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ABSTRACT
This paper presents a new method for segmenting multiple
brain structures by using an optimized mixture of differ-
ent Active Contour Models (ACMs). Prior constraints and
structures’ neighboring interaction are modelled for each
structure. Prior information is also captured by a train-
ing process, in which structure’s dependent local and global
weights are calculated. The local weights regulate locally the
combination of each term during the evolution, acting as an
experienced balancer between image and prior information.
The ideal proportion of relation between the mixture of dif-
ferent ACMs and the prior model is defined by the optimum
global weights. As proof of concept, the method is applied
on the very challenging task of segmenting hippocampus and
amygdala structures.

Categories and Subject Descriptors
I.4.6 [Image Processing]: Segmentation—Region growing,
partitioning , [Edge and feature detection]; I.5.4 [Pattern
Recognition]: Applications—Computer Vision; J.3 [Life
and Medical Sciences]: [Medical information systems]

General Terms
Algorithms, Experimentation and Theory.

Keywords
Medical imaging, brain MRI segmentation, hippocampus-
amygdala segmentation, region-based and gradient-based ac-
tive contours, prior knowledge, gradient distribution on
boundaries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX. . . $10.00.

1. INTRODUCTION
Brain segmentation of anatomical structures is an emerg-

ing field of research with important applications. Informa-
tion about anatomical structures can be extracted and fur-
ther analyzed for clinical and medical research purposes. Al-
though the large amount of effort invested on the topic, it
still continues to challenge researchers for seeking more ac-
curate results.

Boundaries among brain structures are often not clear,
while intensity and texture patterns of different structures
are quite similar, leading to inaccurate segmentation results.
The hippocampus and amygdala case is one of the most chal-
lenging, due to unclear, or even missing, boundaries between
them, and other surrounding regions, as figure 1 shows.

Various methods have been proposed on this task, with a
significant amount of them being with deformable models.
ACMs deform a contour in accordance to image information
based on image gradient [1] or gray-level intensity statistical
information [2]. These two main types are well known as
region-based or edge-based methods. Region-based meth-
ods for ACMs utilize intensity statistical information of the
image to control the contour and grow it to homogeneous
regions.

Many efforts have been devoted in prior knowledge utiliza-
tion into the existing frameworks to improve medical image
segmentation accuracy. Cootes et al. [3] made a break-
through by constructing shape models from statistical anal-
ysis based on corresponding points across a set of images.
Leventon [7] introduced the idea of incorporating shape anal-
ysis into the level-set functions through distance maps and
perform Principal Component Analysis (PCA) on level-set
functions. Davatzikos et al. [4] further proposed wavelet
analysis on the coordinates of the structure’s boundaries,
reducing significantly the size of the required training set.

Since then, remarkable work has been conducted on mul-
tiphase and multiple structure segmentation utilizing both
shape prior methods and image features. Yang et al. [13]
studied the variational relations of neighboring objects and
the contour was evolving both according to image gray infor-
mation and neighbor prior information. However, contours
were evolving independently making it very difficult to con-
trol the overlap problem. A similar approach was developed
in [11], [8]. To overcome these problems, Yan et al. [12]



Figure 1: Illustration of a slice from a brain MRI.
Colored contours depict outer boundaries of the hip-
pocampus and amygdala structures, produced by
manual segmentation. On the right, 3D reconstruc-
tions of the two structures.

proposed a repulsive term in order to isolate the structures
and prevent segmentation overlapping.

The aforementioned related work, assumes that the com-
bination of the gray-level image information and the prior
knowledge should be mixed in energy functionals, through
global multiplicative weights. In this manner, regions with
high gradients are affected from prior knowledge in the same
degree with regions of weak boundaries. Furthermore, prior
information is applied symmetrically to the complete im-
age domain, while only some regions actually require this
knowledge.

Extending previous work on the gradient distribution on
hippocampus boundary in [14], this work presents a multi-
structure segmentation framework in which each structure’s
prior knowledge is combined with image information. A lo-
cal weighting scheme, encapsulates knowledge of the extend
to which one should trust the image information or the prior
knowledge for any specific point in the image. This local
scheme, called Gradient Distribution of Boundaries (GDB),
acts at voxel level and controls contour evolution as a lo-
cal balancer: in image regions with evident boundaries and
strong edges, the ACM should evolve based on image statis-
tic or gradient information, while in regions with unclear
or missing boundaries, prior information should take con-
trol of the evolution. Acting this way, GDB tries to mimic
human’s visual perception of segmenting ambiguous images,
based on prior knowledge of the scene. To further improve
robustness and take advantage of benefits of both types of
image term based evolution, the region-based framework is
mixed with the edge-based. The edge-based model will con-
tribute to boundary regions with high gradient, while the
region-based model will support in noisy areas with weaker
boundaries. In an effort to optimally balance the mixture
model per structure, because different structures follow dif-
ferent boundary patterns, global weights are incorporated to
each of the including terms, and are found for each structure
separately in a single framework.

2. METHODOLOGY
In this section, the proposed method is described, which

mixes prior information and different types of ACMs, all
balanced by the GDB. Furthermore, global weights regu-
late each term’s contribution and are calculated through an
optimization process.

2.1 Energy Terms
Let Ω be a bounded open subset of R2, I : [0, a]× [0, b]→

R+ represents an image, and C(q) : [0, 1] → R2 is a pa-
rameterized planar curve in Ω. The curve C can be also

implicitly represented via a Lipschitz function φ by C =
{(x, y)|φ(x, y) = 0}. C partitions Ω into the inside C set
Ω1 in which φ(x, y) > 0, and the outside C set Ω2 in which
φ(x, y) < 0.

2.1.1 Edge-based term
One of the most popular edge-based models is the Geodesic

Active Contours model (GAC) [1]. Contour evolution occurs
until strong edges are detected. The GAC model is formu-
lated by minimizing the following energy functional:

EGAC(C) =

∫ 1

0

g(|∇(I)(C(q))|)C′(q)|dq (1)

where g is an edge stopping function [1]. The g function reg-
ulates contour evolution, by terminating it when the contour
faces strong edges. The Euler-Lagrange minimizer equation
concludes to:

Ct = g(|∇(I)|)κ ~N − (∇(g) · ~N) ~N (2)

where κ is the curvature of the contour and ~N is the inward
normal to the curve C. A baloon force term is further added,
in order to control the contour’s evolution, through a con-
stant velocity term α. Considering (1) and (2), the level set
evolution formula reads:

ϑφ

ϑt
= g|∇(φ)|(div(

∇φ
|∇φ| ) + α) +∇g · ∇φ (3)

2.1.2 Region-based term
The region-based model relies on statistical information

of intensities, of the inner and outer regions of the evolving
contour. The model used in this work is the well know Chan-
Vese framework [2], which can be seen as a special case of the
Mumford-Shah [10] problem. For a given image I ∈ Ω, the
Chan-Vese model is formulated by minimizing the following
energy functional:

ECV = λ1

∫
Ω1

|I(x, y)− c1|2dxdy+

+λ2

∫
Ω2

|I(x, y)− c2|2dxdy, (x, y) ∈ Ω (4)

where c1 and c2 are the average intensities of Ω1 and Ω2, re-
spectively. Furthermore, augmenting the energy term with
regularization terms of length and area, results to a smoother
solution. By minimizing it, the corresponding variational
level set formulation is obtained:

ϑφ

ϑt
= δε(φ)

[
µ div

(
∇φ
|∇φ|

)
− ν − λ1(I − c1)2 + λ2(I − c2)2

]
(5)

where µ, ν ≥ 0 control the smoothness and the evolution
speed respectively, while λ1, λ2 > 0 control the image data
driven force inside and outside C, respectively. δε denotes
the Dirac function.

2.1.3 Prior knowledge term
In an effort to model prior knowledge of the brain struc-

tures, a voxel-based statistical model is defined that captures
knowledge on the spatial location of structures of interest.



Each labelled image Ln, n = 1, . . . , N is an image, with
Ln(v) = l for voxels v that belong to the l-th structure of
interest and 0 otherwise.

The spatial distribution map Ll describes the empirical
probability p(l|v) ∈ [0, 1] for a given voxel v to have label l,
i.e to belong to l-th structure of interest. Figure 2(a) shows
Lhippocampus in blue and Lamygdala in red, with slightly pur-
ple being in the intermediate region.

The choice to model the prior information of the structure
using the spatial distribution map has a great advantage,
since it can be incorporated in the Chan-Vese model as a
second input image. Given a contour that evolves in the
image domain, Ll can be used in parallel in order to define
the area that a contour is likely to evolve, based on the
captured prior knowledge. The choice of utilizing the Chan-
Vese model instead of the GAC, is becauseLl has no high-
gradient edges. The prior knowledge energy functional is:

EPR = v1

∫
Ω1

|Ll(x, y)− d1|2dxdy+

+v2

∫
Ω2

|Ll(x, y)− d2|2dxdy, (x, y) ∈ Ω (6)

where d1 and d2 are now the probabilities of the regions in-
side and outside C and are calculated similarly with c1 and
c2 while v1 and v2 correspond to λ1 and λ2. The level-set
representation for the prior model, which minimizes equa-
tion (6) is the same with (5).

2.1.4 Mixture of Energies
Every brain structure has its own unique characteristics,

having boundaries with varying gradient values, and inner
regions with similar intensities with neighboring structures.
A mixture approach combines different properties of the
energy terms and mutually excludes disadvantages that in
other ways would escalate bad performance and would lead
to contour leak and false segmentation.

To enhance segmentation performance on boundary parts
with strong gradients, the GAC model is used. However, if
the target boundary is not well formed or contains weak-
parts, the contour will leak to neighboring structures. In
the challenging task of hippocampus and amygdala segmen-
tation, hippocampus boundaries are strong along the struc-
ture except the neighboring boundary with the amygdala
(figure 1). Due to this reason, the GAC model can perform
well in the major area of the hippocampus, but will fail to
detect the weaker boundary with amygdala. For amygdala,
which has very weak boundaries everywhere, the GAC model
seems to be totally inappropriate.

On the contrary, the Chan-Vese model has been widely
used in applications that require segmentation on weak bound-
ary objects. However, when intensities of neighboring, vaguely
separated structures are of similar values (e.g. hippocam-
pus and amygdala), the contour will continue to expand.
To overcome this, a prior information term is mandatory to
be included in the evolution process. The spatial distribu-
tion map can contribute, in order improve robustness and
segmentation accuracy.

An experienced ratter would know beforehand that the
lower and upper boundary of the hippocampus is well de-
fined (figure 1), and thus would trust the image edges (GAC
term), but in the region bordering with amygdala, would use
its experience to conclude about the borders. In an effort
to mimic the way the human expert will take advantage of

(a) (b)

Figure 2: (a) The spatial distribution map of hip-
pocampus and amygdala. (b) Illustration of GDB,
darker areas denote strong edge existence while
lighter weak boundaries.

his/her experience, the blending of the energy terms should
be defined locally. This is GDB’s role, as it tries to differen-
tiate regions that need greater support of prior knowledge
than these that can be segmented only by their gray-scale in-
formation. However, blending of these terms in the proposed
methodology has to be done in accordance to segmentation
accuracy and through a training procedure. Thus, the pro-
posed blending scheme is given by:

ETOTAL = GDB·(w1EGAC+w2ECV )+w3(1−GDB)·EPR (7)

Different values of the wi weights will vary the segmen-
tation performance. To find the ideal mix of wi, based on
the trained GDB, a global optimization method is required.
Taking into account the solvers of EGAC , ECV and EPR, the
segmented structure will be determined by:

ϑφ

ϑt
= GDB ·(w1φ

upd
GAC +w2φ

upd
CV )+w3(1−GDB) ·φupdPR (8)

where φupdGAC is given by (3), while φupdCV and φupdPR by (5).

2.2 Optimum Energy Mixing
In order to define GDB and W = wi, based on prior

knowledge, a training dataset is required. The GDB is based
on image gradient information of MR images, while W is the
result of an optimization procedure based on Particle Swarm
Optimization (PSO).

2.2.1 Gradient Distribution of Boundaries
GDB has the same size and dimensionality with the MR

image and acts as the balancer between the image term and
the prior term. GDB’s values define the extent to which
one should trust the image information or the prior knowl-
edge, at a voxel level [14]. Figure 2(b), shows GDB for
the hippocampus-amygdala region, which reveals the inexis-
tence of gradient values on the amygdala boundary, except
for its lower-right region.

In order to build the GDB, the gradient magnitude on the
perimeter of every structure is calculated. A thresholding
operation is performed on the gradient values, which tries
to connect neighboring pixels with similar gradient value
and direction. This operation separates the boundary to its
strong and weak gradient parts. In order to build a more
generic map of gradient distribution, around the structure of
interest, a morphological operator is applied to each pixel of
the thresholded (binarized) image. The structure element’s
direction is always aligned with each pixel’s normal unit, of
the thresholded image and dilation is perfomed. The same
procedure is applied to all MRI images of the training set
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Figure 3: (a) Segmentation outcome of the proposed
model for amygdala (blue contour) and hippocam-
pus (red contour). (b) Segmentation outcome with-
out utilizing the repulsive term (overlapping occurs)

and the produced dilated images are averaged and normal-
ized to [0, 1].

2.2.2 Weights Optimization
In order to find the optimum W values, a variety of in-

telligent global optimizers could be applied, such as Artifi-
cial Neural Network, Simulated Annealing Algorithm, Ant
Colony Optimization, Genetic Algorithms etc. In this work,
Particle Swarm Optimization (PSO) [5] is used due to its low
computational cost and its specialization in Mixing Problems
like Ingredient Mix Optimization [6]. PSO tries to mimic the
behavioral movement of swarms and flocks, as it happens in
nature. An objective function is used to evaluate at each
time, a group of candidate optimum solutions. Each can-
didate, is updated at each run in accordance with the best
evaluated wi in the swarm. At convergence, most of the
particles will concentrate around the global optimum of the
objective.

In this approach, the swarm consists of K weight vectors
Wk, k = 1...K, where K is the swarm’s population. The
particles are evaluated against an objective function f(Wk)
that measures segmentation accuracy in the training set.
The objective function used in the current analysis is the
mean of averaged distance errors, between the segmentation
result and the ground truth.

2.3 Multi-Structure Approach
Consider an image I that has M structures of interest

Si, (i = 1, ...,M). Structures may be neighboring and in
contact with each other, having unclear and weak bound-
aries, leading to leaked contours and oversegmentation. To
deal with these problems, the use of Ll and GDB has been
extended in a multiphase framework. Besides, overlapping
is another problem that occurs when contours evolve inde-
pendently, without any constraint in the interaction between
them. In order to overcome this problem, a coupling repul-
sive term can be formulated, which ensures segmented struc-
ture independence and restrain contour conflicts for pixels
that belong to marginal areas.

Each of the structures can follow the same training proce-
dure of Section 2.2. Individual calculations of Ll, GDB and
W for each structure, form its prior information profile.

2.3.1 Modelling Structure Interaction
A given contour Ci, which represents the segmented re-

gion Si, should be allowed to evolve in a bounded domain in
order not to interfere with other structures and avoid over-
lapping. To achieve this, a repulsive term is incorporated
into the contour evolution update term which prevents the
corresponding zero level set function φi to grow inside neigh-

boring structures.
In an effort to formulate region ownership and competi-

tion, the Heaviside function H is used. Since the inner do-
main of level set functions contain negative values and the
outer domain contains positive, H(φi) produces a binary
mask for the exterior domain and 1−H(φi) corresponds to
the interior domain, of Si structure. Extending this idea to
the initial intention to include coupling interaction between
the structures in the image I domain and under the assump-
tion that the structures are not initially overlapped, the Ri
matrix is derived:

Ri = 1−
N∑

j=1,j 6=i

(1−H(φj)) (9)

Ri is the repulsive matrix for Si structure and dynami-
cally adjusts to Ci changes and their corresponding level-set
functions φi. It represents the pixels which do not belong to
{Sj} structures, j = 1..N, j 6= i and therefore formulates a
dynamic label map for the allowed, non-conflicting bounded
region (see figure 3 for the impact of repulsion term on seg-
menting amygdala and hippocampus).

In differential discrete analysis, the Ri matrix would be
associated with equation (8), iteratively depending on dt
time step and the update term, which is the right part of
the aforementioned equation. To constrain the level set to
the bounded domain, the update term is multiplied by the
repulsive matrix Ri. Ri is calculated at each iteration, for
each structure, along with the update term of (8).

φi(t+ 1) = φi(t) + dtφupdate(t) ·Ri (10)

3. EXPERIMENTAL RESULTS
The proposed method was evaluated in the context of

the leave-one-out procedure. For every excluded image, the
GDB, the Spatial Distribution Map and the optimum weights
are calculated, in an effort to evaluate the effectiveness of the
energy mixing scheme. To compare the performance of the
algorithm, results with the Chan-Vese model along with the
prior information of spatial distribution map are presented.
Furthermore, the optimum global weights are given to ex-
plain the significance of each term’s presence in the scheme.

3.1 Evaluation Dataset
The proposed methodology has been tested on 13 MR T1

weighted MP-RAGE images, randomly chosen from the OA-
SIS database [9]. A professional radiologist manually traced
the hippocampus and amygdala volume on those 13 images,
in order to build the labelled image training set. Apart from
OASIS pre-processing, the selected MR images were further
rigidly registered on the hippocampus-amygdala complex’s
center of mass. The dataset used in the experiments consists
of the central sagittal slices of the complex, one taken from
each MRI.

3.2 Comparisons
As showed in [14], selecting initial seeds from the high

probable voxels of the spatial distribution map, boosts the
performance, by offering a reliable initialization to the seg-
mentation procedure. The performance of the algorithm
is evaluated by different metrics that define either distance
errors or precision-recall accuracy. Figure 3.2 presents the
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Figure 4: Comparisons based on (a) the Haussdorf
distance, and (b) the undirected averaged distance.

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

Precision − Recall

Recall

P
re

c
is

io
n

 

 

E
TOTAL

E
CV

+E
PR

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

F
1
 measure

Subject #

F
b

 

 

E
TOTAL

E
CV

+E
PR

(a) (b)

Figure 5: Comparisons based on Precision vs Recall
diagrams and the F1/Dice coefficient. In (a) results
of the two compared methods on the same image
are connected with dashed lines to highlight the im-
provement of the proposed method.

Haussdorf distance and the undirected averaged distance er-
ror, while in figure 3.2, Precision vs Recall metrics and F1

measure are illustrated.
As can be seen by the evaluation metrics (see table 3.2),

the majority of the test cases were significantly improved by
the proposed scheme. Overall, leakage is diminished and the
interaction model successfully constraints overlapping. In
table 3.2, the optimized weights are presented for each of the
tested structure. As expected, the GAC model has major
influence in the hippocampus segmentation, since hippocam-
pus actually has a significant portion of strong boundaries.
The weights of amydgala reveal the fact that there are not
enough gradients on its boundary to trust for its segmenta-
tion. Further, in both cases prior knowledge seemed to offer
significant help. In order to fully understand the significance
of each term and the balance among the image terms and
the prior term, one should keep in mind that these weights
are further weighted by the GVM.

Table 1: Averaged Comparison Results for HC-AM
F1 Prec. Recall Haus. Avrg Dst

ETOTAL 0.81 0.81 0.86 3.28 0.97
ECV + EPR 0.77 0.77 0.80 3.69 1.22

4. CONCLUSIONS
The proposed method tries to optimally blend image terms

with prior information in a sophisticated local and global
weighting scheme, in order to segment multiple objects si-
multaneously. GDB locally influences the contour evolution,

Table 2: Averaged optimum weights W
GAC C-V Prior

HC 0.40 0.37 0.23
AM 0.11 0.74 0.15

depending on each structure’s unique boundary character-
istics, while global weights establish a general balance be-
tween the energy terms. Experimental results verified that
the proposed framework’s enhanced performance.
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