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ABSTRACT  

Increasing demand for customized products due to customers’ changing requirements has led to a non-

standardized assembly operation even for the same product. In addition, assembly operations usually 

require more than one worker, each characterized by diverse capabilities and constraints. Industrial 

manufacturers need to ensure that both productivity, as well as workers’ satisfaction remains in high 

levels. Toward this end, optimal sequencing of assembly operations can help minimize manufacturing 

lead-time and prevent excess fatigue for manual labor workers. Shop floor supervisors and managers 

should also be supported in efficiently allocating the available workforce to carry out these tasks in the 

most efficient manner, matching each individual’s capacity to best fit the task requirements. In this paper 

we introduce a web based Decision Support System (DSS) for assigning workers to tasks and producing 

the optimal sequence for an air handling unit assembly line, leveraging values from real-life use cases 

most commonly associated with the Heating, Ventilation and Air Conditioning industry. The proposed 

solution showed in simulation to effectuate significant improvement in reducing unproductive time and 

workers’ fatigue and due to its flexibility, task allocation plans can easily be adapted to fit changing 

requirements of both production parameters, as well as worker capabilities. 

Keywords: resource assignment, Industry 4.0, smart manufacturing, optimization 
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BACKGROUND & INTRODUCTION 

In practical assembly systems, in addition to the hard (i.e., technological) precedence relations, which 

enforce completion of certain set of predecessor assembly tasks before starting the successor ones, there 

are most likely soft precedence constraints and sequence dependent setup times in between. For example 

in car manufacturing, assembling a seat before the seat belt may extend the assembly time of the seat belt, 

because the seat is an obstacle which requires additional movements and/or prevents from using the most 

efficient installation procedure. Similarly, certain assembly tasks might require certain set of tools or re-

positioning the assembly unit, setting up several parameters in the work center before starting the 

consequent task, which eventually extend the overall assembly time with these sequence dependent setup 

times. Hence, optimal sequencing of assembly operations is crucial in several ways: (1) minimizing 

overall assembly time and reducing manufacturing lead-time; (2) minimizing assembly worker fatigue 

due to many tool changes and setup times; and (3) eventually maximizing worker physical wellbeing [1]. 

Optimal sequencing of assembly operations is becoming especially crucial in manufacturing of big size 

units with mostly manual workers like in the Heating, Ventilation and Air Conditioning (HVAC) industry, 

in which various size of Air Handling Units (AHU) are being produced. Although they share some basic 

features, each AHU has unique properties regarding to the customer requirements. Therefore, 

technological precedence between assembly operations and required tools to perform them, mostly 

changes from one AHU to other. In addition, due to changing customer specs and assembly instructions, 

workers continuously need to check the Computer-Aided Design (CAD) documents. Hence, optimal 

sequencing of assembly operations to minimize the total assembly time and reduce the time wasted for 

tool changing between operations is important. In an ideal assembly plan, all operations which require the 

same tool, should be ordered consecutively so that workers do not need to waste time to walk between the 

AHU and the tool magazine to change tools. Meanwhile, fatigue of workers due to walking between AHU 

and tool magazine is reduced.  

In this paper, a decision-support system (DSS) is presented in support of foremen and supervisors toward 

most efficiently managing the available workforce in an AHU assembly station. The station consists of a 

CAD drawing table, tool magazine and the AHU itself. Regarding to the complexity and the size of the 

AHU being produced, one or two workers can be assigned to perform the assembly operations. 

Experience of the workers in the assembly can vary between novice, intermediate or expert. While expert 

workers have full autonomy and can work all type of AHUs, other workers can work only certain type of 

AHUs and need to work with an expert worker for complex AHUs. Henceforth, in complex AHUs, 

matching certain assembly operations to specific workers is an important operational decision to take into 

account. Hence, in this study, our DSS is comprised of corresponding modules to: (1) optimally sequence 
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the assembly operations so that non-productive time and worker fatigue due to setup/tool-change time 

is minimized; and (2) optimally match assembly operations with the best workers and worker groups, 

taking into account the operations requirements and capabilities of the workers. A multi-agent 

adaptation approach is followed to ultimately propose the most efficient task allocation plan.  

The remainder of this paper is organized as follows: In the Related Work Section we will present an 

overview of related work in dealing with multi-agent adaptation architectures in manufacturing. In the 

Integrated DSS Section, we will present the developed DSS and provide an overview of the modules and 

algorithms incorporated to address the AHU assembly station use case. In the Application Section, the 

DSS will be demonstrated in an industrial instance, which heavily borrows from a real-life HVAC 

industry case, to validate its efficiency, before finally drawing conclusions and discussing further work in 

the Conclusion & Further Work Section of this paper. 

RELATED WORK 

The State of the Art in manufacturing systems typically depicts the latter as a composition of multiple 

manufacturing machines connected by a common transfer system, partially processing raw material in 

multiple stages before the final output of the finished product.  A clear distinction between Dedicated 

Manufacturing Lines (DML) and Flexible Manufacturing Systems (FMS) is evident. DMLs are 

characterized by high throughput, and the ability to maintain high production capacities (mass 

production), while FMSs are more tailored to the production of customizable product at significantly 

slower production rates. A hybrid approach, which borrows from both DML (throughput) and FMS 

(flexibility) systems, was proposed by Koren and Shpitalni [2] as Reconfigurable 

Assembly/Manufacturing Systems (RAS/RMS). Within RMS, configuration of the system impacts 

productivity, responsiveness, convertibility and scalability [2]. Recent research on technologies in the 

fields of Information and Communication Technologies (ICT), digitalization and virtualization have 

vastly contributed to the design of RMS [3] as well as the assembly of products, e.g. the 

Reconfigurable/Flexible Assembly Systems (RAS/FAS) “plug-and-produce” paradigm [4], and the 

development of various enablers currently on the market [5, 6].  

Resource management and allocation is an important issue for industries that want to manage their time 

correctly and allocate their resources effectively and efficiently, without lowering productivity [7]. The 

process is extremely important in Dynamic Assembly Systems (DAS), i.e. modular factory platforms for 

light assembly, inspection, test, repairing and packing applications [8]. DAS combine flow-oriented 

dynamic production control and modular automation for increased production efficiency with ergonomic 

solutions for manual assembly. They usually include a range of standardized modules, such as 
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workstations, robot cells, conveyors, and flexible buffers. A relevantly new trend towards 

implementing DAS was first proposed by [9], in the scope of multi-agent architectures in which 

manufacturing resources are represented as agents. Each agent has a set of capabilities, and the 

combination of different agents’ capabilities represent the full spectrum of capabilities offered by the 

system. In this context, “plug-and-produce”, a unified term to describe interoperability within the scope of 

reconfigurable assembly systems carried out under the Industry 4.0 scheme in Germany as well as the 

Internet of Things (IoT)/Industrial Internet Consortium (IIC), is implemented by allowing easy resource 

integration and/or exclusion from the overall system without affecting its core functionality. In [10], this 

multi-agent architecture was extended to adapt to changes, such as product specifications and 

consequently dynamically synthesize a new configuration of low-level manufacturing operations. In [11] 

an approach was first described (Cyber-Physical Production Systems – CPPS) that transforms typical 

hierarchical infrastructure into hierarchical architecture of inter-communicating resources. By 

acclamation, this work is considered to usher in the 4th Industrial Revolution (Industry 4.0) [12]. 

Approaches have seen been described in [12] [13] that match assigned capabilities of manufacturing 

resources against product requirements via sets of matching rules. Fully automatic adaptation of 

manufacturing environments and production environments in which human operators validate the 

proposed configurations are addressed. However, both require a human expert to check the feasibility of 

the proposed solution as well as insert all process combinations needed to manufacture the product. Our 

approach combines sequencing optimization and capability-based matching to automatically derive 

feasibility and support shop floor supervisors. In [14] a skill-based approach is followed, using the same 

model for describing the product and the resources. A similar approach is described in [15], where 

product information is provided from an external process-planning tool. Both works focus on automation, 

while our approach is defined in a human assembly environment, and allows for smooth adaptation of 

properties and constraints in devices as well as workers’ skills and preferences in the manufacturing plan. 

INTEGRATED DSS 

Considering Industry 4.0 demands in accordance to the requirements for adaptive user-machine interfaces 

and a human-centered factory, a web based DSS has been developed. Throughout the following Sections, 

a detailed overview is provided describing the subsystems comprising the Integrated DSS. 

Capability Editor: A multi-agent adaptation architecture has been followed, relying on worker 

capabilities to match workers to specific manufacturing tasks. These capabilities are characterized by 

certain ranges and constraints referred to as the capability parameters [13]. In order to efficiently match 

the capabilities of the workforce with the capability requirements set by a new product, these functional 
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capabilities should be formalized in a common representation format. For this, we follow the 

approach described in [13], which utilizes a capability concept name and a number of parameters. We 

likewise employ a Capability Editor, a web-based interface module in which a supervisor is able to 

assign capabilities to workers, add, remove or change parameters of these capabilities or even add new 

capabilities and workers to a centralized repository. Eventually, through the Capability Editor, a user is 

able to add new workers to the factory’s Resource Ontology, define and store new capabilities, and make 

them available to the other modules of the DSS. 

Pre-process Plan Generator: In a similar way to the Capability Editor, a Pre-process Plan Generator 

(PPG) is used to define the product requirements from the product model, and describe a set of capability 

requirements per process in the form of a pre-process plan [16]. A pre-process plan is a way to describe 

how to manufacture a product through a step-by-step manner. A user is able to define the required 

capabilities for each task using the Capability Model previously defined through the Capability Editor. 

The pre-process plan can thus only contain capabilities already defined in the Capability Editor, and any 

new capabilities required must be defined and assigned to the workers using that module. The PPG gives 

foremen and supervisors the ability to define additional requirements, such as the number of workers 

needed for a task, or even the required tools for a task. The module is based on a graph editing user 

interface, its output viewed as an ordered graph of multiple sub tasks, which lay out all possible recipes 

(e.g. sequences) for manufacturing a product. The module also supports automatic generation of 

combined capability requirements. For instance, if a task requires more than one worker, the PPG will 

automatically create the necessary fields and new combined capability requirements will be created.  

DSS Engine: As described in the Introduction section, a DSS component has been developed for finding 

the best sequence among all the possible sequences that can be derived from the output graph of the PPG, 

which minimizes the overall assembly time and sequence dependent setups. This DSS mostly targets 

industrial environments in which a computationally cheap approach is much appreciated for time and 

scalability requirements. Our approach is based on finding all the possible sequences of a pre-process plan 

(Figure 1a) by turning the graph into a Directed Acyclic Graph (DAG) [16]. The developed algorithm 

generates a graph structure by using the pre-process plan generator data, automatically filling up edges 

that don’t exist and which would allow sequencing between tasks at the same level (Figure 1b). After that 

the algorithm computes all the possible permutations using topological search based on a combination of 

Kahn’s algorithm for topological sorting [17] and backtracking. Executing Kahn’s algorithm by reducing 

the pre-process plan into a DAG enforces the hard precedencies described in the Introduction section. In 

addition, a cost per path is calculated for each optimal sequence permutation, using the setup time for 

each tool, defined in the PPG. This will effectively group tasks using the same tools, which as mentioned 
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in the Introduction, is expected to reduce the number of visits/walking distance by sequencing tasks in 

a way that those which require the same tool are suggested sequentially (Figure 1c). After selecting 

one of the optimal sequences suggested by the Sequencing module, the Engine uses a Matching 

algorithm to match resources to specific tasks based on their capabilities, which bears similarities to the 

approach described in [13]: 

   
(a) (b) (c) 

Figure 1: Initial, intermediate and final stage of pre-process plan a) Pre-process plan as defined in the PPG; b) Graph structure 

with edges automatically added, displayed with red color; c) optimal sequence (one of many) forcing the process hierarchy.   

Algorithm 1 Capability Coarse Matching 

Input ← A list of resources considered for a process. 

        The process data. 

set resourcePool = [] 

for each required capability in process.required_capabilities do 

 for each resource in resourcePool do 

  for each capability in resource.capabilities do 

   if required_capability.lowercase() === capability.lowercase() 

    resourcePool.push(resource) 

  end for 

 end for 

end for 

Return resourcePool 

Output: A list of resources with capabilities matching the capability requirement resourcePool. 

Algorithm 1 details the process of Capability Coarse matching. It first goes through the list of required 

capabilities defined for a specific task and looks for matches in the list of capabilities for each worker in 

the currently considered resource pool. If a match is found, the worker can be considered in later stages of 

the reasoning process. If not, the worker is omitted. 

Algorithm 2 Extract Rules from Process Parameters 

Input ←The process data. 

set rules = [] 

for each parameter in process.parameters do 

 set rule { 

 requirement = parameter 

 condition = false 

 confidence = 0.0 

               } 

end for 
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Return rules 

Output: A list of rules against which to match resources. 

Algorithm 2 demonstrates how Rules are defined from process parameters to drive the reasoning 

process. Each rule is characterized by a rule requirement (parameter to match against), condition (whether 

the rule is actually matched or not – expressed as a Boolean value) and confidence (the extent to which 

the rule is relevant expressed as 1.0 for fully relevant and 0.0 for fully irrelevant rules, in that the resource 

capabilities specifically designate variability among instances in handling the rule). 

Algorithm 3 Reasoning 

Input: A list of resources considered for a process. 

 A list of rules against which to match resources. 

 set resourcePool = [] 

 for each resource in resources do 

  set product = 0 

  for each rule in rules do 

   set param = lookFor_matching_parameter_name(rule.requirement.name) 

   if param set rule.confidence = 1.0 

   if check (rule.requirement,param) set rule.condition = true 

   if (rule.confidence == 1 && rule.condition == false) product += -1000 

   else product += ruled.condition * rule.confidence 

  end for 

if product > 0 push resource to resourcePool 

else block (resource) 

end for 

Return resourcePool 

Output: A list of resources matching the rule requirements resourcePool  

Algorithm 3 shows how the Rules generated using Algorithm 2 drive the reasoning behind matching a 

resource from the resource pool satisfying the capability coarse matching (Algorithm 1) against the 

requirements set by the task defined in the PPG. It describes how Rule condition and confidence play a 

key part in determining whether the resource can be considered a candidate for ultimately assigning the 

task to a worker. Algorithm 4 below describes the operation of the Engine’s Matching component, 

utilizing the aforementioned algorithms: 

Algorithm 4 DSS Engine Resources to Task matching algorithm 

Input: The ResourceOntology created using the Capability Editor. 

 The PreProcessPlan created using the Pre-process Plan Generator. 

 set resourcePool = ResourceOntology 

 for each process in the PreProcessPlan do 

  if process has Sub-Processes && process has no LoA Profiles then continue 

  if process is LoA Profile then continue 

  resourcePool = Capability Coarse Matching(resourcePool, process) 

  if resourcePool.length = 0 then continue 

  for product-related and other parameter types in process do 

   set R = Extract Rules From Process Parameters (process) 

   if(R.length > 0) resourcePool = Reasoning (resourcePool,R) 
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  end for 

 end for  

 Return resourcePool 

Output: A list of resources matching the rule requirements resourcePool  

APPLICATION 

This section presents a comprehensive description of the proposed 

DSS’ application in a HVAC industry instance of AHU assembly. For 

this case study, 20 workers have been represented in the Resource 

Ontology using the Capability Editor. The core capability of interest 

to the use case consists of the workers’ Qualifications, and its 

parameters and possible values are presented below.  

 Role: {Worker | Electrical worker} 

 Preferred Shift: {Day | Night} 

 Experience Level: {Novice | Experienced | Expert} 

 Availability: {Available | Unavailable} 

The process plan consisting of 17 sub tasks shown in Figure 2 is 

created with the use of the PPG. For each task the user can define its 

requirements, which are the number of workers, the various tools and 

all the parameters related to the Qualifications capability. As 

mentioned before, the PPG automatically generates combined 

capability requirements. Therefore, a task defined with a requirement 

of being assigned 2 workers, of which one should be a novice and the other an expert (with respect to 

Experience Level), automatically generates a requirement for assigning combination of workers, whose 

Qualifications group dynamic matches the “novice-expert” requirement. This will notify the Matching 

module to procedurally generate new worker resources by grouping single worker resources together to 

form groups matching the number in the task requirement. This will automatically reject all single worker 

resources during the matching stage later on, and pick only those groups that satisfy the requirement. 

Once the pre-requisites for the DSS Engine have been defined, the latter finds the optimal sequences and 

can be issued by a supervisor to match the workers to specific tasks for any selected optimal sequence of 

operations. Table 1a presents results for one optimal case and with all the workers available. Note that 

Task with ID 17 has no requirements defined, and therefore all workers are equally capable for 

completing it alone. The DSS Engine visualizes the above results for each task, and logs the reasoning 

process as is shown in Figure 3. 

 
Figure 2: Use case process plan with 

17 processes. Solid lines represent 

hard precedence relations, while 

dashed lines represent soft precedence 

constraints. 
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Task ID Resource IDs  Task ID Resource IDs  Task ID Resource IDs 

1 11-17,11-20,3-11,17-4,4-3,4-20  1 11-17,3-11,17-4,4-3,20-3,17-20  1 11-17,3-11,17-4,4-3,20-3,17-20 

3 12-13,12-14,12-15,12-16,12-1,5-

12,7-12,9-12,9-2,13-2,14-2,15-
2,16-2,2-1,5-2,7-2 

 3 12-13,12-14,12-15,12-16,12-1,5-

12,7-12,9-12,9-2,13-2,14-2,15-
2,16-2,2-1,5-2,7-2 

 3 12-13,12-14,12-15,12-16,12-1,5-

12,7-12,9-12,9-2,13-2,14-2,15-
2,16-2,2-1,5-2,7-2 

2 12-13,12-14,12-15,12-16,12-1,5-
12,7-12,9-12,9-2,13-2,14-2,15-

2,16-2,2-1,5-2,7-2 

 2 12-13,12-14,12-15,12-16,12-1,5-
12,7-12,9-12,9-2,13-2,14-2,15-

2,16-2,2-1,5-2,7-2 

 2 12-13,12-14,12-15,12-16,12-1,5-
12,7-12,9-12,9-2,13-2,14-2,15-

2,16-2,2-1,5-2,7-2 

4 11-17,11-20,3-11,17-4,4-3,4-20  4 11-17,3-11,17-4,4-3,20-3,17-20  4 11-17,3-11,17-4,4-3,20-3,17-20 

5 17,20,3  5 17,3  5 11-20-3,11-20-17,11-4-3,11-4-

17,17-20-4,20-3-4 

6 11-17,11-20,3-11,17-4,4-3,4-20  6 11-17,3-11,17-4,4-3,20-3,17-20  6 11-17,3-11,17-4,4-3,20-3,17-20 

8 11-17,11-20,3-11,17-4,4-3,4-20  8 11-17,3-11,17-4,4-3,20-3,17-20  8 11-17,3-11,17-4,4-3,20-3,17-20 

9 11-17,11-20,3-11,17-4,4-3,4-20  9 11-17,3-11,17-4,4-3,20-3,17-20  9 11-17,3-11,17-4,4-3,20-3,17-20 

10 11-17,11-20,3-11,17-4,4-3,4-20  10 11-17,3-11,17-4,4-3,20-3,17-20  10 11-17,3-11,17-4,4-3,20-3,17-20 

11 11-17,11-20,3-11,17-4,4-3,4-20  11 11-17,3-11,17-4,4-3,20-3,17-20  11 11-17,3-11,17-4,4-3,20-3,17-20 

12 11-17,11-20,3-11,17-4,4-3,4-20  12 11-17,3-11,17-4,4-3,20-3,17-20  12 11-17,3-11,17-4,4-3,20-3,17-20 

7 11-17,11-20,3-11,17-4,4-3,4-20  7 11-17,3-11,17-4,4-3,20-3,17-20  7 11-17,3-11,17-4,4-3,20-3,17-20 

13 11-17,11-20,3-11,17-4,4-3,4-20  13 11-17,3-11,17-4,4-3,20-3,17-20  13 11-17,3-11,17-4,4-3,20-3,17-20 

14 11-17,11-20,3-11,17-4,4-3,4-20  14 11-17,3-11,17-4,4-3,20-3,17-20  14 11-17,3-11,17-4,4-3,20-3,17-20 

15 11-17,11-20,3-11,17-4,4-3,4-20  15 11-17,3-11,17-4,4-3,20-3,17-20  15 11-17,3-11,17-4,4-3,20-3,17-20 

16 11-17,11-20,3-11,17-4,4-3,4-20  16 11-17,3-11,17-4,4-3,20-3,17-20  16 11-17,3-11,17-4,4-3,20-3,17-20 

17 1,2,3,4,5,6,7,8,9,10,11,12,13,14,1
5,16,17,19,20 

 17 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
,16,17,19,20 

 17 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
,16,17,19,20 

(a)  (b)  (c) 

Table 1: DSS results: a) Optimal sequence task allocation plan; b) Adapted case after worker 20 “Experience Level” parameter 

is set to “expert”; c) Adapted case after Task 5 is modified to require three workers, with specific “Qualifications" capabilities. 

 

Figure 3: Visualization of matching and reasoning output 
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A powerful concept of the proposed implementation concerns re-adaptability. In case that some of the 

resources become unavailable, or some value defining their capabilities is changed over the course of 

time (e.g. workers assume different shifts, in our example), only one minor amendment should be 

made in the Capability Editor module, which will update the Repository with the new values. Similarly, 

considering the flexibility required in tailoring the production to a customizable product, a task’s 

requirements can be changed upon request through the PPG instead of having to recreate a new pre-

process plan from scratch. The DSS can store multiple pre-process plans in a centralized repository, 

providing the supervisors and foremen with an easy-to-use interface to make any minor or major changes 

over the course of production changes. The matching algorithm can then be executed again, using the 

DSS Engine, providing updated suggestions based on the changes made. Table 1b presents the results for 

the same sequence used in our application example, where a change is made to a resource description 

through the Capability Editor. Table 1c presents the results for changes made to the task requirements. 

In order to prove our concept a simulation script has been developed for comparing the sequence which is 

currently used in an AHU assembly process and one of the produced optimal sequences.  The total 

number of travels to the tool magazine and for viewing the CAD drawings is 7 in the optimal sequence 

and 9 in the corresponding default and as a consequence of this the total assembly time has been reduced 

by 9.87%. Prior to real-life deployment in near-operational environments, as a next step, we are planning 

to validate the results of our simulation using professional-grade 3D manufacturing simulation software.1 

CONCLUSION & FURTHER WORK 

In this paper, a DSS for optimally sequencing assembly operations and matching each with best eligible 

workers is presented. The developed solution is demonstrated via a representative use case from the 

HVAC industry, particularly AHU assembly. Deploying the proposed DSS technology, significant 

improvement in reducing non-value added time in AHU assembly due to setup/tool changing times and 

reducing total walking distance of workers is expected. The presented solution is highly flexible, in that it 

can be applied in different assembly systems of various industries. Furthermore, it is also modular: 

regarding to the necessity of the manufacturing system, only one or some of the components of the 

proposed DSS can be used. Besides advantages, our framework has also some limitations. At the moment 

real time information, such as unexpected events in the shop floor is not considered. Stochastic 

programming or simulation optimization can be integrated to cover real-time occurrences of unexpected 

events. Furthermore, albeit our framework generates process sequences automatically, it is still required to 

construct the initial process plan manually. A machine learning method that extracts ontology from 

                                                      
1 https://www.visualcomponents.com/ 



11 

 

technical data is a research direction to automate generation of the initial process plan. We are 

planning also to deploy the developed technology in different assembly systems, and develop 

mathematical and constraint programming based exact methods to evaluate the solution’s quality and 

time performance of the DSS in hopes of improving the cases even further [18]. Finally, other 

combinatorial optimization methods to traverse the search space will be explored in combination with 

machine learning methods. A feature can be added to order possible groups for supervisors so that the list 

is ranked. The methodology can be coupled with task profiling and Levels of Automation (LoAs) in order 

to also suggest alternate ways of executing task parameters tailored to worker preferences [19], which is 

expected to significantly boost the attractiveness of the works as well as the satisfaction of the workers. 
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