning the texture compression has shown that for
this texture size and compression parameters the average
encoding time for four textures is 4 ms (1ms per texture)
while for decoding is 2 ms producing an average size per
texture (per frame) of 1KB (total of 4KB for four textures).
The implementation of the H.264 encoder that we used was
hardware accelerated in GPU [33].

Regarding the network conditions, we pick a fixed, mod-
erate, packet loss probability of p = 0.0005 for all of our
experiments. For the network line’s bandwidth we evaluate
on a typical value of 100Mbps . Moreover, we consider RTT
of 1ms, 20ms and 50ms which implies that the remote party
may be in the same city, country or continent as the sender,
respectively. The actual numbers for the upper and lower
bounds of the end-to-end latency as well as the expected
frame-rate (in frames per second - fps) for each codec profile
are given in Table 2.

Discussion on codec live streaming performance
Regarding the RTT of 1ms, we observe that among the same
codec, the fastest profiles perform better in both latency
bound terms and expected frame rate. In particular, Draco9,
O3f and CTM-LZ4 perform better than the other profiles
of the respective codecs. Corto’s profiles perform similarly.
Overall, in terms of end-to-end latency and frame-rate the
best performance is achieved by Corto2.

For the case of 20 ms RTT , the fastest profiles of each
codec performs better than other profiles of the same codec
in all aspects. However, in contrast to the previous case,
the codec with the lowest lower bound end-to-end latency
and highest frame rate is Draco9, while the lowest upper
bound end-to-end latency is achieved by Corto2, but not
significantly less than Draco9.

Finally, when considering a network line with RTT of 50
ms, for each codec, the profile that achieves the highest com-
pression leads to the highest frame-rate. On the other hand,
the fastest profiles generally achieve better performance in
terms of end-to-end latency. Overall, the best performing
codec is Draco with “speed - 2” achieving the highest frame-
rate and “speed - 9” achieving the lowest end-to-end latency.

To sum up, a general observation is that the processing
speed of the mesh codecs is more important when the
network line’s RTT is small, while for larger values of RTT
the best performing codecs are the ones having a good
trade-off between processing time and compression rate.
This can easily be explained by the theoretical model we

have discussed in Subsection 5.1. When effective bandwidth
is high, the frame rate is only affected by the compression
time (since compression time is always worse than decom-
pression time for all codec profiles). Furthermore, in the
same case, the transmission latency is negligibly affected
by the frame size, adding to the fact that compression ratio
here is less important. On the other hand, when the effective
bandwidth is low, the frame rate is inversely proportional to
the frame size, and latency is dominated by transmission
time, which is proportional to the frame’s size. Thus, in
that case, the RD performance matters more than runtime
performance.

6 CONCLUSION

In this paper we have conduced an extensive, systematic
and consistent benchmarking in terms of bit-rate, distortion
and processing time of four Open-Source static 3D mesh
codecs namely Corto, Draco, O3dgc and OpenCTM. In
contrast to other works, our work examines thoroughly
the performance of the codecs not only in compressing
geometry along with connectivity, but also in compressing
vertex normals and attributes.

Firstly, we evaluated the codecs in rate-distortion terms,
accounting for geometry, normal as well as attribute distor-
tion. Subsequently, we set target levels of distortion in all of
the aforementioned aspects, that led to a compressed repre-
sentation of good quality (at least in objective terms) but still
significantly compressible. For these preset distortion levels,
we evaluated the performance of the codecs in relation to
one another, in the aspects of bit-rate and processing time.
We’ve concluded that by the relative analysis it is not easy
to opine on which codec performs best, since none of the
codecs tops in all of the bit-rate, encoding and decoding
time aspects. Thus, we continued our investigation on the
performance of the codecs by examining their theoretical
performance in the case they were employed in a tele-
immersive interactive live streaming scenario. We created
a theoretical model of a TI pipeline and analytically com-
puted the end-to-end latency lower and upper bounds as
well, as the expected frame-rate for some common network
conditions when utilizing each one of those codecs. The
values that we fit to the TI pipeline’s theoretical model were
obtained by previously conduced extensive benchmarking.

Overall, we found that in the live streaming scenario,
for each profile of O3dgc there does exist one profile of
Draco that performs better in all of the relevant codec
aspects. Furthermore, except of the case of compressing just
geometry along with connectivity, the Corto codec always
performes better than the OpenCTM’s profiles in all terms.
Our live streaming analysis showed that choosing between
Corto and Draco in a TI pipeline should be a decision
based on network conditions, with Corto performing best
on network setups with low RTT, while Draco being better
when the line’s RTT increases. The results of this study
may be used to help designers of Tele-Immersive systems
to chose the best 3D mesh codec for their application. In
addition, the aforementioned analysis can be used as a base-
line for future 3D compression research, as it is evident that
there is still room for improvement, given that according to
our theoretical analysis, when the networking parameters
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TABLE 2
Expected frame-rate and end-to-end latency lower (LB) and upper (UB) bounds for each codec profile in a live streaming scenario for a set of

networking conditions with line bandwidth 100 MBps and RTT of 1ms, 20ms and 50ms. Each case’s effective bandwidth is also reported.

Line BW: 100Mbps, RTT: 1ms, EBW: 100Mbps Line BW: 100Mbps, RTT: 20ms, EBW: 26.12Mbps Line BW: 100Mbps, RTT: 50ms, EBW: 10.47Mbps
Codec Profile Latency LB Latency UB Frame-Rate Latency LB Latency UB Frame-Rate Latency LB Latency UB Frame-Rate

Corto1 25.65 38.75 82.95 57.49 74.74 33.07 117.83 135.09 13.23
Corto2 24.58 37.02 85.82 55.70 72.15 34.17 114.60 131.04 13.66
Draco2 65.69 92.99 26.39 89.14 130.40 26.39 132.47 192.73 21.18
Draco5 47.32 66.83 36.60 71.85 106.39 36.60 117.36 158.88 19.66
Draco9 28.94 41.81 64.19 53.80 76.82 48.12 99.97 122.99 19.24

O3d 47.12 67.58 38.23 74.40 112.65 38.23 125.51 165.85 16.61
O3f 38.05 55.91 50.78 65.68 96.82 40.73 117.51 148.65 16.29
O3s 49.62 70.49 35.38 74.91 111.56 35.38 121.96 165.50 18.72

CTM-LZMA 67.95 91.82 22.93 105.07 156.54 22.93 176.12 233.82 10.70
CTM-LZ4 41.75 65.68 57.73 98.47 123.02 15.64 209.33 233.89 6.25

used resemble the actual Internet more closely, sub-optimal
frame-rates are being achieved by the majority of codecs.
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[24] Quirin Meyer, Jochen Süßmuth, Gerd Sußner, Marc Stamminger,
and Günther Greiner, “On floating-point normal vectors,” in
Computer Graphics Forum. Wiley Online Library, 2010, number 4
in EGSR’10, pp. 1405–1409.

[25] C. Touma and C. Gotsman, “Triangle mesh compression,” Dec. 26
2000, US Patent 6,167,159.

[26] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE transactions on Information Theory, vol.
24, no. 5, pp. 530–536, 1978.

[27] Y. Collet et al., “Lz4: Extremely fast compression algorithm,” code.
google. com, 2013.

[28] P Cignoni, C. Rocchini, and R. Scopigno, “Metro: measuring error
on simplified surfaces,” 1998.

[29] Gisle Bjontegaard, “Calculation of average psnr differences be-
tween rd-curves,” VCEG-M33, 2001.

[30] Gisle Bjontegaard, “Improvements of the bd-psnr model, vceg-
ai11,” in ITU-T Q. 6/SG16, 34th VCEG Meeting, Berlin, Germany
(July 2008), 2008.

[31] Philip A Chou, Eduardo Pavez, Ricardo L de Queiroz, and An-
tonio Ortega, “Dynamic polygon clouds: Representation and
compression for vr/ar,” arXiv preprint arXiv:1610.00402, 2016.

[32] Iain E. Richardson, The H.264 Advanced Video Compression Standard,
Wiley Publishing, 2nd edition, 2010.

[33] “NVIDIA NVENC,” https://developer.nvidia.com/nvidia-video-
codec-sdk.

[34] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behavior of the tcp congestion avoidance algorithm,” ACM SIG-
COMM Computer Communication Review, vol. 27, no. 3, pp. 67–82,
1997.



JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 15

Alexandros Doumanoglou received his
diploma in Electrical & Computer Engineering
from the Aristotle University of Thessaloniki
(AUTh) in 2009. His thesis was about the
study and construction (in hardware and
software) of a passive acoustic radar. In the
past, he has been involved in in-depth study
of several fields of computer science, with
software security, cryptography, algorithms
and theory of computation, 3D graphics and
artificial intelligence in computer games being

the most notable. He is fond of applied informatics and engineering. He
has been working in the Information Technologies Institute (ITI) as a
research assistant since April 2012. His main research interests include
computer vision, pattern recognition, 3D reconstruction, 3D graphics,
mesh compression, signal processing and mathematical optimization.

Petros Drakoulis received his BSc in IT En-
gineering from Alexander TEI and his MSc in
Digital Media from Aristotle University of Thes-
saloniki. In 2018, he joined information technolo-
gies institute (ITI) of the Greek national cen-
tre for research and technological advancement
(CERTH) as a research assistant. His interests
include software engineering, computer vision
and machine learning.

Nikolaos Zioulis is an Electrical and Com-
puter Engineer (Aristotle University of Thessa-
loniki, 2012) working in the Information Tech-
nologies Institute (ITI) of the Centre for Research
and Technology Hellas (CERTH) since October
2013. His interests include 3D processing and
graphics, particularly performance oriented real-
time computer vision. Having been involved in
various research projects, his research interests
lie in the intersection of computer vision and
graphics technologies and, more specifically, 3D

capturing and rendering, 3D scene understanding and tele-immersive
applications.

Dimitrios Zarpalas has joined the Information
Technologies Institute in 2007, and is currently
working as a post-doctoral Research Associate.
His current research interests include real time
tele-immersion applications (3D reconstruction
of moving humans and their compression), 3D
computer vision, 3D medical image processing,
shape analysis of anatomical structures, 3D ob-
ject recognition, motion capturing and evalua-
tion, while in the past has also worked in in-
dexing, search and retrieval and classification of

3D objects and 3D model watermarking. His involvement with those
research areas has led to the co-authoring of 3 book chapter, 1 articles
in refereed journals and 42 papers in international conferences. He has
been involved in more than 10 research projects funded by EC, and
Greek Secretariat of Research and Technology. He is a member of the
Technical Chamber of Greece.

Petros Daras is a Principal Researcher Grade
A’, at the Information Technologies Institute of
the Centre for Research and Technology Hellas.
He received the Diploma in Electrical and Com-
puter Engineering, the MSc degree in Medical
Informatics and the Ph.D. degree in Electrical
and Computer Engineering all from the Aristo-
tle University of Thessaloniki, Greece in 1999,
2002 and 2005, respectively. He is the head
researcher of the Visual Computing Lab coor-
dinating the research efforts of more than 35

scientists. His research interests include 3D media processing and com-
pression, multimedia indexing, classification and retrieval, annotation
propagation and relevance feedback, bioinformatics and medical image
processing. He has co-authored more than 160 papers in refereed
journals and international conferences, and has been involved in more
than 30 national and international research projects.


